
Aggregates Caching in
Columnar In-Memory Databases

Stephan Müller and Hasso Plattner

Hasso Plattner Institute
University of Potsdam, Germany

{stephan.mueller, hasso.plattner}@hpi.uni-potsdam.de

Abstract. The mixed database workloads found in enterprise applica-
tions are comprised of short-running transactional as well as analyti-
cal queries with resource-intensive data aggregations. In this context,
caching the query results of long-running queries is desirable as it in-
creases the overall performance. However, traditional caching approaches
are inefficient in a way that changes in the base data result in invalidation
or recalculation of cached results.
Columnar in-memory databases with a main-delta architecture are op-
timized for a novel caching mechanism for aggregate queries that is
the main contribution of this paper. With the separation into a read-
optimized main storage and write-optimized delta storage, we do not
invalidate cached query results when new data is inserted to the delta
storage. Instead, we use the cached query result and combine it with
the newly added records in the delta storage. We evaluate this caching
mechanism with mixed database workloads and show how it compares
to existing work in this area.

1 Introduction

The classic distinction between online transactional processing (OLTP) and on-
line analytical processing (OLAP) is no longer applicable in the context modern
enterprise applications [1],[2]. Instead of associating transactional or analyti-
cal queries with separate applications, a single modern enterprise application
executes both – transactional and analytical – queries. Within the available-to-
promise (ATP) application, for example, the OLTP-style queries represent prod-
uct stock movements whereas the OLAP-style queries aggregate over the product
movements to determine the earliest possible delivery data for requested goods
by a customer [3]. Similarly, in financial accounting, every financial accounting
document is created with OLTP-style queries, while a profit and loss statement
needs to aggregate over all relevant documents with OLAP-style queries that
are potentially very expensive [1].

To speed-up the execution of expensive queries, techniques such as query
caching and the introduction of materialized views has been proposed. Materi-
alized views can be used to answer partial relations of a query. A materialized
view is database view – a derived relation defined in terms of base relations
– whose tuples are stored in the database. A traditional database query cache
stores the results for unique queries, and flushes or updates the cache whenever

2 Stephan Müller and Hasso Plattner

the base data changes. Since the result of a database query is a relation itself, a
cached query result is equivalent to a materialized view. In this paper, we focus
on caching of queries that contain data aggregations [4] and apply techniques
used in the context of materialized views.

Direct access to cached query results or tuples of a materialized view is faster
than computing the results on the fly even though an on-the-fly aggregation has
been sped-up considerably with columnar in-memory databases (IMDBs). How-
ever, the inherent problem with caching and materialized views is that whenever
the base data is modified, these changes have to be propagated to ensure consis-
tency. While a database query cache can simply flush or invalidate the cache, a
process known as materialized view maintenance, is well established in academia
[5],[6],[7] and industry [8],[9] but with focus on traditional database architectures
and data warehousing [10],[11],[12]. For purely analytical applications, a main-
tenance downtime may be feasible, but this is not the case in a mixed workload
environment as transactional throughput must always be guaranteed. Also, the
recent trend towards IMDBs that are able to handle transactional as well as
analytical workloads on a single system [13],[14],[15] has not been considered.

A columnar database for transactional and analytic workloads has some
unique features and preferred modes of operating [1],[2]. To organize the at-
tributes of a table in columns and to encode the attribute values via a dictionary
into integers (known as dictionary encoding) [16] has many advantages such as
high data compression rates, fast attribute scans so that the attribute columns
can be used as indices and traditional index structures (except the primary key)
can be omitted in most cases. But this organization comes at a certain price.
In transactional workloads we have to cope with high insert rates. A permanent
reorganization of the attribute vectors (columns), because new values appear
have to be included in the encoding process and complicate the request to keep
the attribute dictionaries sorted, would not allow for a decent transactional per-
formance. A way out of this dilemma is to split the attribute vectors of a table
into a read-optimized main storage and a write-optimized delta storage. All new
inserts are appended to the delta storage with separate unsorted dictionaries.
At certain times the attribute vectors are merged with the one in the main stor-
age and a new dictionary (per attribute) is established. Since the main storage
is significantly larger than the delta (>100:1) the insert performance becomes
acceptable and the analytic performance is still outstanding [17].

The fact that we can handle transactional and analytical workloads in one
system has tremendous benefits to the users of the system. Not only the freedom
of choice what and how to aggregate data on demand but the instant availability
of analytical responses on even large data sets will change how business will be
run. Having meaningful information at your fingertips, being able to get answers
for complex questions in real time and the option to ask a second or third
question will dominate the reorganization of business processes. A consequence
of this desirable development will be a significant increase in analytical workload
on the combined transactional and analytical systems. When we analyze the
query patterns in typical enterprise systems using an in memory database, we
can observe that users work frequently on aggregates of business objects (e.g.
customer order, received invoices) using a drill down [18]. They start with a high
level aggregation to gain an overview in order to pick a certain country, product

Aggregates Caching in Columnar In-Memory Databases 3

or other entity to acquire further details. Once they are satisfied with the details
they return to the last level or a higher level of aggregation. To recreate the
higher aggregation we have to either re-run the query or the application has to
maintain state and store all aggregation levels hierarchically. In larger companies
typically several users are doing similar activities throughout a day.

The contribution of this paper is a novel aggregate query caching mechanism
that leverages the main-delta architecture of columnar in-memory databases.
Because of the separation in main and delta storage, we do not have to invalidate
aggregate queries when new records are inserted to the delta storage. Instead,
we can use the cached results of the aggregate queries and merge them with the
newly added records in the delta storage, a process that is more efficient in many
cases, than calculating the complete aggregate again.

The paper is structured as follows: Section 2 discusses related work before
outlining the algorithm and architecture of our implementation in Section 3.
In Section 4 we evaluate the aggregate caching concept by defining a mixed
database workload based on real customer data. Section 5 summarizes our work
and gives an outlook for future work.

2 Related Work

The caching of aggregate queries is closely related to the introduction of mate-
rialized views to answer queries more efficiently. To be more precisely, a cached
query result is a relation itself and can be regarded as a materialized view. Gupta
gives a good overview of materialized views and related issues in [6]. Especially,
the problem of materialized view maintenance has received significant attention
in academia [19],[5],[7]. Database vendors have also investigated this problem
thouroughly [8],[9] but to the best of our knowledge, there is no work that evalu-
ates materialized view maintenance strategies in columnar in-memory databases
with mixed workloads. Instead, most of the existing research is focused on data
warehousing environments [10],[11],[12] where maintenance downtimes may be
acceptable.

The summary-delta tables concept to efficiently update materialized views
with aggregates comes close to our approach as the algorithm to recalculate the
materialized view is based on the old view and the newly inserted, updated,
or deleted values [20]. However, their approach updates the materialized views
during a maintenance downtime in a warehousing environment and not on de-
mand during query processing time. Further, it does not consider the main-delta
architecture and the resulting merge process.

3 Aggregates Caching

In this section, we describe the basic architecture of our aggregate query caching
mechanism and the involved algorithms. The cache is implemented in a way that
is transparent to the application. Consequently, the caching engine has to ensure
data consistency by employing appropriate maintenance strategies.

While aggregation functions can be categorized into distributive, algebraic
and holistic functions [21] we limit our implementation to distributive functions,

4 Stephan Müller and Hasso Plattner

such as sum, min, max or count as they are most commonly found in analytical
queries [17]. This could be extended to algebraic functions as they can be com-
puted by combining a constant number of distributive functions, e.g. avg = sum
/ count [22].

3.1 Architecture and Algorithm

SanssouciDB

Storage

Query
Processor

Main

Aggregates Caching
Manager

Cached Queries

Q 1
Q 2

Q n

● ● ●
SQL

Delta
Cache

Management
Table (CMT)

Fig. 1. Aggregates Query Caching Architecture

The basic architecture of our aggregates caching mechanism is illustrated in
Figure 1. With the columnar database being divided into main and delta storage,
the aggregates caching manager component can distinguish between these and
read the delta storage explicitly and combine the result with the cached query
result. The cached queries are stored in a data structure whereas the relation of
each query result is stored in a separate database table. Further, a global cache
management table (CMT) stores the meta data for each cached aggregate query
including access statistics. Also, it maps the hashed SQL query to the database
table that holds the cached results of the aggregate query.

Figure 2 illustrates the described caching algorithm. Every parsed query that
contains aggregations, is handled through the aggregates caching manager. To
check whether the query exists in the cache already, a hash value of the SQL
query is computed and looked up in the CMT. If the cache controller does not
find an existing cache entry for the corresponding SQL query, it conveys the
query without any changes to the underlying database. After query execution,
it is checked whether the query is suitable for being cached by having exceeded
certain thresholds defined by the cache admission policy. If this is the case, the
query result from the main storage is cached for further reuse. In case, the query
is already cached, the query is executed on the delta storage. The result from
the delta storage is then combined with cached result and returned to the query
processor.

Aggregates Caching in Columnar In-Memory Databases 5

Parse query Check if query exists in
CMT

cached not cached

Retrieve cached
result

Union delta result
with cached result

Execute query on
main and delta

storage

Check if query
execution exceeds
caching threshold

Cache query
result from

main storage

Execute
query

Query contains
aggregations

Query Processor Aggregates Caching Manager

Return
result

Execute query on
delta storage

Fig. 2. Simplified Query Caching Algorithm

3.2 Aggregates Maintenance Strategies

When introducing caching of aggregate queries, the overhead of aggregates main-
tenance has to be considered. The timing of existing materialized view main-
tenance strategies can be distinguished between eager and lazy. While eager
strategies immediately propagate each change of base tables to the affected ma-
terialized views, lazy (or deferred) strategies maintain materialized views not
later than the time the materialized view is queried. Independently of the tim-
ing, one can divide maintenance strategies into full and incremental ones. Full
strategies maintain the aggregate by complete recalculation using its base tables.
Incremental strategies store recent modifications of base tables and explicitly use
them to maintain the views. Based on the fact that an incremental calculation
of aggregates is always more efficient than a full recalculation [7], we focus on
incremental strategies.

The proposed aggregate query caching mechanism does neither maintain the
materialized view at insert time nor at query time. Instead, the requested ag-
gregate is calculated by combining the cached aggregate with an on-the-fly ag-
gregation on the delta storage. The maintenance of the cached aggregate is done
incrementally during the delta merge process. Since it is possible to predict the
query execution time of in-memory databases very accurately [23], we create cost
models for each maintenance strategy. The cost is based on a simplified workload
model that consists of a number of writes Nw into the base table and a number
of reads Nr of the cached aggregate query.

Eager Incremental Update (EIU) Since the cached aggregate query is main-
tained after each insert, the cost for accessing the aggregate query is just a single

6 Stephan Müller and Hasso Plattner

read. The maintenance costs are tied to a write into the base table. As it is an
incremental strategy, the costs consist of the read time TRA to retrieve the old
value and the write time TW for the new value into the cached aggregate query-
table.

Lazy Incremental Update (LIU) For lazy approaches, all maintenance is
done on the first read accessing the cached aggregate query. The maintenance
costs Nwk

· (TRA + TW) and cost to read the requested aggregate TRA are com-
bined into one function. The maintenance costs depend on the number of writes
with distinct grouping attribute values per read Nwk

which is influenced by the
order of the queries in a workload and the distribution of the distinct grouping
attributes.

Merge Update (MU) The costs of a read Trk is the sum of an access to the
cached aggregate query TRA and an on-the fly aggregation on the delta table
where TRDk

defines the costs for the aggregation for the kth read. The merge
update strategy updates its materialized aggregate table during a merge pro-
cess. Therefore, the tuples in delta storage have to be considered. The resulting
maintenance costs for the number of cached queries NA consist of a complete
read of the cached aggregate query tables NA · TRA, a read of the delta TRDk

and the write of the new aggregate (NA + NnewWD) · TW . Equation 1 shows
the calculation of the total execution time based on the time for reads and the
merge. The merge time Tm depends on the number of merge operations Nm

performed during the observed time frame.

Ttotal = Nm · Tm +

Nr∑
k=1

Trk (1)

3.3 Optimal Merge Interval

The costs of our proposed aggregates caching mechanism and the involved merge
update maintenance strategy mainly depends on the aggregation performance
on the delta storage which increases linearly [24]. However, the merge operation
also generates costs that have to be considered. In the following, we propose a
cost model which takes the costs for the merge operation and the costs for the
aggregation on the delta storage into account. Similarly to the cost model for
the merge operation introduced by Krüger et al. [18], our model is based on the
number of accessed records to determine the optimal merge interval for one base
table of a materialized view.

Equation 2 calculates the number of records Coststotal that are accessed
during the execution of a given workload. A workload consists of a number
of reads Nr and a number of writes Nw. The number of merge operations is
represented by Nm. The first summand represents the accesses that occur during
the merge operations. Firstly, each merge operation has to access all records of
the initial main storage |CM |. Secondly, previously merged records and new delta
entries are accessed as well [18]. This number depends on the number of writes

Aggregates Caching in Columnar In-Memory Databases 7

Nw in the given workload divided by 2 (since the number of records in the delta
increases linearly). The second summand determines the number of accesses for
all reads Nr on the delta. As before, the delta grows linearly and is speed up by
the number of merge operations Nm.

Coststotal = Nm · (|CM |+
Nw

2
) +Nr ·

Nw

2

Nm + 1
(2)

Costs′total = |CM |+
Nw

2
− Nr ·Nw

2 ·N2
m + 4 ·Nm + 2

(3)

Nm =

√
2 · |CM | ·Nw ·Nr +N2

w ·Nr − 2 · |CM | −Nw

2 · |CM |+Nw
(4)

The minimum is calculated by creating the derivation (Function 3) of our
cost model and by obtaining is root (Function 4). Nm represents the number of
merge operations. Dividing the total number of statements by Nm returns the
optimal merge interval.

3.4 Admission and Replacement Strategies

Whenever a query with aggregation functions is detected, the aggregates caching
manager could potentially cache every query. However, this would lead to an
exorbitant growth of the cache and increase the overhead of handling aggregates
queries in general. Consequently, we want to limit the overhead by only caching
the most profitable queries.

The profit of a query Qi can be described by the execution time ci, the result
set size si and the frequency of execution λi. Similarly to [25], the following
equation describes the profit formula for Qi:

profit(Qi) =
λi · ci
si

(5)

The average frequency of execution λi of query Qi is calculated based on the
Kith last reference and the difference between the current time t and the time
of the last reference tK :

λi =
Ki

t− tK
(6)

The cache manager only caches queries, which increase the overall profit of
the cache. Therefore, only queries whose profit is larger than the query with the
smallest profit in the cache. To address the space constraint, we could sort the
queries by profit and only keep the top-k queries that have an accumulated size
smaller or equal to the size of the cache.

When not considering the space constraint and only focusing on minimizing
the caching overhead, the definition of the profit for query Qi can be described
with the average execution time λi, the execution time for an aggregation on
the fly ai, the time for access to a cached aggregate query qci and the average
execution time for relevant records in the delta storage di.

profit(Qi) =
λi · ai
qci + di

(7)

8 Stephan Müller and Hasso Plattner

Row	 ID	 Year	 Currency	

1	 101	 2012	 EUR	

2	 102	 2012	 EUR	

3	 103	 2013	 USD	

Row	 ID	 Header	 Account	 Amount	 Tax	

1	 3101	 101	 160000	 1240.00	 1	

2	 3105	 101	 204000	 1240.00	 1	

3	 3107	 101	 352600	 1240.00	 1	

4	 3136	 102	 204000	 4234.00	 1	

5	 3137	 102	 410300	 124.19	 7	

6	 3141	 103	 154000	 4912.01	 2	

7	 3142	 103	 302600	 532.07	 1	

Header	 Line_Items	

Main	 Storage	

Row	 ID	 Year	 Currency	

1	 106	 2013	 EUR	

2	 107	 2013	 EUR	

Row	 ID	 Header	 Account	 Amount	 Tax	

1	 3144	 103	 167000	 2540.00	 1	

2	 3153	 106	 204600	 1570.00	 4	

3	 3154	 106	 353600	 7840.00	 2	

4	 3155	 107	 247000	 4234.00	 1	

Header’	 Line_Items’	

Delta	 Storage	

SELECT	 Header.Year,	 SUM(Line_Items.Amount)	 FROM	 Header	 INNER	 JOIN	 Line_Items	 GROUP	 BY	 Header.Year	

Header’	 INNER	 JOIN	 Line_Items	 Line_Items’	 INNER	 JOIN	 Header	

Header’	 	
INNER	 JOIN	
Line_Items’	

Fig. 3. Aggregate queries with join operations

3.5 Joins

When processing aggregate queries including join operations, the complexity of
the proposed caching mechanism and the involved merge update maintenance
strategy increases. Instead of combining the cached result with the query result
on the delta storage, the join of every permutation has to be computed before
these results can be combined. In Figure 3, we have illustrated the involved
tables in the main and delta partition of a simple aggregate query including a
join of two tables. While the cached query result is based on a join of the header
and line items table in the main partition, we have to compute the joins of
header’ and line items’ tables in the delta partition, and additionally the
joins between header’ and line items as well as line items’ and header.
When the cached aggregate query consist of three or more joined tables, the
necessary join operations between delta and main storage increases accordingly.
The number of necessary joins operations based on the number of tables t in the
aggregate query can be derived as JoinOps = t2 − 1.

After analyzing enterprise workloads, we found out that aggregates for ac-
counting, sales, purchasing, stocks etc. always need a join of the transaction
header and the corresponding line items. Interestingly, new business objects such
as sale orders or accounting documents are always inserted as a whole, therefore
we find the new header and the new line items in the delta. This reduces the
number of necessary join operations from three to just one (a join of header and
items in the delta). In case a business object can be extended after the initial
insert, the header entry could already be merged into the main storage. Conse-

Aggregates Caching in Columnar In-Memory Databases 9

quently, we would need an additional join of the line items’ table in the delta
with the header table in the main.

3.6 Updates

Another potential change are updates. We suggest that the updated tuple is
copied to the delta and marked as no longer valid, like in the main) and the
new version is inserted as normal to the delta. Having both the old and the new
tuple in the delta we can perform the – and + operation with these tuples. If
the tuple that is to be updated already in the delta, no copy is needed.

4 Evaluation

We implemented the concepts of the presented aggregates caching mechanism in
SanssouciDB [17] but believe that an implementation in other columnar IMDBs
with a main-delta architecture such as SAP HANA [13] will lead to similar
results. Instead of relying on a mixed workload benchmark such as the CH-
benchmark [26], we chose an enterprise application that generates a mixed work-
load to the database with real customer data. The identified financial accounting
application covers OLTP-style inserts for the creation of accounting documents
as well as OLAP-style queries to generate reports such as a profit and loss state-
ment. The inserts were taken from the original customer data set covering 330
million records in a denormalized single table. We then extracted 1000 OLAP-
style aggregate queries from the application and validated these with domain
experts. Mingling both query types according to the creation times (inserts) and
typical execution times (aggregate queries) yielded a mixed workload which our
evaluations are based upon.

4.1 Aggregates Caching

The strength of a caching mechanism is to answer reoccurring queries. To com-
pare our approach to a standard query cache that gets invalidated whenever the
base data changes, we have created a benchmark based on a mixed workload
of 10.000 queries with 90% analytical and 10% transactional insert queries. The
average execution time on a 40 core server with 4 Intel Xeon E” 7 4870 CPU
each having 10 physical cores and 1 TB of main memory when using no cache
was 591ms which dropped down to 414ms with a standard query cache. The
average execution time of the aggregates cache was at 74ms, outperforming the
standard query cache by nearly a factor of six.

With an increasing number of distinct analytical queries, the performance of
the proposed aggregates caching mechanisms decreases linearly. With a work-
load of 100% distinct analytical queries, where no cache reuse takes place, we
measured the overhead of the aggregates caching mechanism. Without any cache
management, this overhead was at 17% compared to not using any cache at all.

10 Stephan Müller and Hasso Plattner

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ti
m

e
in

 m
s

Percentage of insert queries

NoMat
EIU
LIU

MU

Fig. 4. Measuring the total time of a workload with a varying ratio of inserts.

4.2 Aggregates Maintenance Strategies under Varying Workloads

To compare the aggregates caching mechanisms and the involved maintenance
strategy to the strategies described in Section 3.2, we have created a benchmark
with a varying read/write ratios in a workload of 1000 queries. A read represents
an analytical query with an aggregation and a write represents an insert to the
base table which contains one million records. The results as depicted in Fig-
ure 4 reveal that when using no materialization (NoMat), the time to execute
the workload decreases with an increasing ratio of inserts because an on-the-fly
aggregation is more expensive than inserting new values. The early (EIU) and
lazy incremental update (LIU) strategies use materialized aggregates to answer
selects and perform much better with high select ratios than no materialization.
EIU and LIU have almost the same execution time for read-intensive (less than
50% inserts) workloads. Reads do not change the base table and the material-
ized aggregates stay consistent. Hence, maintenance costs do not dominate the
execution time of the workload and the mentioned strategies perform similarly.
With an increasing number of inserts, the performance of EIU decreases nearly
linearly while LIU can condense multiple inserts within a single maintenance
step. The merge update (MU) maintenance strategy, which the proposed ag-
gregates query caching mechanism is based on, outperforms all other strategies
when the workload has more than 40% insert queries. The low performance for
read-intensive workloads is based on the fact, that both, the main and the delta
storage have to be queried and even an empty or small delta implies a small
overhead.

4.3 Merge Interval

To validate the cost model for the optimal merge inverval, introduced in Section
3.3, we have created a benchmark and compared it to our cost model. The

Aggregates Caching in Columnar In-Memory Databases 11

benchmark executed a workload of 200.000 statements with 20% selects and a
varying base table size of 10M, 20; and 30M records. We have used different
merge intervals with a step size of 3.000 statements starting with 1.000 and
compared the best performing merge interval to the one predicted by our cost
model. The results reveal that the values predicted by our cost model have a
mean absolute error of 10.6% with the limitation that our approximitation is
based on the chosen step size.

5 Conclusions

In this paper, we have proposed a novel aggregate query caching strategy that
utilizes the main-delta architecture of a columnar IMDB for efficient material-
ized view maintenance. Instead of invalidating or recalculating the cached query
when the base data changes, we combine the cached result of the main stor-
age with newly added records that are persisted in the delta storage. We have
compared and evaluated the involved materialized view maintenance strategy
to existing ones under varying workloads. Also, we have created a cost model
to determine the optimal merge frequency of records in the delta storage with
the main storage. To optimize the caching mechanism, we have proposed cache
admission and replacement strategies. Further, we have taken a first step to dis-
cuss how joins and updates updates can be handled efficiently with the proposed
caching strategy. For evaluation, we have modeled a mixed database workload
based on real customer data. With this mixed workload, the aggregate caching
outperforms a simple query cache by a factor of six.

We plan to improve the proposed caching mechanism by implementing and
evaluating cache admission and replacement strategies that do only cache the
most beneficial queries to minimize the overhead. This is particular interesting
when considering queries containing join operations as this increases the com-
plexity of recalculation. Also, ways to handle data updates or record invalidations
are subject to further research.

Acknowledgements The authors would like to thank the database team of
the SAP AG for the cooperation including many fruitful discussions.

References

1. Plattner, H.: A common database approach for OLTP and OLAP using an in-
memory column database. In: SIGMOD. (2009)

2. Plattner, H.: Sanssoucidb: An in-memory database for processing enterprise work-
loads. In: BTW. (2011)

3. Tinnefeld, C., Müller, S., Kaltegärtner, H., Hillig, S., Butzmann, L., Eickhoff, D.,
Klauck, S., Taschik, D., Wagner, B., Xylander, O., Zeier, A., Plattner, H., Tosun,
C.: Available-to-promise on an in-memory column store. In: BTW. (2011) 667–686

4. Smith, J., Smith, D.: Database abstractions: aggregation. Communications of the
ACM (1977)

5. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views.
In: SIGMOD, ACM (1986)

12 Stephan Müller and Hasso Plattner

6. Gupta, A., Mumick, I.S., et al.: Maintenance of materialized views: Problems,
techniques, and applications. Data Engineering Bulletin 18(2) (1995) 3–18

7. Agrawal, D., El Abbadi, A., Singh, A., Yurek, T.: Efficient view maintenance at
data warehouses. In: SIGMOD. (1997)

8. Bello, R.G., Dias, K., Downing, A., Feenan, J., Finnerty, J., Norcott, W.D., Sun,
H., Witkowski, A., Ziauddin, M.: Materialized views in oracle. In: VLDB. (1998)

9. Zhou, J., Larson, P.A., Elmongui, H.G.: Lazy maintenance of materialized views.
In: VLDB. (2007)

10. Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.: View maintenance in a
warehousing environment. In: SIGMOD. (1995)

11. Agrawal, D., El Abbadi, A., Singh, A., Yurek, T.: Efficient view maintenance at
data warehouses. In: SIGMOD. (1997)

12. Jain, H., Gosain, A.: A comprehensive study of view maintenance approaches in
data warehousing evolution. SIGSOFT (2012)

13. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: data management for modern business applications. SIGMOD (2011)

14. Kemper, A., Neumann, T.: Hyper: A hybrid oltp & olap main memory database
system based on virtual memory snapshots. In: ICDE. (2011)

15. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
Hyrise: a main memory hybrid storage engine. VLDB (2010)

16. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in
column-oriented database systems. SIGMOD (2006)

17. Plattner, H., Zeier, A.: In-memory data management: an inflection point for en-
terprise applications. Springer Verlag, Berlin Heidelberg (2011)

18. Krueger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner,
H., Dubey, P., Zeier, A.: Fast Updates on Read-Optimized Databases Using Multi-
Core CPUs. In: VLDB. (2012)

19. Buneman, O.P., Clemons, E.K.: Efficiently monitoring relational databases. ACM
Transactions on Database Systems (1979)

20. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary
tables in a warehouse. In: SIGMOD. (1997)

21. Gray, J., Bosworth: Data cube: a relational aggregation operator generalizing
GROUP-BY, CROSS-TAB, and SUB-TOTALS. In: ICDE. (1996)

22. Palpanas, T., Sidle, R., Cochrane, R., Pirahesh, H.: Incremental maintenance for
non-distributive aggregate functions. VLDB (2002)

23. Schaffner, J., Eckart, B., Jacobs, D., Schwarz, C., Plattner, H., Zeier, A.: Predicting
in-memory database performance for automating cluster management tasks. In:
ICDE. (2011)

24. Manegold, S., Boncz, P., Kersten, M.: Generic database cost models for hierarchical
memory systems. VLDB (August 2002)

25. Scheuermann, P., Shim, J., Vingralek, R.: WATCHMAN: A Data Warehouse In-
telligent Cache Manager. In: VLDB. (1996)

26. Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kemper, A., Krompass, S., Kuno,
H., Nambiar, R., Neumann, T., Poess, M., Sattler, K.U., Seibold, M., Simon, E.,
Waas, F.: The mixed workload CH-benCHmark. In: DBTest. (2011)

