
eXrQuy: Order Indifference in XQuery

Torsten Grust Jan Rittinger Jens Teubner

Technische Universität München, Munich, Germany
E-mail: {torsten.grust,jan.rittinger,jens.teubner}@in.tum.de

Abstract

There are more spots than immediately obvious in XQuery
expressions where order is immaterial for evaluation—
this affects most notably, but not exclusively, expres-
sions in the scope of unordered { } and the argument of
fn:unordered(). Clearly, performance gains are lurking
behind such expression contexts but the prevalent impact of
order on the XQuery semantics reaches deep into any com-
pliant XQuery processor, making it non-trivial to set this po-
tential free. Here, we describe how the relational XQuery
compiler Pathfinder uniformly exploits such order indiffer-
ence in a purely algebraic fashion: Pathfinder-emitted plans
faithfully implement the required XQuery order semantics
but (locally) ignore order wherever this is admitted.

1. Introduction
XQuery operates over two principal data structures, or-

dered unranked trees of XML nodes and ordered finite se-
quences of items (atomic values or nodes). Indeed, the
XQuery Formal Semantics [7] depends on multiple no-
tions of order—document, sequence, and iteration order—
which interact in a variety of ways. In consequence, the
proper creation and preservation of order (a) constitutes a
prevalent concept in the XQuery language definition, and
(b) has significant impact on the design and operation of
any standards-compliant XQuery processor. As a result, or-
der awareness is quite deeply wired into XQuery processors.

There are, however, more spots than immediately obvi-
ous in XQuery where order is either immaterial or not ob-
servable during expression evaluation. The XQuery lan-
guage definition even provides explicit means—the un-
ordered { } expression or, more generally, the ordering
mode and the built-in function fn:unordered()—to lo-
cally flag expressions whose evaluation sensibly admits
weakened order semantics. Clearly, the prime motivation
for posting such flags are the evaluation performance gains
lurking behind expression scopes with weak or no order re-
quirements.

Quoting the W3C XQuery Candidate Recommendation
[1], “. . . a performance advantage may be realized by set-
ting the ordering mode to unordered, thereby granting the
system flexibility to return the result in the order that it finds
most efficient.” It is this performance advantage that we are
after in the present work. Exploiting such (explicit or im-
plicit) order indifference in originally order-focused XQue-
ry engines is not straightforward, though. In fact, current

processors commonly disregard the latent gain and proceed
as if strict ordering is required throughout (Section 6).

To demonstrate, assume that XQuery variable $t is bound to
the XML fragment <a><c/><d/><c/>. The

a •
b •���

c1 •���
d•

999 c2•
999

Figure 1. XML
tree fragment
bound to $t.

corresponding fragment tree is shown in
Figure 1. The XPath expression1

$t//(c|d) , (1)

returns a sequence of c and d ele-
ments in document order. Typically, the
query runtime will process the child::c
and child::d steps separately and then
merge the two node sequences, (c1,c2) and (d) in this ex-
ample, in document order to yield (c1,d,c2). This evalua-
tion strategy specifically applies to XPath implementations
with efficient tag-name-based access to nodes, e.g., via the
element streams in TwigStack [5].

If we evaluate the above expression in the scope of un-
ordered { }, i.e., compute

unordered { $t//(c|d) }

we are given the option to return the element nodes in
any order. One particular order is (c1,c2, . . . ,cn,
d1,d2, . . . ,dm) in which all c elements precede the d el-
ements. While this is only one of the overall (n + m)! ad-
missible orders, this sequence is particularly efficient to pro-
duce: the results of the child::c and child::d steps may
simply be concatenated (note that, obviously, the two steps
yield disjoint results). Simulated on the XQuery language
level, the corresponding rewrite would read

unordered { $t//c }, unordered { $t//d } . (2)

In effect, the node set union ‘|’ has been traded for a low-
cost sequence concatenation ‘,’.

Here, we describe how the relational XQuery compiler
Pathfinder [4] exploits such order indifference in a purely
algebraic fashion. Pathfinder translates XQuery expressions
into relational algebra plans. Since its relational back-end
database system provides an inherently unordered runtime
environment, this enables Pathfinder to emit relational plans
which judiciously compute order information only where
this is indeed required. The presented technique uniformly
covers the various contexts in which order does not affect

1Remember that e1//e2 is syntactic sugar for the two-step path
e1/descendant-or-self::node()/child::e2.

expression evaluation: (a) XQuery’s ordering mode (affect-
ing FLWOR blocks, path expressions, ‘|’, intersect, and
except), (b) fn:unordered(), (c) the quantifiers some
and every and the existential semantics of general com-
parisons, (d) aggregates (fn:max(), fn:count(), . . .),
(e) further built-in functions (fn:empty(), fn:exists(),
fn:boolean(), . . .), and (f) FLWOR blocks whose result
is explicitly reordered by an order by clause. As of today,
we are unaware of other compliant processors which exploit
order indifference in XQuery to the degree described here.

We will proceed as follows. Section 2 reviews the no-
tions of orders and their interaction in XQuery and will show
that the effects of order indifference may only partially be
understood on the XQuery (Core) level. The impact of or-
der semantics on algebraic plans is discussed in Section 3,
before Section 4 gives a relational and uniform account of
order indifference. The experiments of Section 5 provide
the evidence that the performance advantage anticipated by
the W3C XQuery Working Group in [1] can indeed be real-
ized. Research in the neighborhood of this work is reviewed
(Section 6) before we wrap up in Section 7.

2. Order Semantics in XQuery:
Prevalent But Detachable

Whenever expression evaluation is performed under the
ordered ordering mode2, the semantics of XQuery mirrors
the inherent order of its underlying XML data model in var-
ious ways. By design, order in the base data, i.e., document
order (short: doc), is maintained whenever such data is ac-
cessed: XPath expressions yield node sequences in docu-
ment order. Likewise, sequence order (seq) is observable
by an expression when a for iteration draws variable bind-
ings from a sequence (iteration order, or iter for short).

doc

e1/e2

union,...

** seq
elem cons.

jj

e1,e2

for

��

iter
return

GG

Figure 2. Interac-
tion of orders in
XQuery (ordering
mode ordered).

This interaction of order notions in
XQuery is captured by Figure 2. Ar-
row doc // seq for example, indi-
cates that document order determines
sequence order during the evalua-
tion of location steps (e1/e2) or node
set operations (union or |, except,
and intersect). Since the different
types of interactions (as well as their
absence) lie at the heart of this work,
let us review the effects in more de-

tail. As before, we assume variable $t to be bound to the
XML fragment of Figure 1.
1© Document order determines sequence order (doc //

seq). We have already observed the effect of this interac-
tion when we discussed the expression $t//(c|d) in Sec-
tion 1: even if document-ordered access paths are available,

2Note that ordering mode ordered merely is a “perceived default”: an
implementation may choose to operate in default mode unordered (Sec-
tion 2.1) instead [1].

an XQuery processor may face the requirement to sort node
sequences to establish document order.
2© Sequence order establishes document order (seq //

doc). Whenever a query constructs an element, its con-
tent sequence determines document order in the newly con-
structed XML fragment. Consider

let $b := $t//b, $d := $t//d,
$e := <e>{ $d, $b }</e>

return ($b << $d, $e/b << $e/d)
(3)

which evaluates to (true,false) if applied to the tree
fragment of Figure 1: in the new fragment rooted in e, ele-
ment d precedes element b in document order.
3© Sequence order determines iteration order (seq //

iter). XQuery adopts a functional style of iteration in
which the individual evaluations of the return clause in
a FLWOR block cannot observe each others’ effect. In a
for iteration like

for $x at $p in ("a","b","c")
return <e pos="{ $p }">{ $x }</e> (4)

the evaluations of the return clause for the three bind-
ings of $x and $p may thus occur in arbitrary order or,
in principle, in parallel. The individual results of each it-
eration, however, are then assembled in the sequence or-
der determined by the binding sequence ("a","b","c")
to form the overall result (<e pos="1">a</e>,<e
pos="2">b</e>,<e pos="3">c</e>).
4© Iteration order determines sequence order (iter //

seq). Lastly, the internal order of the individual sequences
contributing to the result of a for iteration is preserved, i.e.,

for $x in (1,2) return ($x, $x * 10) (5)

returns (1,10,2,20). (Sequences in XQuery are flat, the
two contributing sequences have been marked by .)
2.1. Partially Detached Order:

unordered { } and fn:unordered()

Depending on the query kind, an XQuery processor may
devote a significant share of query evaluation time to prop-
erly realize these various interactions of order. (Section 5
contains an exemplary breakdown of where time goes dur-
ing XQuery expression evaluation.) In response to this ob-
servation, XQuery has been equipped with explicit, global
as well as local, control over the order semantics in selected
parts of an expression:
Ordering mode and unordered { }. Any XQuery ex-
pression is evaluated under a given ordering mode ∈
{ordered, unordered}. Local control over the order-
ing mode is exercised by means of the expressions un-
ordered { e } and ordered { e } which determine the or-
dering mode for expression e and its sub-expressions. In the
query prolog, the declaration declare ordering globally
sets the ordering mode.

doc seq
elem cons.

jj

e1,e2

iter
return

GG

Figure 3. Ordering
mode unordered.

Effectively, an ordering mode
of unordered corresponds to the
weakened order interaction shown in
Figure 3: path expressions may re-
turn out-of-document-order node se-
quences and the bindings of for-
bound variables may be generated in
non-deterministic order. Further or-
der interactions are not affected.

To illustrate, removal of doc //

seq led to the equivalence of the XQuery Expressions (1)
and (2) (see Section 1). Further, Expression (4) may now
be evaluated to the sequence (<e pos="2">b</e>,<e
pos="1">a</e>,<e pos="3">c</e>) or any other per-
mutation of the e elements. (Observe, however, that vari-
able $p, and thus attribute pos, still consistently reflects
the position in the binding sequence.) Finally, Expres-
sion (5) is admitted to evaluate to (2,20,1,10) but not
(1,20,2,10): order interaction iter // seq remains intact
in Figure 3.

Built-in function fn:unordered(). To evaluate the func-
tion application fn:unordered(e), the XQuery proces-
sor may disregard sequence order in the value of expres-
sion e: any permutation of the items in the sequence is
an acceptable result. Recast in terms of order interac-
tions, fn:unordered() removes the loop seqý in Fig-
ures 2 and 3. If Expression (5) is evaluated as the argument
of fn:unordered(), the result sequence (1,20,2,10)
would now be admissible (there are 23 more possible re-
sults).

This language-level control over weakened order semantics
clearly bears promising performance potential, provided
that the query runtime can adapt its evaluation mode at the
granularity of individual sub-expressions. One stumbling
block is the fact that the effects of order indifference may
only partially be understood in the language itself, as we
will see now.

2.2. Understanding Order Indifference
in XQuery Core

The W3C XQuery specification [7] defines the semantics
of the language in terms of normalization rules, which, in a
nutshell, define a mapping J·K from XQuery surface syntax
to a restricted XQuery Core dialect.

Following this route, we may try to describe the effect of
unordered { } by
(a) pushing down unordered { } through for iterations,

location steps and node set operations, and
(b) inserting calls to fn:unordered() in the appropriate

places.
This leads to the normalization rules shown in Figure 4
(these rules emphasize order semantics and deliberately ig-
nore most of the intricate details of XQuery normalization).

ordering mode = unordered

Je1K = e′1 Je2K = e′2
r
for $x in e1
return e2

z
=

for $x in fn:unordered(e′1)
return e′2

(FOR)

ordering mode = unordered

Je1K = e′1 Je2K = e′2

Je1/e2K = fn:unordered(e′1/e
′
2)

(STEP)

ordering mode = unordered

Je1K = e′1 Je2K = e′2

Je1 union e2K = fn:unordered(e′1 union e′2)
(UNION)

Figure 4. An attempt to capture the effect of ordering
mode unordered in XQuery Core. Rules for except,
intersect not shown (analogous to UNION).

Under ordering mode unordered, for example, the order
of variable bindings in a for iteration is non-deterministic.
This is exactly what Rule FOR expresses. Similar rules
could be used to capture further contexts of order indiffer-
ence. We have, e.g.:

(FN:COUNT)
JeK = e′

Jfn:count(e)K = fn:count(fn:unordered(e′))
.

Equivalent rules may be formulated for further ag-
gregate functions, as well as fn:distinct-values(),
fn:exists(), fn:empty(), etc. The quantifier some
(analogously for every) is indifferent to the sequence or-
der of its domain:

(QUANT)
Je1K = e′1 Je2K = e′2r

some $x in e1
satisfies e2

z
= some $x in fn:unordered(e′1)

satisfies e′2
Note that no premise ordering mode = unordered is
needed in the two latter rules: they apply in either order-
ing mode setting. Further XQuery constructs benefit from
these introductions of fn:unordered(): the normalization
of general comparisons is based on the some quantifier such
that, e.g., the expression e1 = e2 effectively normalizes to
some $x in fn:unordered(e1) satisfies
some $y in fn:unordered(e2) satisfies $x eq $y .

The full impact of unordered { } and fn:unorde-
red(), however, may only incompletely be described on
the level of XQuery Core. To see this, consider the nested
iteration

for $x in (1,2)
for $y in (10,20)
return <a> { $x, $y }

. (6)

In the scope of ordering mode unordered, two applications
of Rule FOR yield the expression

for $x in fn:unordered((1,2))
for $y in fn:unordered((10,20))
return <a> { $x, $y }

. (7)

This rewrite fails to fully recognize the freedom intro-
duced by the weakened order requirements. Although
fn:unordered() introduces a certain degree of non-
determinism in (7)—and thus desirable freedom of choice
for the runtime system—this expression will, for ex-
ample, never yield (<a>1 10,<a>2 10,<a>1
20,<a>2 20) which is one of the 24 acceptable
results of the original Expression (6) under ordering mode
unordered: in (7), variable $x remains the outer, $y con-
tinues to be the inner iteration variable. The semantics of
XQuery’s ordering mode unordered do not imply such a
restriction, however [7].

Further, a rule similar to FOR cannot be found for itera-
tions using positional variables (at $p). Expression

for $x at $p in fn:unordered(("a","b","c"))
return <e pos="{ $p }">{ $x }</e>

is not the equivalent of (4) under ordering mode unorde-
red: the deterministic association of an item with its po-
sition in the binding sequence (e.g., "a" occurs at position
1) is lost. Ultimately, this renders Rule FOR unsuitable to
understand ordering mode unordered.

Language-level rewrites similarly fail to explain fn:un-
ordered(). In general, “pushing down” fn:unordered()
tends to strengthen originally weak order requirements:
rewriting

fn:unordered(for $x in (1,2)
return ($x, $x * 10))

into
for $x in fn:unordered((1,2))
return fn:unordered(($x, $x * 10))

only admits 1/6 of the originally 24 possible sequence per-
mutations.

Finally, XQuery Core-level query rewriting in the pres-
ence of unordered { } is context-dependent. Unfolding the
let binding3 in (as before, assume $t to be bound to the
fragment of Figure 1)

let $c2 := $t//c[2]
return unordered { $c2 }

to obtain

unordered { $t//c[2] }

illegitimately introduces non-determinism: while the for-
mer returns element c2, the latter might evaluate to any of
the two c elements.

Normalization goes some way to grasping the effects of
order indifference in the language itself. The above-
mentioned difficulties, however, are essential. This is also
reflected in the W3C XQuery specification documents: a
formal description of the impact of order indifference on
the dynamic semantics of FLWOR blocks is explicitly omit-
ted [7, § 4.8].

3This is a variation of an example due to Daniela Florescu.

Further, language definition aside, it still remains unclear
how the query compiler and its runtime environment can
specifically exploit the fact that a sub-expression occurs in
the scope of weakened order requirements. This is what we
shift focus to now.

3. Relational XQuery and Order Interaction
Undeniably, the correct and efficient implementation of

weakened order semantics represents a challenge for any
XQuery processor (Section 6). In the purely relational
XQuery compiler Pathfinder [4] we indeed have the op-
portunity to perform less work whenever order is not ob-
servable by expressions. Pathfinder is purely relational in
the sense that the principal structures of the XQuery data
model—unranked trees and item sequences—as well as
the dynamic semantics (evaluation) of XQuery are exclu-
sively implemented in terms of relational idioms. Relational
database kernels are probably the best understood as well as
the best engineered query engines available today. The ul-
timate goal of the relational XQuery idea is to inherit this
efficiency and scalability.

Here, we will review those bits of Pathfinder which are
affected by order indifference. The subsequent develop-
ments directly plug into prior descriptions of this technol-
ogy [10, 11].

a 0

b 1
��

c1 2
��

d3

99 c24

99

Figure 5. Enco-
ded XML frag-
ment (preorder
ranks 0 . . 4).

Encoding trees and item sequences.
Pathfinder can operate with any schema-
oblivious XML tree encoding that as-
signs document order-preserving node
identifiers. Viable candidates are, e.g.,
ORDPATH labels [16] or preorder ranks
[12]. Figure 5 depicts the XML frag-
ment of Figure 1 in which nodes have
been identified with their preorder rank,
an integer 0 , 1 , 2 , Element b precedes d in docu-
ment order which is also witnessed by their preorder ranks:
1 < 3 .

To retain order in a purely relational setting, Pathfinder

pos item
1 i1
2 i2...

...
n in

represents the item sequence (i1,i2,. . . ,in), n >
0, in terms of a (possibly empty) two-column table
exhibiting an explicit pos column. The items ik ei-
ther denote nodes (represented by their identifiers)
or atomic values. In this simple model, the value of
fn:unordered((i1,i2,. . . ,in)) corresponds to a
pos item relation in which column pos is arbitrarily popu-
lated with numbers {1, . . . , n} (or pos is missing at all).

Dynamic semantics. Pathfinder’s code generator emits
query plans that use the operators of a rather restricted
variant of classical relational algebra (Table 1). The
design of this algebra dialect has been guided by the
processing capabilities of SQL-centric relational database
kernels. For example, column projection π does not

remove duplicate rows and the row numbering prim-
itive %a:〈b〉‖c exactly mimics the functionality of the
ROW_NUMBER() OVER (PARTITION BY c ORDER BY b) AS a
ranking operator found in the SQL:1999 OLAP amend-
ment. %a:〈b〉‖c(q) groups input table q by column c and
extends q by new column a containing a dense numbering
(1, 2, 3, . . .) of the rows in each group. The row order in
each group is determined by the sort criterion (column) b.
Grouping is optional: %a:〈b〉(q) treats table q as a single
large group.

Pathfinder-emitted algebraic code exhibits a number of
restrictions which make the plans particularly amenable to
analysis—enabling, e.g., algebraic XQuery join recognition
[9]—and simplification. A simple form of data flow analy-
sis will be used in Section 4.

As is to be expected, the various interactions of orders
in XQuery have a direct impact on the generated plans. We
zoom in on two types of interaction below.

Order interaction 1©: doc // seq. For XPath location step
evaluation, Pathfinder relies on invocations of the step oper-
ator �ax::nt(q): operator � is parameterized by the XPath
axis and node test ax::nt and consumes a table q whose
item column contains context node identifiers. Likewise,
a duplicate-free table of encoded nodes constitutes the out-
put of �. Several existing XPath step evaluation techniques
may be plugged in to realize �, among these are TwigStack
[5] or staircase join [12].

Consider variable $t to be bound to the root ele-
ment a (preorder rank 0) of the XML fragment in Fig-
ure 5. To evaluate the step $t//(c|d), the compiled
plan will make use of �, consuming as input the unary
context node table item

0 . The output will be the table
item
4
2
3

shown on the left, containing the preorder ranks of the
three element nodes c1, c2, d in some order that is de-
termined by the actual XPath step evaluation technique.
Under XQuery ordering mode ordered, document or-

der determines sequence order after step evaluation. To ad-
here, Pathfinder wraps the invocation of � in a call to %
to derive sequence order (i.e., column pos) from the order-
preserving node identifiers returned by the step:

%pos:〈item〉

 item
4
2
3

 =
pos item
3 4
1 2
2 3

.

The Pathfinder compiler is specified in terms of inference
rules which collectively define function · Z⇒· (read: com-
piles to) from XQuery expressions to algebraic code. To
compile an XPath location step e/ax::nt , Rule LOC is in-
voked (disregard the grouping ‖iter for now):

ordering mode = ordered e Z⇒ qe

e/ax::nt Z⇒ %pos:〈item〉‖iter(πiter,item(�ax::nt(qe)))
(LOC)

The complete inference rule set is developed and discussed
in [11].

Order interaction 3©: seq // iter. To exploit the paral-
lelism inherent in XQuery’s functional iteration style (Sec-
tion 2), Pathfinder-emitted code collects all bindings of a
for-bound variable into a single table. In each iteration, an
XQuery variable is bound to a single item i, which corre-
sponds to one row 〈1, i〉 in the pos item tables. Much like

iter pos item
1 1 "a"
2 1 "b"
3 1 "c"

column pos maintains sequence order, we use
an additional column iter to keep track of iter-
ation order. The complete relational encoding
of variable $x in Expression (4) thus is the table
shown here.

These iter pos item tables are the prevalent representa-
tion of evaluated expressions (i.e., item sequences) in Path-
finder’s XQuery compilation scheme: in what follows, a
row 〈i, p, v〉 in the table representing the value of an expres-
sion e may invariably be read as “in iteration i, e assumes
item value v at the sequence position corresponding to p’s
rank in column pos.”

To properly implement the seq // iter order interaction
in for $x in e1 return e2, Pathfinder generates code that
derives iteration order (column iter) from the order in the
binding sequence e1. Assume e1 Z⇒ qe1 . The relational en-
coding of the bindings of variable $x may then be computed
by the mini-plan embedded in compilation Rule BIND be-
low. Again, order interaction is realized in terms of the row
numbering primitive %:

ordering mode = ordered e1 Z⇒ qe1

$x in e1 Z⇒
×

pos
1

vv
πiter:bind,item

III

%bind:〈iter,pos〉
qe1

(BIND)

Applied to $y and its binding sequence e1 = (10,20) in
the inner for-iteration of Expression (6) we have

e1 Z⇒

iter pos item
1 1 10
1 2 20
2 1 10
2 2 20

and $y in e1 Z⇒

iter pos item
1 1 10
2 1 20
3 1 10
4 1 20

.

This meets the XQuery semantics of nested iteration: in it-
erations 1 and 3 of the return clause in (6), $y is bound to
item 10, in iterations 2 and 4, $y is bound to 20.

Impact of order interaction. Pathfinder applies the rules
of compilation scheme · Z⇒· in a bottom-up fashion to build
a DAG of algebraic operators: the emitted code contains
significant sharing opportunities [9, 10]. Figure 6(a) depicts
the DAG for query Q6 of the XMark benchmark [18]:
for $b in doc("auction.xml")/site/regions
return fn:count($b/descendant::item)

. (Q6)

The plan of Figure 6(a) faithfully implements the semantics
of XQuery’s ordering mode ordered which accounts for all
five % primitives among its overall 19 operators (the annota-
tions in© refer to the types of order interaction identified in
Section 2, e.g., 1© indicates a doc // seq interaction). Since

πa,b:c project onto col.s a, c, rename c into b %a:〈b〉‖c group rows by c, order by b, then number rows (1, 2, . . .) in new col. a
σa select rows with col. a = true #a unsorted (arbitrary) row numbering in new col. a
ona=b equi-join �a:(b,c) apply ◦ ∈ {∗,=, <, . . . } to b, c, result in new col. a
× Cartesian product counta‖b grouped row aggregation (counting) in new col. a
.
∪ disjoint union (append) �ax::nt XPath step evaluation (axis ax , node test nt)
a b c literal table with columns a, b, c doc XML document encoding access (fn:doc())

Table 1. Compilation target: relational algebra (excerpt).

πiter:iter1,pos:pos1,item

%pos1:〈bind,pos〉‖iter1
on

iter=bind

×ww

pos
1

GGG
countitem‖iter

www

πiter

%pos:〈item〉‖iter

πiter,item

�
descendant::item

×
pos
1

www
πiter:bind,item

GGG

%bind:〈iter,pos〉
GGG

%pos:〈item〉‖iter

πiter,item

�
child::regions

%pos:〈item〉‖iter

πiter,item

�
child::site

doc
"auction.xml"

OOO

πiter1:iter,bind

ooooo

4©

1©

3©
1©

1©

(a) Ordering mode ordered.

πiter:iter1,pos:pos1,item

%pos1:〈bind,pos〉‖iter1
on

iter=bind

×tt

pos
1

JJJ
countitem‖iter

ttt

πiter

#pos

πitem,iter

�
descendant::item

×
pos
1

ttt
πiter:bind,item

JJJ

#bind

JJJ

#pos

πitem,iter

�
child::regions

#pos

πitem,iter

�
child::site

doc
"auction.xml"

QQQQ

πiter1:iter,bind

mmmmm

4©

(b) Ordering mode unordered.

Figure 6. Plan emitted for Q6 under varying ordering
mode declarations.

an implementation of %will typically require a blocking sort
of its input, this gives a clear indication of the performance
advantage that lies in wait in scopes of order indifference.

4. Algebraic Order Indifference
It is now only a small step to see how order indifference

on the XQuery language level surfaces in the algebraic code:
(a) if an expression is indifferent with respect to sequence

order, its corresponding compiled code may populate
column pos with arbitrary (although unique) values.
Likewise,

(b) if an expression does not depend on iteration order, col-
umn iter may contain arbitrary unique values.

Note that we may not simply drop columns pos and
iter. Function · Z⇒· constitutes a compositional compila-
tion scheme in which a sub-expression may be compiled in-
dependently of its enclosing expression: code for the latter
will be generated under the assumption that the downstream
plan generates columns pos and iter (Section 3). More

importantly, however, the compiler acquires the ability
to freely mix order-dependent as well as order-indifferent
code, a feature that mirrors XQuery’s capability to let go of
order locally.

Whenever the compiler plans for the random population
of a column c it places operator #c (Table 1) in the DAG: #c

attaches new column c containing arbitrary unique numbers
to its input table. #c comes at negligible cost or may even
be “for free”: a table’s hidden (or virtual) ROWID column
which is typically maintained by relational database kernels
makes for a perfect column c.

Compiling fn:unordered(). The compilation Rule
FN:UNORDERED for fn:unordered(e) (Figure 7) di-
rectly reflects the above observation about algebraic se-
quence order indifference. The rule attaches the operator

#pos

πiter,item

qe�����
99999

pair #pos πiter,item on top of the plan qe for e and
effectively “overwrites” any sequence order infor-
mation contained in its input qe. Obviously, there
is no need to generate column pos in qe at all (this
is addressed in Section 4.1).

Together with normalization rules like QUANT
and FN:COUNT which insert calls to fn:unordered() on
the language level (Section 2.2), Rule FN:UNORDERED
suffices to uniformly introduce the order indifference inher-
ent in these XQuery constructs into the algebraic code. No
further specific treatment is required.

Compilation and ordering mode unordered. Recall that
the compilation rules for XPath location steps and the gener-
ation of variable bindings in a for-iteration, Rules LOC and
BIND (Section 3), use operator % to implement the order in-
teractions doc // seq and seq // iter, respectively. In Fig-
ure 7, we introduce the twin Rules LOC# and BIND# which
carry the premise ordering mode = unordered to ensure
that the compiler picks the correct rule in dependence on the
current ordering mode. Compared to their ordered coun-
terparts, both rules trade % for its unordered variant #: (a) in
Rule LOC#, sequence order is arbitrary (#pos) and does not
depend on the document order of the nodes returned by �,
and (b) in Rule BIND#, iteration order is arbitrary since #bind

followed by πiter:bind,... effectively overwrites the iteration
order information present in qe1 .

In principle, the addition of these two rules is the
only change needed to make the compiler aware of XQue-
ry’s ordering mode. Note that Rule LOC# is not strictly

e Z⇒ qe

fn:unordered(e) Z⇒ #pos(πiter,item(qe))
(FN:UNORDERED)

ordering mode = unordered e Z⇒ qe

e/ax::nt Z⇒ #pos(πiter,item(�ax::nt(qe)))
(LOC#)

ordering mode = unordered e1 Z⇒ qe1

$x in e1 Z⇒
×

pos
1

vvv
πiter:bind,item

III

#bind

qe1

(BIND#)

Figure 7. Extensions to make Pathfinder’s compila-
tion scheme · Z⇒· aware of order indifference.

#pos

required: cs

required: cs−{pos}

πiter:bind,item

required: cs

required: (cs−{iter})∪{bind,item}

Figure 8. Top-down inference of strictly required in-
put columns for # and π. DAG annotations in .

needed, even: its effect is essentially the same as the com-
position of the Rules STEP (normalization, introduction
of fn:unordered()) and FN:UNORDERED. Remember
that a similar observation does not apply to for-iterations,
though (Section 2.2).

With the declaration declare ordering unordered
added to the prolog of XMark query Q6, the modified com-
piler emits the plan DAG of Figure 6(b). The effects of alge-
braic order indifference are clearly visible: all % operators
but one have been traded for #. The remaining % operator
implements the order interaction iter // seq which is not
disabled by ordering mode unordered (but see Section 7).

4.1. Simple Column Dependency Analysis
Note that, although the # operators come at negligible

cost, the plan still performs a significant share of wasted
data movement: repeatedly, pos columns are introduced
only to be disregarded and overwritten upstream (in Fig-
ure 6(b), note operators #pos indirectly followed by #pos, or
#pos followed by a Cartesian product that installs a constant
pos column). As already indicated at the beginning of Sec-
tion 4, this is a consequence of the compiler’s compositional
specification.

A simple form of column dependency analysis suf-
fices to counter this effect. The compiler walks the plan
DAG top-down to infer the set cs of strictly required
input columns for each operator. At the root of the
DAG, this inference process is seeded with the column
set {pos, item}: these two columns are required to prop-
erly serialize the item sequence which forms the result of
a query. Figure 8 depicts the inference for the opera-
tors # and π. Once these column dependencies have been

recorded, the compiler may simplify or even prune opera-
tors which produce columns irrelevant for plan evaluation.

πpos:pos1,item

%pos1:〈bind,pos〉‖iter1
on

iter=bind

×xx

pos
1

FFF
countitem‖iter

xxx

πiter

�
descendant::item

πiter:bind,item

FF

#bind

FFF

�
child::regions

�
child::site

doc
"auction.xml"

NNNN

πiter1:iter,bind

ppppp

4©

Figure 9. Plan of
Fig. 6(b), column
dependency ana-
lysis applied.

This process is reminiscent of
projection pushdown optimizations
which are standard in relational
query processors [13].

Column dependency analysis
turns out to be quite effective to
implement order indifference. For
the plan of query Q6 under ordering
mode unordered (Figure 6(b)),
note how the analysis finally realizes
the order indifference we have
introduced through Rules LOC#

and BIND#: order is (almost) no
concern in the simplified plan of
Figure 9. For XMark query Q11
(Figure 11), which we will revisit
in Section 5, the initial plan DAG
of 235 operators is cut down to 141
nodes after the analysis.

4.2. Effects of Order Indifference
Trading ‘|’ for ‘,’. Recall our initial example ex-

pression unordered { $t//(c|d) } of Section 1. The
compiler will (1) apply Rule STEP to rewrite the expres-
sion into fn:unordered($t//(c|d)). It is now explicit
that the node sequence resulting from the XPath location
step may be arbitrarily ordered. (2) In the algebraic plan,
this order indifference is reflected by the application of
Rule FN:UNORDERED which installs #pos πiter,item on top
of the plan for $t//(c|d) (Figure 10, left). This plan
still exhibits instances of % to implement order interaction
doc // seq after location steps (/�) and the node sequence
union ‘|’ (|�). (3) Subsequent application of column de-
pendency analysis detects column pos to be obsolete and
leads to the final plan of Figure 10 (right). Note that

.
∪

merely concatenates its argument relations (the algebraic
equivalent of item sequence concatenation ‘,’), such that
the compiler indeed arrived at the algebraic equivalent of
unordered { $t//c }, unordered { $t//d }.

5. Quantitative Assessment
Here we report on the performance advantage realized by

the relational XQuery processor Pathfinder once we made it
aware of order indifference: we modified normalization J·K
to introduce calls to fn:unordered() (Section 2.2), added
the compilation Rules FN:UNORDERED, LOC#, and BIND#

as well as column dependency analysis (Section 4).

Pathfinder and MonetDB/XQuery4 The experiments in the
following were performed with MonetDB/XQuery, one of

4Pathfinder (packaged with MonetDB/XQuery) is available for down-
load at pathfinder-xquery.org.

#pos
ff

introduced by Rule
FN:UNORDEREDπiter,item

%pos:〈item〉‖iter |�
πiter,item

.
∪

%pos:〈item〉‖iter
oooo/�

πiter,item

�
child::c OO

%pos:〈item〉‖iter
OOOO /�

πiter,item

�
child::d

%pos:〈item〉‖iter
oo

/�
πiter,item

�
descendant-or-self::node()

//

#pos

πiter,item

.
∪

zzz

�
child::c

DDD

DDD

�
child::d

�
descendant-or-self::node()

zzz

Figure 10. A document order-aware union ‘|’ is cut
down to sequence concatenation ‘,’ (left: before,
right: after column dependency analysis).

let $auction := doc("auction.xml")
for $p in $auction/site/people/person
let $l := for $i in $auction/site/open_auctions/

open_auction/initial
where $p/profile/@income > 5000 * $i
return $i

return <items name="{ $p/name }">
{ fn:count($l) }

</items>

(Q11)

Figure 11. Query Q11 of the XMark benchmark.

Pathfinder’s relational back-end database systems. Mon-
etDB [2] is an extensible database kernel whose internals
have been optimized to perform query execution close to
the CPU (i.e., in the CPU caches or primary memory). In
MonetDB, tables undergo full vertical fragmentation: any
n-ary table is split into n binary tables (BATs). The narrow
iter pos item tables emitted by compilation scheme · Z⇒· fit
the BAT model quite well. Further, a number of idioms
which are common in Pathfinder-emitted plans—e.g., oc-
currences of #a and Cartesian products with one-column sin-
gleton tables like pos

1 —operate on table descriptors rather
than on individual rows and thus are almost for free in
MonetDB. The system’s implementation of the XPath lo-
cation step operator� is based on staircase join [12]. Mon-
etDB/XQuery itself is described in [3, 4].

The timings in this section were recorded on a Linux-based
host, equipped with two 3.2 GHz Intel Xeon® CPUs, 8 GB
of primary memory, and 280 GB of secondary memory re-
siding on two SCSI hard disks.

Query Profiling. To quantify the potential of order indif-
ference, we dissected the performance profile of query Q11
of the XMark benchmark [18]. From the two nested for-
iterations in Query Q11 (Figure 11), Pathfinder derives that
the query effectively performs a value-based join—using
the general comparison operator >—between person and

Sub-expression Time [ms] %

$auction/site/people/person 107 < 1 %
$auction/site/· · · /initial 144 < 1 %
· · · /@income, 5000 * $i (+ atomization) 949 2 %
join (of $p and $i) 23,989 45 %
return $i (iter // seq) 23,861 45 %
<items name= · · · </items> 627 1 %
fn:count($l) 3,367 6 %

53,044

Table 2. Profile breakdown for XMark Query Q11.

initial elements in an XMark document instance. This
join recognition process is described in [9]. The execu-
tion time profile, summarized in Table 2, was recorded for
an auction.xml instance of 558 MB (23, 513, 044 nodes).
For this instance size, query Q11 inspects and creates
significant amounts of data: the join returns more than
315, 000, 000 initial elements (join selectivity is 4 %)
and the outer return clause is evaluated 127, 500 times,
i.e., 127, 500 new items elements and name attribute nodes
are created and as many invocations of fn:count() are
processed.

Table 2 contains a breakdown—in milliseconds (ms) as
well as fractions of overall execution time—of where time
goes during evaluation of Q11 if the compiler ignores order
indifference. Note that the table shows aggregated execu-
tion times. The 3, 367 ms recorded for fn:count(), for
example, summarize the time spent in all 127, 500 calls to
this function. Since the implicit join in Q11 has been picked
up by Pathfinder’s code generator, the two path expressions
which generate the bindings for variables $p and $i are
evaluated once only.

The lion’s share of execution time, 90 %, is allocated to
join evaluation and the proper realization of order interac-
tion iter // seq (type 3©). The 315, 000, 000 bindings for
$i, the iteration variable of the inner for-block, have to
be reordered after the join: the ordered XQuery seman-
tics strictly prescribes that the primary sort criterion is the
binding order in the outer for-block (cf. the discussion of
Expressions (6) and (7) in Section 2.2).

While the join complexity is inherent in Q11, the en-
forcement of iter // seq clearly is wasted effort since the
join result (bound to variable $l) is evaluated as an argu-
ment to fn:count(). In the modified compiler, normaliza-
tion Rule FN:COUNT introduces a call to fn:unordered()
which, via FN:UNORDERED, leads to the insertion of the
operator pair #pos—πiter,item on top of the join code sec-
tion. Subsequent column dependency analysis effectively
removes the iter // seq interaction indicated in Table 2.
In this case, the runtime system saves 45 % of the overall
execution time.
XMark and Order Indifference. Substantial performance
advantages are realizable throughout the complete XMark

0 %

50 %

100 %

150 %

200 %
250 %

1,000 %

10,000 %

0 %

50 %

100 %

150 %

200 %
250 %
1,000 %

10,000 %

sp
ee

du
p

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

◦

◦

◦ ◦ ◦

◦ ◦ ◦

◦

◦

◦ ◦

◦

◦

◦ ◦ ◦
◦

◦ ◦

M
M

M
M

M

M M

M

M

M M

M

M

M M
M

M

M

M

♦
♦

♦
♦

♦

♦ ♦

♦

♦

♦
♦

♦ ♦

♦

♦

O O
O

O
O

O O

O

O

O
O O

O

O

O

�
�

�

�
�

� �
�

Document size

◦ 1 MB
M 10 MB
♦ 100 MB
O 1 GB
� 10 GB

Figure 12. Observed impact of order indifference (speedup) on the XMark benchmark query set.

benchmark query set. Figure 12 reports on the speedup
we observed if order indifference is enabled in Pathfinder.
We measured wall clock execution times for the 20 XMark
benchmark queries which were evaluated against XML doc-
ument instances ranging from 1 MB up to 10 GB serialized
size. (We recorded the timings for those queries which
completed in interactive time—the cutoff time was set to
30 s; on the 10 MB instance, almost all queries ran in less
than 1 s.) In this figure, a speedup of 100 % indicates that
Pathfinder was able to generate algebraic code that executed
twice as fast due to the exploitation of order indifference.
The observed speedup falls into a range of 0 to 10, 000 %
(notice the logarithmic scale above the gap ¦ in the y-
axis). The exceptional speedup for queries Q6 and Q7 is
due to the removal of a % operator that, in the initial plan,
separated two step operators�descendant-or-self::node() and
�child::nt where the context nodes for the first step were
located close to the document root. After column depen-
dency analysis, the now adjacent steps could be merged into
�descendant::nt .

6. Research in the Neighborhood
The exploitation of order indifference reaches quite

deeply into the operation of an XQuery processor and, de-
pending on the design of its internals, may call for sub-
stantial architectural changes. In fact, with the exception
of Saxon [14], we have found no traces of order indiffer-
ence in open-source XQuery engines (fn:unordered() is
commonly implemented as the identity function).

Galax incorporates a limited notion of order indiffe-
rence—based on the duptidy automaton of [8]—which is
focused on the order of the node sequence that results from
a series of XPath location steps.

The native XML database system Timber can correctly
reflect local XQuery document and iteration order indif-
ference (Timber does not support general item sequences
or sequence order) since it has been extended with a new
generic hybrid collection type [17]. For XQuery FLWOR

blocks, Timber derives sort specifications which are used
to instantiate a collection as a set or sequence and to pa-
rameterize operators of Timber’s query algebra. While re-
stricted to a very limited XQuery dialect, Timber’s approach
arguably seems more intricate and invasive than the simple
pos-column based approach.

The normalization Rules STEP and UNION have counter-
parts in the specification of the XQuery Formal Seman-
tics, where they are formulated in terms of the auxiliary
function fs:apply-ordering-mode() [7, § 7.1.10]. Note
that, for reasons explained in Section 2.2, no equivalent for
Rule FOR is found in [7].

In the completely vertically fragmented binary table (BAT)
model of MonetDB [2], the column dependency analysis
of Section 4.1 bears some close resemblance with the dead
code (or dead variable) elimination found in programming
language compilers [6]. Whenever Pathfinder infers that
a column, say c, is not strictly required, this corresponds
to dead code fragments in the procedural-style code gener-
ated for the MonetDB back-end: the code will create and
populate the BAT for column c but the table will never be
accessed later on. The column dependency analysis will
remove all references to column c in the plan DAG will ul-
timately lead to the removal of the dead back-end code.

While this work purely argues on the logical algebra layer,
the authors of [15] derive ordering and grouping informa-
tion on the basis of physical plans. Physical plan optimiza-
tion is orthogonal to the present work and may lead to ad-
ditional enhancements in Pathfinder’s code generator. The
techniques of [15] might infer, for example, that a partic-
ular sub-plan yields rows in 〈b, c〉 order (column b is the
primary order criterion, column c secondary). This renders
subsequent %a:〈b,c〉 or %a:〈c〉‖b operators as cheap as #a.

Note that the present work, in a sense, promotes the concept
of interesting orders as they were introduced in the semi-
nal work on the System R optimizer [19]: order indiffer-
ence leads to choice in the algebraic plans and row orders

which were formerly incompatible with the XQuery seman-
tics may prove to be interesting.

7. Wrap-Up
It turned out that a fine-grained control over order in-

difference in XQuery indeed leads to the significant perfor-
mance advantage anticipated by the W3C XQuery Work-
ing Group in [1]. We have seen, though, that such con-
trol has to be exercised below the XQuery language level
in order to fully comprehend and then realize the impact of
weakened order semantics. The prevalence of orders and
their intricate interaction in XQuery makes this quite a chal-
lenging problem.

A key concept of the present work are the row number-
ing primitives % and # which, in a sense, move the concept
of order from the query runtime into the algebraic code gen-
erator. This brought forth the required hooks to detect that
the enforcement of order is strictly needed or, far more in-
teresting in this context, rendered obsolete in specific sub-
expressions. The required changes to the query compiler are
limited: we extended normalization J.K, added less than a
handful of compilation rules, and introduced a simple form
of column dependency analysis into the property inference
framework that is in place in Pathfinder anyway.

Recall that in Figure 9 one row numbering operator, namely
%pos1:〈bind,pos〉‖iter1 , persisted even after column dependency
analysis. At this point in the plan, Pathfinder’s property
inference has derived that all entries in columns iter1 are
equal (the same holds for column pos) [9]. This (a) renders
the grouping in the above % obsolete and (b) identifies pos
as a useless order criterion that may be removed. Further,
column bind is found to contain arbitrary, although unique,
entries: bind may thus be safely removed from the list of
%’s order criteria as well. We are left with %pos1:〈〉 which at-
taches a new, arbitrarily ordered, densely numbered column
pos1 to its input table (Section 3). Obviously, this operator
comes “for free”—which ultimately removes any residual
traces of order in the plan for Q6.

Finally, we read the execution profile in Table 2 as an in-
dication of where research into the construction of XQuery
processors should head: the evaluation of XPath location
steps, for example, seems to be well understood by now—
further XQuery concepts (e.g., efficient atomization) seem
to deserve as much attention in the future.

Acknowledgment. This research has been supported by
the Deutsche Forschungsgemeinschaft (DFG) under grant
GR 2036/2-1.

References
[1] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu,

J. Robie, and J. Siméon. XQuery 1.0: An XML Query Lan-
guage. World Wide Web Consortium, June 2006.

[2] P. Boncz. Monet: A Next-Generation DBMS Kernel for
Query-Intensive Applications. PhD thesis, University of Am-
sterdam, The Netherlands, May 2002.

[3] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger,
and J. Teubner. Pathfinder: XQuery—The Relational Way.
In Proc. VLDB, Trondheim, Norway, 2005.

[4] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger,
and J. Teubner. MonetDB/XQuery: A Fast XQuery Pro-
cessor Powered by a Relational Engine. In Proc. SIGMOD,
Chicago, USA, 2006.

[5] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins:
Optimal XML Pattern Matching. In Proc. SIGMOD, Madi-
son, USA, 2002.

[6] J. W. Davidson and C. Fraser. The Design and Application
of a Retargetable Peephole Optimizer. ACM TOPLAS, 2(2),
1980.

[7] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and
XPath 2.0 Formal Semantics. W3 Consortium, June 2006.

[8] M. Fernández, J. Hidders, P. Michiels, J. Siméon, and R. Ver-
cammen. Optimizing Sort and Duplicate Elimination in
XQuery Path Expressions. In Proc. DEXA, Copenhagen,
Denmark, 2005.

[9] T. Grust. Purely Relational FLWORs. In Proc. XIME-P
Workshop, Maryland, USA, 2005.

[10] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In
Proc. VLDB, Toronto, Canada, 2004.

[11] T. Grust and J. Teubner. Relational Algebra: Mother
Tongue—XQuery: Fluent. In Proc. of the 1st Twente Data
Management Workshop (TDM), Enschede, The Netherlands,
2004.

[12] T. Grust, M. van Keulen, and J. Teubner. Staircase Join:
Teach a Relational DBMS to Watch its (Axis) Steps. In Proc.
VLDB, Berlin, Germany, 2003.

[13] M. Jarke and J. Koch. Query Optimization in Database Sys-
tems. ACM Computing Surveys, 16(2), 1984.

[14] M. Kay. The Saxon XSLT and XQuery Processor. http:
//saxon.sf.net/.

[15] G. Moerkotte and T. Neumann. A Combined Framework for
Grouping and Order Optimization. In Proc. VLDB, Toronto,
Canada, 2004.

[16] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-Friendly XML Node La-
bels. In Proc. SIGMOD, Paris, France, 2004.

[17] S. Paparizos and H. V. Jagadish. Pattern Tree Algebras: Sets
or Sequences? In Proc. VLDB, Trondheim, Norway, 2005.

[18] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for XML
Data Management. In Proc. VLDB, Hong Kong, China,
2002.

[19] P. G. Selinger, M. M. Astrahan, D. M. Chamberlin, R. A.
Lorie, and T. G. Price. Access Path Selection in a Relational
Database Management System. In Proc. SIGMOD, Boston,
USA, 1979.

