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« The three V's of big data
— Volume
— Velocity
— Variety

Let’s talk about variety before talking about velocity and volume

« An aspect of variety (and volume) Is high dimensionality
— An archaelogical finding can have 10+ attributes/dimensions
— Recommendation data can feature 100+ dimensions per object
— Micro array data may contain 1000+ dimensions per object
— TF vectors may contain 10,000+ dimensions per object

« Note: we are talking about structured data!!!




« Why Bother?

e Solutions

« Perspectives — Open Issues




§ Why Bother?
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» Clustering
— Automatically partition the data into clusters of similar objects
— Diverse applications ranging from business applications (e.q.
customer segmentation) to science (e.g. molecular biology)
« Similarity?
— Objects are points in some feature spaces (let us assume an
Euclidean space for convenience)

— Similarity can be defined as the vicinity of two feature vectors in the
feature space, usually applying a distance function like some Lp
norm, the cosine distances, etc.
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 But:

— In the early days of data mining:

« The relevance of features was carefully analyzed before recording them
because data acquisition was costly

« So far so good: only relevant features were recorded

— Nowadays:

« Data acquisition is cheap and easy (mobile devices, sensors, modern
machines, etc. — everyone measures everything, everywhere)
« Consequence: sure big data, but what bothers?
— The relevance of a given feature to the analysis task is not necessarily clear

— Data is high dimensional containing a possibly large number of irrelevant
attributes

« OK, but why does this bother?
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2 Why Bother? )

« High-dimensional data problems

— General: “the curse of dimensionality”
Dmax = Distance to the farthest neighbor

Dmax,; —Dmin
d d O) < g] =1 Dmin = Distance to the nearest neighbor
Dmind ’ d = dimensionality of the data space

Ve>0:lim,  _ P[dist(

d—w

e Relative contrast of distances decrease
* No cluster to find any more, only noise

— Special/Additional: Clusters in subspaces

Local feature relevance Local feature correlation
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- Example: local feature correlation
— customers (C1 - C10) rate products (P1 - P3)

relevant subspace
(2D plane perpendicular

Why Bother?

P1 P2 P3
C1 3 2 1
C2 2 3 4
C3 0 1 2
C4 3 4 5
C5 5 5 5
Cé 1 3 10
Cc7 4 6 8
C8 0 2 3
Cc9 7 9 1
C10 3 5 5

>P1-2-P2+P3=0

>P1-P2+2=0
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We should care about accuracy before caring about
scalability

If we take a traditional clustering method and

optimize it for efficiency, we will most likely not
get the desired results
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« General Solution: “correlation clustering”
— Search for clusters in arbitrarily oriented subspaces

— Affine subspace S+a, S RS, affinity aeRY, is interesting if a set of
points clusters (are dense) within this subspace

— The points of the cluster may exhibit high variance in the
perpendicular subspace (R%\ S)+a

- points form a hyper-plane along this subspace

A XO“ A
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S+a & S+a
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« Back to the definition of clustering
— Clustering: partition the data into clusters of similar objects

— Traditionally, similarity means similar values in all attributes
(this obviously does not account for high dimensional data)

— Now, similarity is defined as a common correlation in a given
(sub)set of features (actually, that is not too far apart)




« Why not feature selection?

— (Unsupervised) feature selection (e.g. PCA, SVD, ...) is global; it
always returns only one (reduced) feature space

— The local feature relevance/correlation problem states that we
usually need multiple feature spaces (possibly one for each cluster)

— Example: Simplified metabolic screening data (here: 2D, 43D in reality)
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« Use feature selection before clustering
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« Two tasks:

1. We still need to search for clusters (depends on cluster model)
« E.g. minimal cut of the similarity graph is NP-complete

2. But now, we also need to search for arbitrarily oriented subspaces
(search space probably infinite)

« Naive solution:
— Given a cluster criterion and a database of n points

— Compute for each subset of k points the subspace in which these points
cluster and test the cluster criterion in this subspace

— Search space: "
Z(k) =2"-1=0(2")

k=

-\ I

« BTW:

— How can we compute the subspace of the cluster? => see later
— What is a cluster criterion? => see task 1




« Even worse: Circular Dependency

— Both tasks depend on each other
* In order to determine the correct subspace of a cluster, we need to know
(at least some) cluster members
* |In order to determine the correct cluster memberships, we need to know

the subspaces of all clusters

 How to solve the circular dependency problem?
— Integrate subspace search into the clustering process
— Due to the complexity of both tasks, we need heuristics

— These heuristics should simultaneously solve

* the clustering problem
» the subspace search problem




« Why Bother?
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« Perspectives — Open Issues
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« Finding clusters in arbitrarily oriented subspaces

— Given a set D of points (e.g. a potential cluster); how can we
determine the subspace in which these points cluster?

— Principal Component Analysis (PCA) determines the directions of
highest variance

« Compute Covariance-matrix £, fur D

D

xeD

° Te Xp: centroid of D 1
1 o =1 2 (X %) (k=% )
e

N
7

» Obtain Eigenvalue-Matrix and Eigenvector-Matrix 2 :VDEDVDT

« Vp:new basis, first Eigenvector = direction
of the highest variance

« E,:covariance-matrix of D in the new
coordinate system V

Vv
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 |f the points in D form a A-dimensional hyper-plane
then this hyper-plane is spanned by the first A Eigenvectors

» The relevant subspace in which the points cluster is spanned by the
remaining d-A Eigenvectors V,

d
The sum of the smallest d-A Eigenvalues ) e,
i=4+1

IS minimal w.r.t. all possible transformations -
points cluster optimal in this subspace

« Model for Correlation Cluster
— The A-dimensional hyper-plane accommodating the cluster Cc R? is defined
by a system of d-A equations for d variables and an affinity (e.qg. the centroid
of the cluster x.):

7T _\,I\T\,
VC A = VC )\C

— The equation system is approximately fulfilled by all xeC
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« Correlation clustering methods based on PCA
— Integrate (local) PCA into existing clustering algorithms

— Learn a distance measure that reflects the subspace of points and/or
parts of clusters (typically: specialized Mahalanobis distance)

— Conquer the circular dependency of the two tasks by the so-called

,Locality Assumption”

« A local selection of points (e.g. the k-nearest neighbors of a potential
cluster center) represents the hyper-plane of the corresponding cluster

« The application of PCA on this local
selection yields the subspace of the
corresponding cluster

« Curse of dimensionality???




« Many methods rely on a local application of PCA to sets of
potential cluster members
— Rely on locality assumption
— Alternative: random sampling

« How can we avoid the Locality Assumption/Random
Sampling???
— CASH (Clustering in Arbitrary Subspaces based on the Hough
transform)




 Basic idea of CASH

— Transform each object into a so-called parameter space representing
all possible subspaces accommodating this object (i.e. all hyper-
planes through this object)

— This parameter space is a continuum of all these subspaces

— The subspaces are represented by a considerably small number of
parameters

— This transform is a generalization of the Hough Transform (which is
designed to detect linear structures in 2D images) for arbitrary
dimensions




e Transform

For each d-dimensional point p there is an infinite number of (d-1)-
dimensional hyper-planes through p

Each of these hyper-planes s is defined by (p,a,..., a4.;), where
O4,..., 047 IS the normal vector n, of the hyper-plane s

The function f (ay,..., a4, = & = <p,n> maps p and a,..., 04
onto the distance 9§, of the hyper-plane s to the origin

The parameter space plots the graph of this function
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— Properties of this transform
« point in the data space = sinusoide curve in the parameter space
« pointin the parameter space = hyper-plane in the data space
e points on a common hyper-plane in the data space (cluster)
= sinusoide curves intersecting at one point in the parameter space
 Intersection of sinusoide curves in the parameter space
= hyper-plane accommodating the corresponding points in data space




« Detecting clusters

— determine all intersection points of at
least m curves in the parameter space

=> (d-1)-dimensional cluster

— Exact solution (check all pair-wise
intersections) is too costly

— Heuristics are employed

« Grid-based bisecting search
=> Find cells with at least m curves

© determining the curves that are
within a given cell is in O(d?)

® Number of cells O(rd), where
r is the resolution of the grid

® high value for r necessary
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« Complexity
— Bisecting search
— Determination of curves in a cell O(n- d3)

— Qver all

« Robu
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— Cluster 1 - 5.
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« What is next?

— Still a lot to take care about at the accuracy end!!!
« Examining the results (Are they significant? How to evaluate?).
* Novel heuristics with new assumptions (limitations?).
« Other patterns like outlier detection

« Big Data?
— Variety:
non-linear correlations, non-numeric data, relational data, ...
— Velocity:
dynamic data, data streams, ...
— Volume:
scalability (size/dimensionality), approximate solutions, ...







