
The Case for Learned Spatial Indexes

Varun Pandey
TUM

pandey@in.tum.de

Alexander van Renen
TUM

renen@in.tum.de

Andreas Kipf
MIT CSAIL

kipf@mit.edu
Ibrahim Sabek

MIT CSAIL
sabek@mit.edu

Jialin Ding
MIT CSAIL

jialind@mit.edu

Alfons Kemper
TUM

kemper@in.tum.de

ABSTRACT
Spatial data is ubiquitous. Massive amounts of data are
generated every day from billions of GPS-enabled devices
such as cell phones, cars, sensors, and various consumer-
based applications such as Uber, Tinder, location-tagged
posts in Facebook, Twitter, Instagram, etc. This exponen-
tial growth in spatial data has led the research community
to focus on building systems and applications that can pro-
cess spatial data efficiently. In the meantime, recent re-
search has introduced learned index structures. In this work,
we use techniques proposed from a state-of-the art learned
multi-dimensional index structure (namely, Flood) and ap-
ply them to five classical multi-dimensional indexes to be
able to answer spatial range queries. By tuning each par-
titioning technique for optimal performance, we show that
(i) machine learned search within a partition is faster by
11.79% to 39.51% than binary search when using filtering
on one dimension, (ii) the bottleneck for tree structures is
index lookup, which could potentially be improved by lin-
earizing the indexed partitions (iii) filtering on one dimen-
sion and refining using machine learned indexes is 1.23x to
1.83x times faster than closest competitor which filters on
two dimensions, and (iv) learned indexes can have a signif-
icant impact on the performance of low selectivity queries
while being less effective under higher selectivities.

1. INTRODUCTION
With the increase in the amount of spatial data available

today, the database community has devoted substantial at-
tention to spatial data management. For e.g., NYC Taxi
Rides open dataset [31] consists of pickup and drop-off lo-
cations of more than 2.7 billion rides taken in the city since
2009. This represents more than 650,000 taxi rides every day
in one of the most densely populated cities in the world, but
is only a sample of the location data that is captured by
many applications today. Uber, a popular ride hailing ser-
vice available via a mobile application, operates on a global

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and AIDB 2020.
2nd International Workshop on Applied AI for Database Systems and Ap-
plications (AIDB’20), August 31, 2020, Tokyo, Japan.

ML BS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Gain: 25%Gain: 25%

index and
refinement
dominates

index and
refinement
dominates

Low SelectivityLow Selectivity
ML BS

0

50

100

150

200

scan
dominates
scan
dominates

High SelectivityHigh Selectivity
Q

u
er

y
ti

m
e

[µ
s]

Q
u

er
y

ti
m

e
[µ

s]

Index Time Refinement Scan

Figure 1: Machine Learning vs. Binary Search. For
low selectivity (0.00001%), the index and refinement
phases dominate, while for high selectivity (0.1%),
the scan phase dominates (parameters are tuned to
favor Binary Search).

scale and completed 10 billion rides in 2018 [47]. The un-
precedented rate of generation of location data has led to a
considerable amount of research efforts that have been fo-
cused on, systems that scale out [1, 2, 8, 9, 15, 40, 41, 42,
49, 51, 52], databases [12, 27, 28, 32, 34], improving spatial
query processing [11, 19, 20, 21, 36, 43, 44, 45, 54, 35], or
leveraging modern hardware and compiling techniques [6, 7,
38, 37, 39, 53], to handle the increasing demands of appli-
cations today.

Recently, Kraska et al. [24] proposed the idea of replacing
traditional database indexes with learned models that pre-
dict the location of a key in a sorted dataset, and showed
that learned models are generally faster than binary search.
Kester et al. [17] showed that index scans are preferable
over optimized sequential scans in main-memory analytical
engines if a query selects a narrow portion of the data.

In this paper, we build on top of these recent research re-
sults, and provide a thorough study for the effect of apply-
ing ideas from learned index structures (e.g., Flood [29]) to
classical multi-dimensional indexes. In particular, we focus
on five core spatial partitioning techniques, namely Fixed-
grid [4], Adaptive-grid [30], Kd-tree [3], Quadtree [10] and
STR [25]. Typically, query processing on top of these par-
titioning techniques include three phases; index lookup, re-
finement, and scanning (Details of these phases are in Sec-
tion 2.1). We propose to replace the typical search tech-
niques used in the refinement phase (e.g., binary search)

1



(a) Fixed grid (b) Adaptive grid (c) k-d tree (d) Quadtree (e) STRtree

Figure 2: An illustration of the different partitioning techniques

with learned models (e.g., RadixSpline [22]).
Interestingly, we found that, by using a learned model as

the search technique, we can gain a considerable speedup
in the query run-time, especially for low selectivity range
queries (Similar to the observation from Kester et al. [17]).
Figure 1 shows the average running time of a range query
using Adaptive-grid on a Tweets dataset, which consists of
83 million records (Section 3.1), with and without learning.
It can be seen that for a low selectivity query (which se-
lects 0.00001% of the data, i.e., 8 records) the index and
refinement times dominate the lookup, while for a high se-
lectivity query (which selects 0.1% of the data, i.e., 83 thou-
sand records) the scan time dominates. Another interest-
ing finding from our study is that 1-dimensional grid par-
titioning techniques (e.g., Fixed-grid) can benefit from the
learned models more than 2-dimensional techniques (e.g.,
Quadtree). Our study will assist researchers and practition-
ers in understanding the performance of different spatial in-
dexing techniques when combined with learned models.

2. APPROACH
In this section, we first explain how a range query pro-

cessing has been implemented. Then, we describe the spa-
tial partitioning techniques that we have implemented in
our work. We conclude the section by describing the search
techniques used within the individual partitions.

2.1 Range Query Processing
A given range query has a lower bound and an upper

bound in both dimensions. The task is to materialize all
the points that lie within the bounds of the query. Query
processing works in three phases:

• Index Lookup: In index lookup, we intersect a given
range query using the grid directories (or trees) to find
the partitions the query intersects with.

• Refinement: Once the partitions intersected have
been determined from the index lookup phase, we use a
search technique (Section 2.3) to find the lower bound
of the query on the sorted dimension within the par-
tition. There can be various cases on how a query
intersects with the partition, and we only consult the
search technique when it is actually needed to find the
lower bound of the given query on the sorted dimen-
sion.. For example, a partition could be fully inside
the range query, and in such a case we simply copy
all the points in the partition rather than use a search
technique.

• Scan: Once the lower bound in the sorted dimension
has been determined in refinement, we scan the parti-
tion to find the qualifying points on both dimensions.

We stop as soon as we reach the upper bound of the
query on the sorted dimension, or we reach the end of
the partition.

2.2 Partitioning Techniques
Spatially partitioning a dataset into partitions (or cells),

such that the objects within the partitions are also close in
space, is known as spatial partitioning. Spatial partition-
ing techniques can be classified into space partitioning tech-
niques (partitions the embedded space) or data partitioning
techniques (partitions the data space). In this paper, we em-
ploy Fixed-grid [4], Adaptive-grid [30], and Quadtree [10] as
space partitioning techniques; and Sort-Tile-Recursive [25]
and K-d tree [3] as data partitioning techniques. Figure 2 il-
lustrates these techniques on a sample of the Tweets dataset
used in our experiments (details are in Section 3.1), where
sample points and partition boundaries are shown as dots
and grid axes respectively.

2.2.1 Fixed and Adaptive Grid
The grid (or cell) methods were primarily designed to op-

timize retrieval of records from disk and generally they share
a similar structure. The grid family imposes a d-dimensional
grid on the d-attribute space. Every cell in the grid corre-
sponds to one data page (or bucket) and the data points that
fall within a particular cell boundary resides in the data page
of that cell. Every cell thus has to store a pointer to the data
page it indexes. This mapping of grid cells to data pages is
known as the grid directory. The Fixed-grid [4] method re-
quires that the grid subdivision lines to be equidistant. The
Grid File [30], or the Adaptive-grid, on the other hand re-
laxes this restriction. Since the grid subdivision lines are
not equidistant in the case of Grid File, it introduces an
auxiliary data structure called linear scales, which are a set
of d-dimensional arrays and define the partition boundaries
of the d-dimensions. Flood [29] is a state-of–the–art learned
multi-dimensional index for d-dimensional data, which par-
titions the data using a grid over d-1 dimensions and uses the
last dimension as the sort dimension. In our implementa-
tion, the grid partitioning techniques use a similar approach
where the space is divided in one dimension and the other
dimension is used as the sort dimension.

2.2.2 Quadtree
Quadtree [10] along with its many variants is a tree data

structure that also partitions the space like the k-d tree. The
term quadtree is generally referred to the two-dimensional
variant, but the basic idea can easily be generalized to d
dimensions. Like the k-d tree, the quadtree decomposes the
space using rectilinear hyperplanes. The important distinc-
tion is that quadtree is not a binary tree, and the interior
nodes in the tree have 2d children for d-dimensions. For d =
2, each interior node has four children, each corresponding to

2



a rectangle. The search space is recursively decomposed into
four quadrants until the number of objects in each quadrant
is less than a predefined threshold (usually the page size).
Quadtrees are generally not balanced as the tree goes deeper
for the areas with higher densities.

2.2.3 K-d tree
K-d tree [3] is a binary search tree that recursively subdi-

vides the space into equal subspaces by means of rectilinear
(or iso-oriented) hyperplanes. The subdivision alternates
between the k dimensions to be indexed. The splitting hy-
perplanes at every level are known as the discriminators.
For k = 2, for example, the splitting hyperplanes are al-
ternately perpendicular to the x-axis and the y-axis, and
are called the x-discriminator and the y-discriminator re-
spectively. The original K-d tree partitioned the space into
equal partitions, for example if the input space consists of
GPS co-ordinate system (-90.0, -180 to 90, 180) the space
would be divided into equal halves (-45, -90 to 45, 90). K-
d trees are thus not balanced if the data is skewed (most
of which might only lie in one partition). K-d tree can be
made data-aware by selecting a median point from the data
and dividing the data into two halves. This ensures that
both partitions in the binary tree are balanced. We have
implemented the data-aware k-d tree in our work.

2.2.4 Sort-Tile-Recursive (STR) packed R-tree
Sort-Tile-Recursive [25] is a packing algorithm to fill R-

tree [13] and aims to maximize space utilization. The main
idea behind STR packing is to tile the data space into S ×
S grid. For example, consider the number of points in a
dataset to be P and N be the capacity of a node. The data
space can then be divided into S×S grid where S =

√
P/N .

The points are first sorted on the x-dimension (in case of
rectangles, the x-dimension of the centroid) and then di-
vided into S vertical slices. Within each vertical slice, the
points are sorted on the y-dimension, and packed into nodes
by grouping them into runs of length N thus forming S hor-
izontal slices. The process then continues recursively. Pack-
ing the R-tree in this way packs all the nodes completely,
except the last node which may have fewer than N elements.

2.3 Search Within Partition
The learned index structures require the underlying data

to be sorted. In multi-dimensions, there is no inherent sort
order over all dimensions. Thus, after partitioning the data,
a sort ordering on some dimension is required for the learned
indexes to work. To achieve that, within each partition we
sort the data using one dimension. Since spatial data con-
sists of two dimensions (in two-dimensional space), either of
the two dimensions can be selected as the sort dimension.
Once the data within the partition has been sorted, either
a learned index or binary search (hereby search technique)
can be used on the sorted dimension. In all our experiments,
we have sorted on the longitude value of the location.

We use a RadixSpline [22, 23] over the sorted dimension
which consists of two components: 1) a set of spline points,
and 2) a radix table to quickly determine the spline points
to examine for a lookup key (in our case the dimension over
which the data is sorted). At lookup time, first the radix
table is consulted to determine the range of spline points to
examine. In the next step, these spline points are searched
over to determine the spline points surrounding the lookup

key. In the last step, linear interpolation is used to predict
the position of the lookup key in the sorted array. Unlike the
RMI [24], the RadixSpline only requires one pass over the
data to build the index, while retaining competitive lookup
times. The RadixSpline and the RMI, at the time of writing,
only work on integer values, and we adapted the open-source
implementation of RadixSpline to work with floating-point
values (spatial datasets generally contain floating point val-
ues). In our implementation, we have set the spline error to
32 in all experiments.

It is important to make a distinction between how we use
RadixSpline and binary search for refinement. In case of bi-
nary search, we do a lookup for the lower bound of the query
on the sorted dimension. As learned indexes come with an
error, usually a local search is done to find the lookup point
(in our case the query lower bound). For range scans, as we
do, there can be two cases. The first case is that the esti-
mated value from the spline is lower than the actual lower
bound on the sorted dimension. In this case, we scan up
until we reach the lower bound on the sorted dimension. In
the second case, the estimated value is higher than the ac-
tual lower bound, hence, we first scan down to the lower
bound, materialize all the points in our way until we reach
this bound, and after that we scan up until the query upper
bound (or the partition end). In case the estimated value is
lower than the upper bound of the query (i.e. the estimated
value is within both query bounds), the second case incurs
zero cost for local search as we can scan in both directions
until we reach the query bounds within the partition.

3. EVALUATION
All experiments were run single threaded on an Ubuntu

18.04 machine with an Intel Xeon E5-2660 v2 CPU (2.20 GHz,
10 cores, 3.00 GHz turbo)1 and 256 GB DDR3 RAM. We use
the numactl command to bind the thread and memory to
one node to avoid NUMA effects. CPU scaling was also dis-
abled during benchmarking using the cpupower command.

3.1 Datasets
For evaluation, we used three datasets, the New York

City Taxi Rides dataset [31] (NYC Taxi Rides), geo-tagged
tweets in the New York City area (NYC Tweets), and Open
Streets Maps (OSM). NYC Taxi Rides contains 305 million
taxi rides from the years 2014 and 2015. NYC Tweets data
was collected using Twitter’s Developer API [46] and con-
tains 83 million tweets. The OSM dataset has been taken
from [33] and contains 200M records from the All Nodes
(Points) dataset. Figure 3 shows the spatial distribution of
the three datasets. We further generated two types of query
workloads for each of the three datasets: skewed queries
(which follows the distribution of the underlying data) and
uniform queries. For each type of query workload, we gener-
ated six different workloads ranging from 0.00001% to 1.0%
selectivity. For example, in the case of Taxi Rides dataset
(305M records), these queries would materialize 30 records
to 3 million records. These query workloads consist of one
million queries each. To generate skewed queries, we select
a record from the data, and expand its boundaries (using

1CPU: https://ark.intel.com/content/www/us/en/ark/
products/75272/intel-xeon-processor-e5-2660-v2-
25m-cache-2-20-ghz.html

3



(a) Twitter (b) Taxi Trips (c) OSM

Figure 3: Datasets: (a) Tweets are spread across
New York, (b) NYC Taxi trips are clustered in cen-
tral New York, and (c) All Nodes dataset from OSM.

a random ratio in both dimensions) until the selectivity re-
quirement of the query is met. For uniform queries, we
generated points uniformly in the embedding space of the
dataset and expand the boundaries similarly until the selec-
tivity requirement of the query is met. The query selectivity
and the type of query are mostly application dependent. For
example, consider the application Google Maps, and a user
issues a query to find the popular pizzeria near the user.
The expected output for this query should be a handful of
records, i.e. a low selectivity query (a list of 20-30 restau-
rants near the user). On the other hand a query on an an-
alytical system, would materialize many more records (e.g.
find average cost of all taxi rides originating in Manhattan).

3.2 Tuning Partitioning Techniques
Recent work in learned multi-dimensional and spatial in-

dexes have focused on learning from the data and the query
workload. The essential idea behind learning from both
data and query workload is that a particular usecase can
be instance-optimized. To study this effect, we conducted
multiple experiments on the three datasets by varying the
sizes of the partitions, tuning them on two workloads with
different selectivities (to cover a broad spectrum we tune
the indexes on queries with low and high selectivity) for
both skewed and uniform queries.

Figure 4 shows the effect of tuning when the indexes are
tuned for the lowest selectivity workload for the two query
types. It can be seen in the figure that it is essential to tune
the grid partitioning techniques for a particular workload.
Firstly, they are susceptible to the size of the partition. As
the size of the partition increases, we notice an improvement
in the performance until a particular partition size is reached
which corresponds to the optimal performance. After this
point, increasing the size of the partitions only degrades
performance. It can be seen that, usually, for grid (single-
dimension) partitioning techniques the partition sizes are
much larger compared to partitioning techniques which fil-
ter on both dimensions (only Quadtree is shown in the figure
but the same holds for the other partitioning techniques we
have covered in this work, we do not show the other trees
because the curve is similar for them). Due to the large par-
tition sizes in grid partitioning techniques, we notice a large
increase in performance while using a learned index com-
pared to binary search. This is especially evident for skewed
queries (which follow the underlying data distribution). We
encountered a speedup from 11.79% up to 39.51% compared
to binary search. Even when we tuned a learned index to a
partition size which corresponds to the optimal performance
for binary search, we found that in multiple cases learned in-

dex frequently outperformed binary search. Learned indexes
do not help much for partitioning techniques which filter on
both dimensions, instead the performance of Quadtree (and
STRtree) dropped in many cases, see Table 1. The reason
is that the optimal partition sizes for these techniques is
very low (less than 1,000 points per partition for most con-
figurations). The refinement cost for learned indexes is an
overhead in such cases. K-d tree on the other hand, contains
more points per partition (from 1200 to 7400) for the opti-
mal configuration for Taxi Trips and OSM datasets and thus
learned indexes perform faster by 2.43% to 9.17% than bi-
nary search. For Twitter dataset, the optimal configuration
contains less than 1200 points per partition, and we observed
a similar drop in performance using learned indexes.

Figure 5 shows the effect of number of cells and number of
points that are scanned in each partition on query runtime
for Fixed-grid on Taxi Trips dataset for lowest selectivity.
As the number of points per partitions increases (i.e. fewer
number of partitions), the number of cells decreases. At the
same time, the number of points that need to be scanned
for the query increases. The point where these curves meet
is the optimal configuration for the workload which corre-
sponds to the lowest query runtime. For tree structures,
the effect is different. Figure 6 shows that the structures
that filter on both dimensions do most of the pruning in the
index lookup. The dominating cost in these structures is
the number of points scanned within the partition and the
query runtime is directly proportional to this number. To
minimize the number of points scanned, they do most of the
pruning during index lookup which require more partitions
(i.e. less number of points per partition), but then they pay
more for index lookup.

3.3 Range Query
Figure 7 shows the query runtime for all learned index

structures. It can be seen that Fixed-grid along with Adaptive-
grid performs (1D schemes) perform the best for all the
cases except uniform queries on Taxi and OSM datasets.
For skewed queries, Fixed-grid is 1.23× to 1.83× faster than
the closest competitor, Quadtree (2D), across all datasets
and selectivity. The slight difference in performance be-
tween Fixed-grid and Adaptive-grid comes from the index
lookup. For Adaptive-grid, we use binary search on the
linear scales to find the first partition the query intersects
with. For Fixed-grid, the index lookup is almost negligible
as only an offset computation is needed to find first inter-
secting partition. It can also be seen in the figure that the
Quadtree is significantly better for uniform queries in case of
Taxi Rides dataset (1.37×) and OSM dataset (2.68×) than
the closest competitor Fixed-grid. There are two reasons
for this, firstly the Quadtree intersects with fewer number
of partitions than the other index structures, see Table 2.
Secondly, for uniform queries, the Quadtree is more likely to
traverse the sparse and low-depth region of the index. This
is in conformance with an earlier research [18], where the au-
thors report similar findings while comparing the Quadtree
to the R*-tree and the Pyramid-Technique.

3.4 Indexing Costs
Figure 8 shows that Fixed-grid and Adaptive-grid are

faster to build than the tree based indexes. Fixed-grid is
2.11×, 2.05×, and 1.90× faster to build than closest com-
petitor STRtree. Quadtree is the slowest to build because it

4



2

4

6

8

10

sk
ew

ed
qu

er
ie

s

Tweets (83M)

2.5

5.0

7.5

10.0

12.5

15.0

Taxi Rides (305M)

2.5

5.0

7.5

10.0

12.5

OSM (200M)

102 103 104 105 106

0

20

40

60

un
ifo

rm
qu

er
ie

s

102 103 104 105 106

0

50

100

150

200

102 103 104 105 106

0

200

400

600

Average number of points per partition (log)

A
ve

ra
ge

qu
er

y
tim

e
[µ

s]

ml-fixed-grid bs-fixed-grid ml-adaptive-grid bs-adaptive-grid ml-quadtree bs-quadtree

Figure 4: Configuration Experiments - ML vs. BS for low selectivity (0.00001%).

Taxi Trips (Skewed Queries) Taxi Trips (Uniform Queries)

Fixed Adaptive Quadtree Fixed Adaptive Quadtree

Selectivity (%) ML BS ML BS ML BS ML BS ML BS ML BS

0.00001 1.78 2.35 1.86 2.40 2.77 2.51 2.02 2.58 81.4 10.54 1.48 1.31
0.0001 4.54 5.82 4.67 6.12 6.12 5.82 5.85 6.91 228.1 27.69 3.69 3.42
0.001 14.97 18.83 15.32 19.49 20.84 19.47 22.87 24.34 708.8 87.49 13.59 12.98
0.01 90.13 97.04 89.48 95.96 117.01 104.37 141.24 151.47 2634.4 309.62 98.85 112.77
0.1 678.12 698.39 675.14 696.49 922.67 793.96 988.35 922.96 9609.9 1174.79 891.24 1101.95
1.0 8333.94 8408.15 8301.56 8399.69 10678.04 9512.29 8843.71 8753.68 8574.84 8836.28 10647.97 12377.14

Table 1: Total query runtime (in microseconds) for both RadixSpline (ML) and binary search (BS) for Taxi
Rides dataset on skewed and uniform query workloads (parameters are tuned for selectivity 0.00001%).

103 104 105 106

Average number of points per partition

2

3

4

5

6

7

8

9

A
ve

ra
ge

q
u

er
y

ti
m

e
[µ

s]

Query runtime

Number of cells

Scanned points

0

1

2

3

4

5

6

N
u

m
b

er
of

ce
lls

×105

0

500

1000

1500

2000

2500

3000

3500

S
ca

n
n

ed
P

oi
n

ts

Figure 5: Effect of number of cells and number of
points scanned for Fixed-grid on Taxi Trip dataset
for skewed queries (0.00001% selectivity).

Taxi Rides OSM

Partitioning Skewed Uniform Skewed Uniform

Fixed 1.97 7.98 1.72 23.73
Adaptive 1.74 31.57 1.51 24.80
k-d tree 1.70 21.62 1.56 30.95
Quadtree 1.79 2.12 1.37 7.96
STR 2.60 47.03 1.90 11.05

Table 2: Average number of partitions intersected
for each partitioning scheme for selectivity 0.00001%
on Taxi Rides and OSM datasets.

102 103 104 105

Average number of points per partition

3

4

5

6

7

8

A
ve

ra
ge

q
u

er
y

ti
m

e
[µ

s]

0.0

0.5

1.0

1.5

2.0

2.5

N
u

m
b

er
of

ce
lls

×106

0

500

1000

1500

2000

2500

3000

S
ca

n
n

ed
p

oi
n

ts

0.6

0.8

1.0

1.2

1.4

1.6

In
d

ex
T

im
e

Query runtime

Number of cells

Scanned points

Index Time

Figure 6: Effect of number of cells and number of
points scanned for Quadtree on Taxi Trip dataset
for skewed queries (0.00001% selectivity).

generates a large number of cells for optimal configuration.
Not all partitions in Quadtree contain an equal number of
points as it divides space rather than data, thus leading to an
imbalanced number of points per partition. Fixed-grid and
Adaptive grid do not generate large number of partitions,
as the partitions are quite large for optimal configuration.
They are lower in size for similar reasons. The index size in
Figure 8 also includes the size of data being indexed.

4. RELATED WORK
Recent work by Kraska et al. [24] proposed the idea of

replacing traditional database indexes with learned models.
Since then, there has been a corpus of work on extending the

5



100

101

102

sk
ew

ed
q

u
er

ie
s

Tweets (83M) Taxi Rides (305M) OSM (200M)

1e-05 0.0001 0.001 0.01

100

101

102

u
n

if
or

m
q

u
er

ie
s

1e-05 0.0001 0.001 0.01 1e-05 0.0001 0.001 0.01

Query Selectivity (in percent)

A
ve

ra
ge

qu
er

y
ti

m
e

[µ
s]

ml-fixed-grid ml-adaptive-grid ml-kdtree ml-quadtree ml-strtree

Figure 7: Total query runtime with parameters tuned on selectivity 0.00001%.

Tweets
(83M)

Taxi
(305M)

OSM
(200M)

101

102

In
de

x
B

ui
ld

T
im

e
[s

]

Tweets
(83M)

Taxi
(305M)

OSM
(200M)

0

1

2

3

4

5

6

7

In
de

x
S

iz
e

[G
B

s]

ml-fixed-grid ml-adaptive-grid ml-kdtree ml-quadtree ml-strtree

Figure 8: Index build times and sizes for the three
datasets.

ideas of the learned index to spatial and multi-dimensional
data. Flood [29] is an in-memory read-optimized multi-
dimensional index that organizes the physical layout of d-
dimensional data by dividing each dimension into some num-
ber of partitions, which forms a grid over d-dimensional
space and adapts to the data and query workload. Learning
has also been applied to the challenge of reducing I/O cost
for disk-based multi-dimensional indexes. Qd-tree [50] uses
reinforcement learning to construct a partitioning strategy
that minimizes the number of disk-based blocks accessed by
a query. LISA [26] is a disk-based learned spatial index that
achieves low storage consumption and I/O cost while sup-
porting range queries, nearest neighbor queries, and inser-
tions and deletions. The ZM-index [48] combines the stan-
dard Z-order space-filling curve with the RMI from [24] by
mapping multi-dimensional values into a single-dimensional
space, which is then learnable using models. The ML-index [5]
combines the ideas of iDistance [16] and the RMI to support
range and KNN queries. [14] augment existing indexes with

light-weight models to accelerate range and point queries.

5. CONCLUSIONS AND FUTURE WORK
In this work, we implemented techniques proposed in a

state-of-the-art multi-dimensional index, namely, Flood [29],
which indexes points using a variant of the Grid-file and ap-
plied them to five classical spatial indexes. We have shown
that replacing binary search with learned indexes within
each partition can improve overall query runtime by 11.79%
to 39.51%. As expected, the effect of using a more efficient
search within a partition is more pronounced for queries
with low selectivity. With increasing selectivity, the effect
of a fast search diminishes. Likewise, the effect of using
a learned index is larger for (1D) grid partitioning tech-
niques (e.g., Fixed-grid) than for (2D) tree structures (e.g.,
Quadtree). The reason is that the partitions (cells) are less
representative of the points they contain in the 1D case than
in the 2D case. Hence, 1D partitioning requires more refine-
ment within each cell.

In contrary, finding the qualifying partitions is more ef-
ficient with 1D than with 2D partitioning, thus contribut-
ing to lower overall query runtime (1.23x to 1.83x times
faster). Currently, we are using textbook implementations
for Quadtree and K-d tree. Future work could study re-
placing these tree structures with learned counterparts. For
example, we could linearize Quadtree cells (e.g., using a
Hilbert or Z-order curve) and store the resulting cell identi-
fiers in a learned index.

So far we have only studied the case where indexes and
data fit into RAM. For on-disk use cases, performance will
likely be dominated by I/O and the search within partitions
will be of less importance. We expect partition sizes to be
performance-optimal when aligned with the physical page
size. To reduce I/O, it will be crucial for partitions to not
contain any unnecessary points. Hence, we expect 2D par-
titioning to be the method of choice in this case. We refer
to LISA [26] for further discussions on this topic.

6



6. REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and

J. H. Saltz. Hadoop-gis: A high performance spatial
data warehousing system over mapreduce. PVLDB,
6(11):1009–1020, 2013.

[2] K. Amemiya and A. Nakao. Layer-integrated edge
distributed data store for real-time and stateful
services. In NOMS 2020 - IEEE/IFIP Network
Operations and Management Symposium, Budapest,
Hungary, April 20-24, 2020, pages 1–9. IEEE, 2020.

[3] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[4] J. L. Bentley and J. H. Friedman. Data structures for
range searching. ACM Comput. Surv., 11(4):397–409,
1979.

[5] A. Davitkova, E. Milchevski, and S. Michel. The
ML-Index: A Multidimensional, Learned Index for
Point, Range, and Nearest-Neighbor Queries. In 2020
Conference on Extending Database Technology
(EDBT), 2020.

[6] H. Doraiswamy and J. Freire. A gpu-friendly
geometric data model and algebra for spatial queries.
In D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo, editors, Proceedings of the
2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, pages
1875–1885. ACM, 2020.

[7] H. Doraiswamy and J. Freire. A gpu-friendly
geometric data model and algebra for spatial queries:
Extended version. CoRR, abs/2004.03630, 2020.
https://arxiv.org/abs/2004.03630.

[8] A. Eldawy and M. F. Mokbel. Spatialhadoop: A
mapreduce framework for spatial data. In 31st IEEE
International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 13-17, 2015, pages
1352–1363, 2015.

[9] A. Eldawy, I. Sabek, M. Elganainy, A. Bakeer,
A. Abdelmotaleb, and M. F. Mokbel. Sphinx:
Empowering impala for efficient execution of SQL
queries on big spatial data. In Advances in Spatial and
Temporal Databases - 15th International Symposium,
SSTD 2017, Arlington, VA, USA, August 21-23, 2017,
Proceedings, pages 65–83, 2017.

[10] R. A. Finkel and J. L. Bentley. Quad trees: A data
structure for retrieval on composite keys. Acta Inf.,
4:1–9, 1974.

[11] F. Garćıa-Garćıa, A. Corral, L. Iribarne, and
M. Vassilakopoulos. Improving distance-join query
processing with voronoi-diagram based partitioning in
spatialhadoop. Future Gener. Comput. Syst.,
111:723–740, 2020.

[12] D. Gomes. MemSQL Live: Nikita Shamgunov on the
Data Engineering Podcast, 2019. https:
//www.memsql.com/blog/memsql-live-nikita-

shamgunov-on-the-data-engineering-podcast/.

[13] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In B. Yormark, editor, SIGMOD’84,
Proceedings of Annual Meeting, Boston,
Massachusetts, USA, June 18-21, 1984, pages 47–57.
ACM Press, 1984.

[14] A. Hadian, A. Kumar, and T. Heinis. Hands-off model
integration in spatial index structures. CoRR,
abs/2006.16411, 2020.
https://arxiv.org/abs/2006.16411.

[15] S. Hagedorn, P. Götze, and K. Sattler. The STARK
framework for spatio-temporal data analytics on
spark. In Datenbanksysteme für Business, Technologie
und Web (BTW 2017), 17. Fachtagung des
GI-Fachbereichs ,,Datenbanken und
Informationssysteme” (DBIS), 6.-10. März 2017,
Stuttgart, Germany, Proceedings, pages 123–142, 2017.

[16] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and
R. Zhang. Idistance: An adaptive b+-tree based
indexing method for nearest neighbor search. ACM
Trans. Database Syst., 30(2):364–397, June 2005.

[17] M. S. Kester, M. Athanassoulis, and S. Idreos. Access
path selection in main-memory optimized data
systems: Should I scan or should I probe? In
Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 715–730. ACM, 2017.

[18] Y. J. Kim and J. M. Patel. Rethinking choices for
multi-dimensional point indexing: Making the case for
the often ignored quadtree. In CIDR 2007, Third
Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 7-10, 2007,
Online Proceedings, pages 281–291. www.cidrdb.org,
2007.

[19] A. Kipf, H. Lang, V. Pandey, R. A. Persa, C. Anneser,
E. T. Zacharatou, H. Doraiswamy, P. A. Boncz,
T. Neumann, and A. Kemper. Adaptive main-memory
indexing for high-performance point-polygon joins. In
Proceedings of the 23nd International Conference on
Extending Database Technology, EDBT 2020,
Copenhagen, Denmark, March 30 - April 02, 2020,
pages 347–358. OpenProceedings.org, 2020.

[20] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. A.
Boncz, T. Neumann, and A. Kemper. Adaptive
geospatial joins for modern hardware. CoRR,
abs/1802.09488, 2018.
http://arxiv.org/abs/1802.09488.

[21] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. A.
Boncz, T. Neumann, and A. Kemper. Approximate
geospatial joins with precision guarantees. In 34th
IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018, pages
1360–1363, 2018.

[22] A. Kipf, R. Marcus, A. van Renen, M. Stoian,
A. Kemper, T. Kraska, and T. Neumann. Radixspline:
A single-pass learned index. CoRR, abs/2004.14541,
2020. https://arxiv.org/abs/2004.14541.

[23] A. Kipf, R. Marcus, A. van Renen, M. Stoian,
A. Kemper, T. Kraska, and T. Neumann. Radixspline:
a single-pass learned index. In Proceedings of the
Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management,
aiDM@SIGMOD 2020, Portland, Oregon, USA, June
19, 2020, pages 5:1–5:5. ACM, 2020.

[24] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures. In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018,

7



Houston, TX, USA, June 10-15, 2018, pages 489–504.
ACM, 2018.

[25] S. T. Leutenegger, J. M. Edgington, and M. A. López.
STR: A simple and efficient algorithm for r-tree
packing. In Proceedings of the Thirteenth International
Conference on Data Engineering, April 7-11, 1997,
Birmingham, UK, pages 497–506. IEEE Computer
Society, 1997.

[26] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan. LISA: A
Learned Index Structure for Spatial Data. In
Proceedings of the 2020 International Conference on
Management of Data, SIGMOD ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[27] A. Makris, K. Tserpes, G. Spiliopoulos, and
D. Anagnostopoulos. Performance evaluation of
mongodb and postgresql for spatio-temporal data. In
P. Papotti, editor, Proceedings of the Workshops of the
EDBT/ICDT 2019 Joint Conference, EDBT/ICDT
2019, Lisbon, Portugal, March 26, 2019, volume 2322
of CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[28] MongoDB Releases - New Geo Features in MongoDB
2.4, 2013. https://www.mongodb.com/blog/post/
new-geo-features-in-mongodb-24/.

[29] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska.
Learning multi-dimensional indexes. In Proceedings of
the 2020 International Conference on Management of
Data, SIGMOD ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[30] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The
grid file: An adaptable, symmetric multikey file
structure. ACM Trans. Database Syst., 9(1):38–71,
1984.

[31] NYC Taxi and Limousine Commission (TLC) - TLC
Trip Record Data, 2019. https://www1.nyc.gov/
site/tlc/about/tlc-trip-record-data.page.

[32] Oracle Spatial and Graph Spatial Features, 2019.
https://www.oracle.com/technetwork/database/

options/spatialandgraph/overview/

spatialfeatures-1902020.html/.

[33] V. Pandey, A. Kipf, T. Neumann, and A. Kemper.
How good are modern spatial analytics systems?
Proc. VLDB Endow., 11(11):1661–1673, 2018.

[34] V. Pandey, A. Kipf, D. Vorona, T. Mühlbauer,
T. Neumann, and A. Kemper. High-performance
geospatial analytics in hyperspace. In Proceedings of
the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 2145–2148, 2016.

[35] K. Richly. Optimized spatio-temporal data structures
for hybrid transactional and analytical workloads on
columnar in-memory databases. In I. Bartolini and
F. Li, editors, Proceedings of the VLDB 2019 PhD
Workshop, co-located with the 45th International
Conference on Very Large Databases (VLDB 2019),
Los Angeles, California, USA, August 26-30, 2019,
volume 2399 of CEUR Workshop Proceedings.
CEUR-WS.org, 2019.

[36] D. Sidlauskas, S. Chester, E. T. Zacharatou, and
A. Ailamaki. Improving spatial data processing by
clipping minimum bounding boxes. In 34th IEEE
International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-19, 2018, pages

425–436. IEEE Computer Society, 2018.

[37] R. Y. Tahboub, G. M. Essertel, and T. Rompf. How to
architect a query compiler, revisited. In G. Das, C. M.
Jermaine, and P. A. Bernstein, editors, Proceedings of
the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 307–322. ACM, 2018.

[38] R. Y. Tahboub and T. Rompf. On supporting
compilation in spatial query engines: (vision paper).
In S. Ravada, M. E. Ali, S. D. Newsam, M. Renz, and
G. Trajcevski, editors, Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS 2016,
Burlingame, California, USA, October 31 - November
3, 2016, pages 9:1–9:4. ACM, 2016.

[39] R. Y. Tahboub and T. Rompf. Architecting a query
compiler for spatial workloads. In Proceedings of the
2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, pages
2103–2118. ACM, 2020.

[40] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and
W. G. Aref. Locationspark: A distributed in-memory
data management system for big spatial data.
PVLDB, 9(13):1565–1568, 2016.

[41] K. Theocharidis, J. Liagouris, N. Mamoulis, P. Bouros,
and M. Terrovitis. SRX: efficient management of
spatial RDF data. VLDB J., 28(5):703–733, 2019.

[42] T. Toliopoulos, N. Nikolaidis, A. Michailidou,
A. Seitaridis, A. Gounaris, N. Bassiliades,
A. Georgiadis, and F. Liotopoulos. Developing a
real-time traffic reporting and forecasting back-end
system. In Research Challenges in Information
Science - 14th International Conference, RCIS 2020,
Limassol, Cyprus, September 23-25, 2020,
Proceedings, volume 385 of Lecture Notes in Business
Information Processing, pages 58–75. Springer, 2020.

[43] D. Tsitsigkos, P. Bouros, N. Mamoulis, and
M. Terrovitis. Parallel in-memory evaluation of spatial
joins. CoRR, abs/1908.11740, 2019.
http://arxiv.org/abs/1908.11740.

[44] D. Tsitsigkos, P. Bouros, N. Mamoulis, and
M. Terrovitis. Parallel in-memory evaluation of spatial
joins. In Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, SIGSPATIAL 2019, Chicago,
IL, USA, November 5-8, 2019, pages 516–519. ACM,
2019.

[45] D. Tsitsigkos, K. Lampropoulos, P. Bouros,
N. Mamoulis, and M. Terrovitis. A two-level spatial
in-memory index. CoRR, abs/2005.08600, 2020.
https://arxiv.org/abs/2005.08600.

[46] Tutorials: Filtering Tweets by location, 2020.
https://developer.twitter.com/en/docs/

tutorials/filtering-tweets-by-location.

[47] Uber. Uber newsroom: 10 billion, 2018.
https://www.uber.com/newsroom/10-billion/.

[48] H. Wang, X. Fu, J. Xu, and H. Lu. Learned index for
spatial queries. In 2019 20th IEEE International
Conference on Mobile Data Management (MDM),
pages 569–574, 2019.

[49] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo.

8



Simba: Efficient in-memory spatial analytics. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages
1071–1085, 2016.

[50] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li,
U. F. Minhas, P.-A. Larson, D. Kossmann, and
R. Acharya. Qd-tree: Learning Data Layouts for Big
Data Analytics. In Proceedings of the 2020
International Conference on Management of Data,
SIGMOD ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[51] S. You, J. Zhang, and L. Gruenwald. Large-scale
spatial join query processing in cloud. In 31st IEEE
International Conference on Data Engineering
Workshops, ICDE Workshops 2015, Seoul, South
Korea, April 13-17, 2015, pages 34–41, 2015.

[52] J. Yu, J. Wu, and M. Sarwat. Geospark: a cluster

computing framework for processing large-scale spatial
data. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, Bellevue, WA, USA, November
3-6, 2015, pages 70:1–70:4, 2015.

[53] E. T. Zacharatou, H. Doraiswamy, A. Ailamaki, C. T.
Silva, and J. Freire. GPU rasterization for real-time
spatial aggregation over arbitrary polygons. PVLDB,
11(3):352–365, 2017.

[54] E. T. Zacharatou, D. Sidlauskas, F. Tauheed,
T. Heinis, and A. Ailamaki. Efficient bundled spatial
range queries. In F. B. Kashani, G. Trajcevski, R. H.
Güting, L. Kulik, and S. D. Newsam, editors,
Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, SIGSPATIAL 2019, Chicago,
IL, USA, November 5-8, 2019, pages 139–148. ACM,
2019.

9


