

Going Big in Data Dimensionality:

Challenges and Solutions for Mining High Dimensional Data

Peer Kröger Lehrstuhl für Datenbanksysteme Ludwig-Maximilians-Universität München

Going Big in Data Dimensionality?

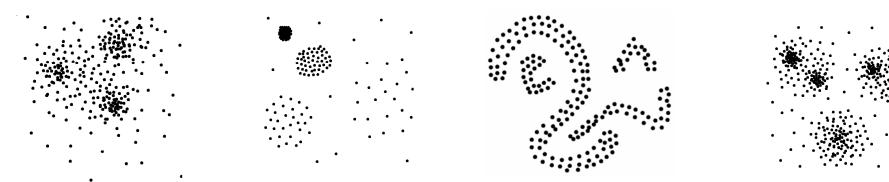
- The three V's of big data
 - Volume
 - Velocity
 - Variety

Let's talk about variety before talking about velocity and volume

- An aspect of variety (and volume) is high dimensionality
 - An archaelogical finding can have 10+ attributes/dimensions
 - Recommendation data can feature 100+ dimensions per object
 - Micro array data may contain 1000+ dimensions per object
 - TF vectors may contain 10,000+ dimensions per object
 - ...
- Note: we are talking about structured data!!!

- Why Bother?
- Solutions
- Perspectives Open Issues

- Clustering
 - Automatically partition the data into clusters of similar objects
 - Diverse applications ranging from business applications (e.g. customer segmentation) to science (e.g. molecular biology)
- Similarity?
 - Objects are points in some feature spaces (let us assume an Euclidean space for convenience)
 - Similarity can be defined as the vicinity of two feature vectors in the feature space, usually applying a distance function like some Lp norm, the cosine distances, etc.



- But:
 - In the early days of data mining:
 - The relevance of features was carefully analyzed before recording them because data acquisition was costly
 - So far so good: only relevant features were recorded
 - Nowadays:
 - Data acquisition is cheap and easy (mobile devices, sensors, modern machines, etc. – *everyone* measures *everything*, *everywhere*)
 - Consequence: sure big data, but what bothers?
 - The relevance of a given feature to the analysis task is not necessarily clear
 - Data is high dimensional containing a possibly large number of irrelevant attributes
 - OK, but why does this bother?

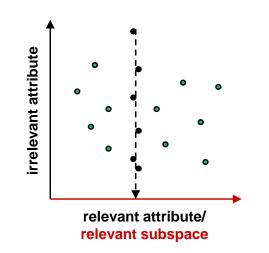
- High-dimensional data problems
 - General: "the curse of dimensionality"

$$\forall \varepsilon > 0: \lim_{d \to \infty} P[dist(\frac{\mathsf{Dmax}_d - \mathsf{Dmin}_d}{\mathsf{Dmin}_d}, 0) \le \varepsilon] = 1$$

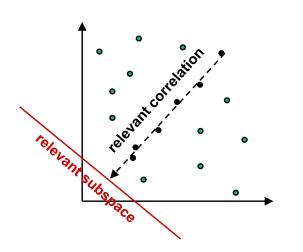
Dmax = Distance to the farthest neighbor Dmin = Distance to the nearest neighbor d = dimensionality of the data space

- Relative contrast of distances decrease
- No cluster to find any more, only noise
- Special/Additional: Clusters in subspaces

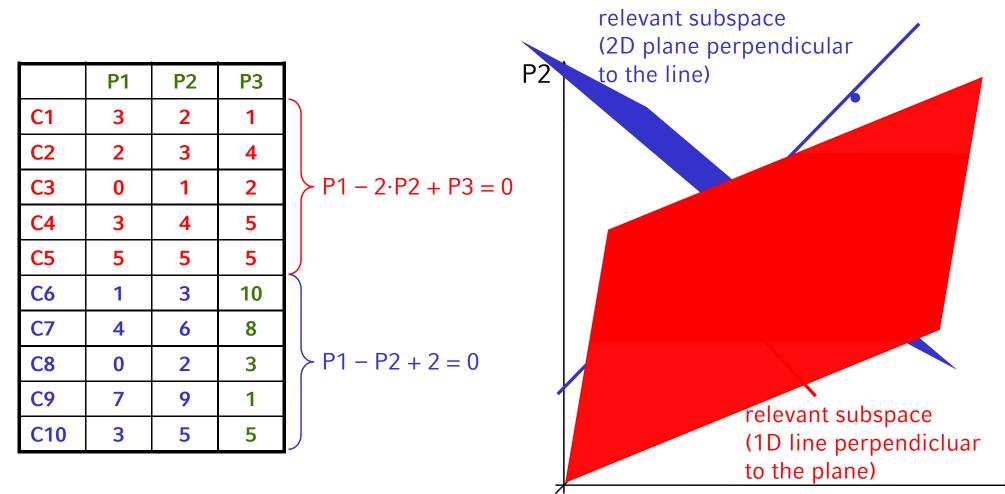
Local feature relevance



Local feature correlation



- Example: local feature correlation
 - customers (C1 C10) rate products (P1 P3)



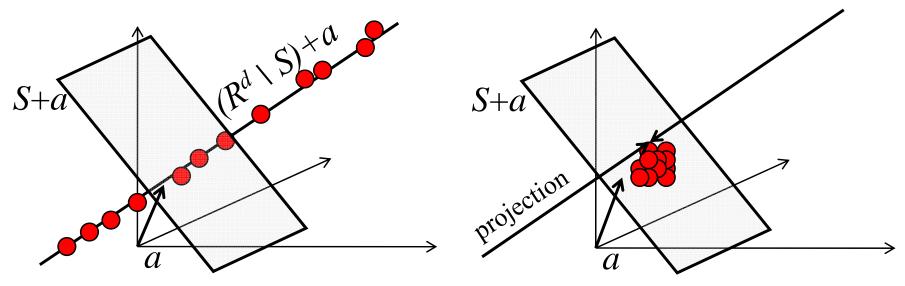
Consequences:

We should care about accuracy before caring about scalability

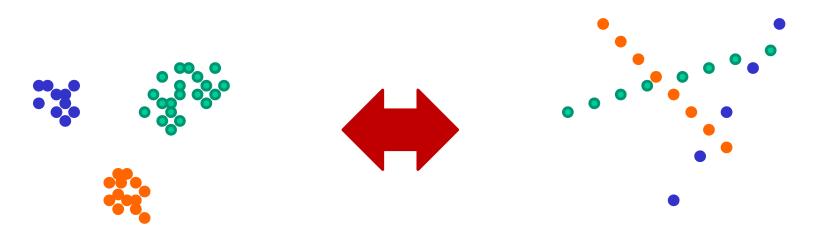
If we take a traditional clustering method and optimize it for efficiency, we will most likely not get the desired results ighbor ghbor

- General Solution: "correlation clustering"
 - Search for clusters in arbitrarily oriented subspaces
 - Affine subspace S+a, $S \subset \mathbb{R}^d$, affinity $a \in \mathbb{R}^d$, is interesting if a set of points clusters (are dense) within this subspace
 - The points of the cluster may exhibit high variance in the perpendicular subspace $(R^d \setminus S)+a$

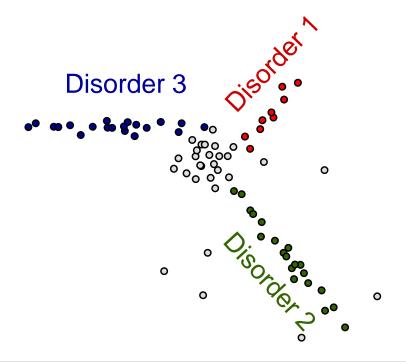
\rightarrow points form a hyper-plane along this subspace

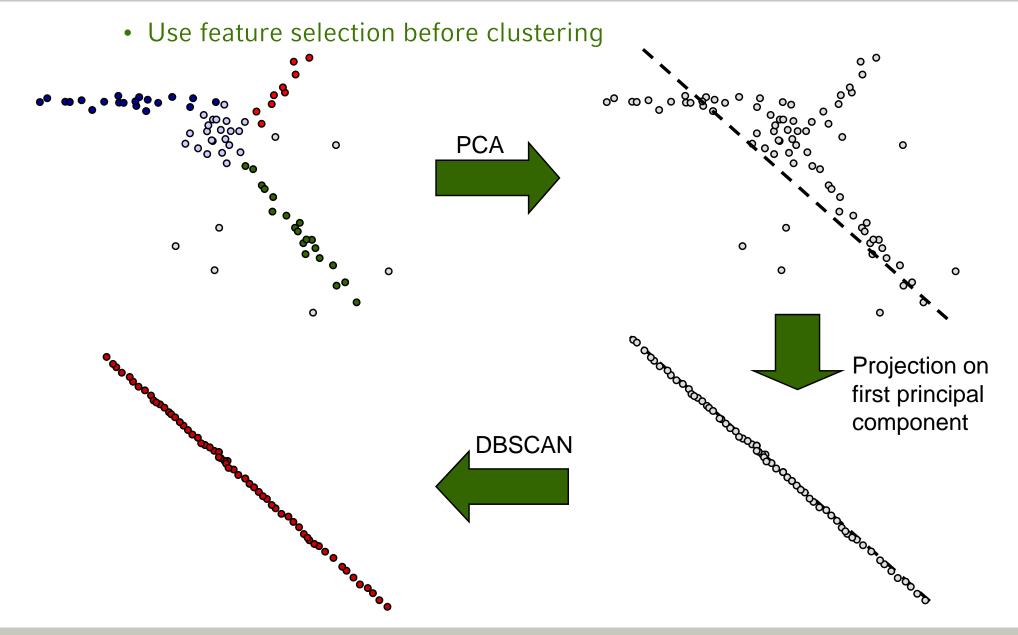


- Back to the definition of clustering
 - Clustering: partition the data into clusters of *similar* objects
 - Traditionally, similarity means *similar values in all attributes* (this obviously does not account for high dimensional data)
 - Now, similarity is defined as a *common correlation in a given* (sub)set of features (actually, that is not too far apart)



- Why not feature selection?
 - (Unsupervised) feature selection (e.g. PCA, SVD, ...) is *global*; it always returns only one (reduced) feature space
 - The *local* feature relevance/correlation problem states that we usually need multiple feature spaces (possibly one for each cluster)
 - Example: Simplified metabolic screening data (here: 2D, 43D in reality)





- Two tasks:
 - 1. We still need to search for clusters (depends on cluster model)
 - E.g. minimal cut of the similarity graph is NP-complete
 - 2. But now, we also need to search for arbitrarily oriented subspaces (search space probably infinite)
 - Naïve solution:
 - Given a cluster criterion and a database of *n* points
 - Compute for each subset of k points the subspace in which these points cluster and test the cluster criterion in this subspace
 - Search space:

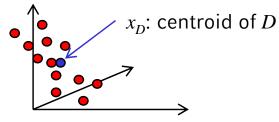
$$\sum_{k=1}^{n} \binom{n}{k} = 2^{n} - 1 = O(2^{n})$$

- BTW:
 - How can we compute the subspace of the cluster? => see later
 - What is a cluster criterion? => see task 1

- Even worse: *Circular Dependency*
 - Both tasks depend on each other
 - In order to determine the correct subspace of a cluster, we need to know (at least some) cluster members
 - In order to determine the correct cluster memberships, we need to know the subspaces of all clusters
- How to solve the circular dependency problem?
 - Integrate subspace search into the clustering process
 - Due to the complexity of both tasks, we need heuristics
 - These heuristics should *simultaneously* solve
 - the clustering problem
 - the subspace search problem

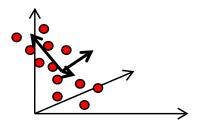
- Why Bother?
- Solutions
- Perspectives Open Issues

- Finding clusters in arbitrarily oriented subspaces
 - Given a set D of points (e.g. a potential cluster); how can we determine the subspace in which these points cluster?
 - Principal Component Analysis (PCA) determines the directions of highest variance
 - Compute Covariance-matrix Σ_D für D



$$\Sigma_D = \frac{1}{|D|} \sum_{x \in D} (x - x_D) (x - x_D)^{\mathrm{T}}$$

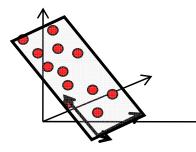
• Obtain Eigenvalue-Matrix and Eigenvector-Matrix $\Sigma_D = V_D E_D V_D^T$



- V_D : new basis, first Eigenvector = direction of the highest variance
- E_D : covariance-matrix of D in the new coordinate system V_D

Solutions

- If the points in *D* form a λ -dimensional hyper-plane then this hyper-plane is spanned by the first λ Eigenvectors
- The relevant subspace in which the points cluster is spanned by the remaining d- λ Eigenvectors \hat{V}_D



The sum of the smallest $d-\lambda$ Eigenvalues

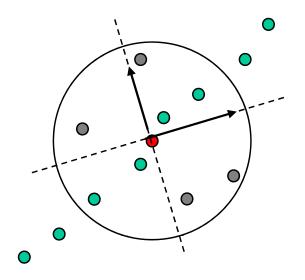
is minimal w.r.t. all possible transformations \rightarrow points cluster optimal in this subspace

- Model for Correlation Cluster
 - The λ -dimensional hyper-plane accommodating the cluster $C \subset \mathbb{R}^d$ is defined by a system of d- λ equations for d variables and an affinity (e.g. the centroid of the cluster x_C):

$$\hat{V}_C^{\mathrm{T}} x = \hat{V}_C^{\mathrm{T}} x_C$$

– The equation system is approximately fulfilled by all $x \in C$

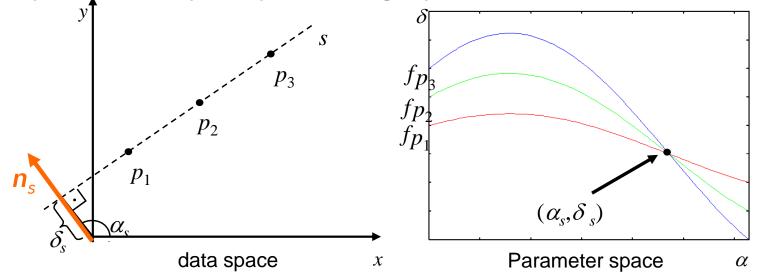
- Correlation clustering methods based on PCA
 - Integrate (local) PCA into existing clustering algorithms
 - Learn a distance measure that reflects the subspace of points and/or parts of clusters (typically: specialized Mahalanobis distance)
 - Conquer the circular dependency of the two tasks by the so-called "Locality Assumption"
 - A local selection of points (e.g. the *k*-nearest neighbors of a potential cluster center) represents the hyper-plane of the corresponding cluster
 - The application of PCA on this local selection yields the subspace of the corresponding cluster
 - Curse of dimensionality???



- Many methods rely on a local application of PCA to sets of potential cluster members
 - Rely on locality assumption
 - Alternative: random sampling
- How can we avoid the Locality Assumption/Random Sampling???
 - CASH (*C*lustering in *A*rbitrary *S*ubspaces based on the *H*ough transform)

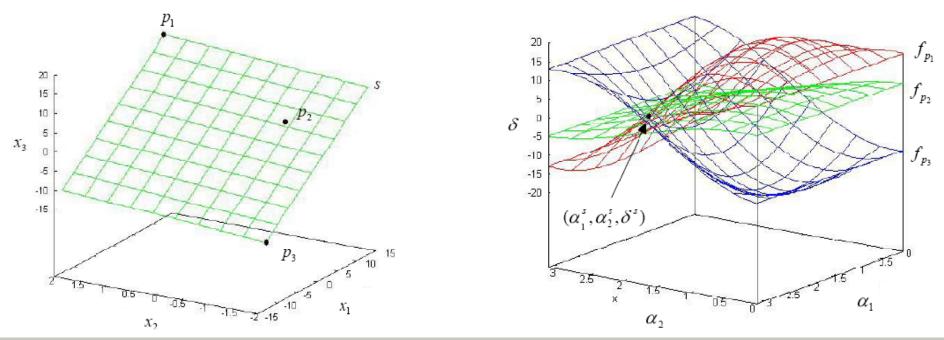
- Basic idea of CASH
 - Transform each object into a so-called *parameter space* representing all possible subspaces accommodating this object (i.e. all hyperplanes through this object)
 - This parameter space is a *continuum* of all these subspaces
 - The subspaces are represented by a considerably small number of parameters
 - This transform is a generalization of the Hough Transform (which is designed to detect linear structures in 2D images) for arbitrary dimensions

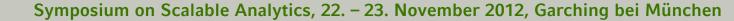
- Transform
 - For each *d*-dimensional point *p* there is an infinite number of (*d*-1)dimensional hyper-planes through *p*
 - Each of these hyper-planes *s* is defined by $(p, \alpha_1, ..., \alpha_{d-1})$, where $\alpha_1, ..., \alpha_{d-1}$ is the normal vector \mathbf{n}_s of the hyper-plane *s*
 - The function $f_p(\alpha_1, ..., \alpha_{d-1}) = \delta_s = \langle p, n_s \rangle$ maps p and $\alpha_1, ..., \alpha_{d-1}$ onto the distance δ_s of the hyper-plane s to the origin
 - The parameter space plots the graph of this *function*



Solutions

- Properties of this transform
 - point in the data space = sinusoide curve in the parameter space
 - point in the parameter space = hyper-plane in the data space
 - points on a common hyper-plane in the data space (cluster)
 = sinusoide curves intersecting at *one* point in the parameter space
 - intersection of sinusoide curves in the parameter space
 - = hyper-plane accommodating the corresponding points in data space

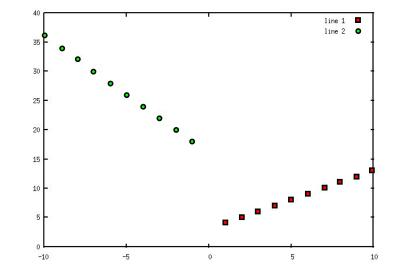


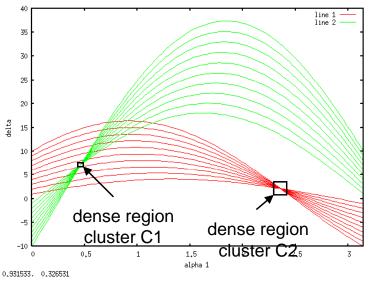


• Detecting clusters

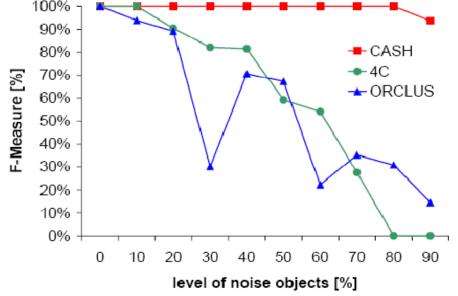
- determine all intersection points of at least *m* curves in the parameter space
 (d-1)-dimensional cluster
- Exact solution (check all pair-wise intersections) is too costly
- Heuristics are employed
 - Grid-based bisecting search
 => Find cells with at least *m* curves

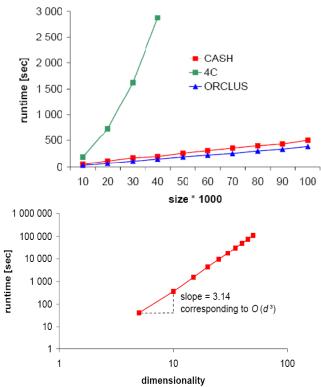
☺ determining the curves that are within a given cell is in O(d³)
 ⊗ Number of cells O(r^d), where r is the resolution of the grid
 ⊗ high value for r necessary



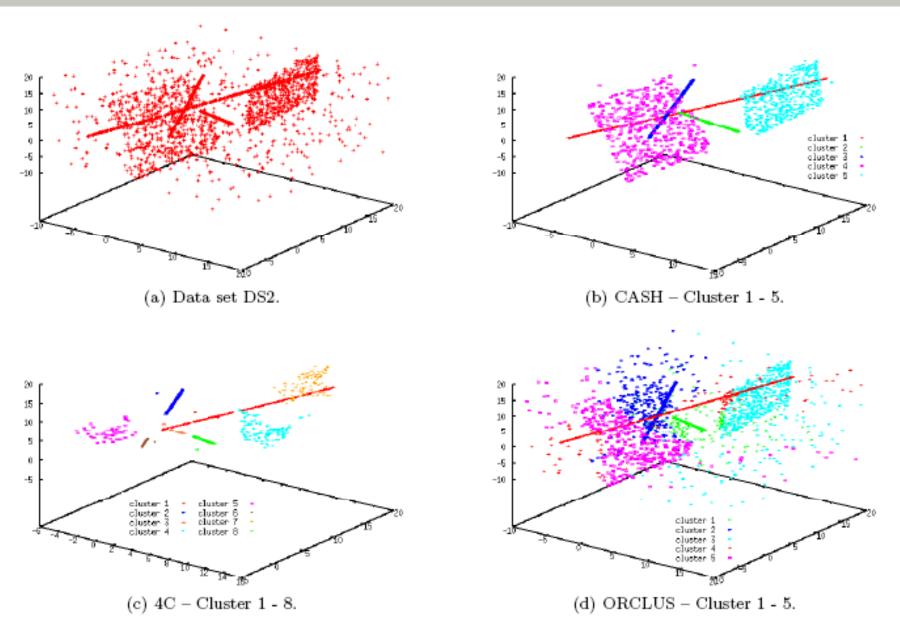


- **Complexity** (*c* = number of cluster found not an input parameter!!!)
 - Bisecting search $O(s \cdot c)$
 - Determination of curves in a cell $O(n \cdot d^3)$
 - Over all $O(s \cdot c \cdot n \cdot d^3)$ (algorithms for PCA are also in $O(d^3)$)
- Robustness against noise
 100%
 90%





Solutions



- Why Bother?
- Solutions
- Perspectives Open Issues

Perspectives – Open Issues

- What is next?
 - Still a lot to take care about at the accuracy end!!!
 - Examining the results (Are they significant? How to evaluate?).
 - Novel heuristics with new assumptions (limitations?).
 - Other patterns like outlier detection
 - ...
- Big Data?
 - Variety:

non-linear correlations, non-numeric data, relational data, ...

- Velocity:

dynamic data, data streams, ...

– Volume:

scalability (size/dimensionality), approximate solutions, ...

