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My research interests are in systems support for data science and big data to enable the efficient use of modern and
future hardware. The scope of my research spans across multiple systems subfields, from the data-processing layer
to operating systems, including hardware accelerators for data processing.

Modern system software is in particular challenged by two trends: First, we collect data at unprecedented rates,
and making sense out of that data, analyzing it, and managing it is of critical importance to both enterprises and
researchers. Apart from designing new models and techniques for analyzing this data deluge, we also need suit-
able system support to make the analysis more performant, efficient, and applicable in a wider setting. Second,
hardware has become more complex and heterogeneous. Instead of boosting CPU frequencies, hardware vendors
have increased the number of cores and diversity of computational units within modern machines. As a result, it is
now up to the system software to adapt its architecture and implementation in order to achieve better performance
and use the potential of increased core count, novel hardware features (e.g., accelerators, system-on-chip), and new
technologies (e.g., non-volatile memory).

Addressing the challenges imposed by these trends requires an effort which is beyond what can be typically
done within a single layer of the system stack. Therefore, I argue for a holistic solution which crosses several layers:
understand the requirements of data science workloads, both manage the increasingly diverse set of resources and
influence the design of future hardware architectures to better fit the requirements of modern workloads.

My research is based on building real systems and a strong analytical treatment of the performance models related
to these systems. In principle, I strive towards high impact research, often in collaboration with other researchers
from leading industry labs and academia.

1 Recent and ongoing research

Throughout my PhD studies, I have led and contributed to multiple large-scale system projects at ETH Zurich,
Oracle Labs, and Microsoft Research. The focus of my dissertation was on database/operating system co-design for
running analytical workloads on multicore machines [3–5], but I have also built customized hardware accelerators
for data processing [7,9], improved memory management in runtime engines for Big Data systems [6], designed and
implemented a rack-scale data processing architecture for hybrid workloads [8], and worked on a scalable relational
query execution engine for multicore machines [11].

1.1 Database/Operating system co-design

In my dissertation, I revisited the problem of database/operating system co-design. For decades, database (DB)
engines have found the generic interfaces offered by operating systems (OSes) at odds with the need for efficient
utilization of hardware resources. This is partly due to the big semantic gap between the two layers. The rigid
DB/OS interface does not allow for knowledge to flow between them, and as a result: (1) the operating system is
unaware of the requirements of the database, and provides a set of general purpose policies and mechanisms for all
applications running on top, (2) the database can, at best, duplicate a lot of the OS functionality internally at the
cost of absorbing significant portion of additional complexity in order to efficiently use the underlying hardware –
an approach that does not scale with the current pace of hardware developments.

My work approaches this problem from two perspectives: (a) by reducing the knowledge gap between the DB
and OS, and (b) by architecting the OS to allow dynamic splitting of the machine resources into a control and compute
plane, where the compute plane kernels can be specifically tailored to the needs of data processing applications.

More specifically, in COD [4] I introduced an OS policy engine which can reason about system state, contains
a knowledge base with a model of the machine and its resources, and understands applications’ requirements. Via
a new declarative interface the database can now push some of its knowledge to the OS policy engine, where the
system state resides. For instance, the database can share cost models of its operators (e.g., a relational scan) with
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the OS. The policy engine can then use them derive how the operator’s performance is affected by its resource
allocation decisions. In follow up work [3], I have shown how using the data dependency graph of a DB query
plan, the resource footprint of each relational operator in the graph, and the system state from the OS policy engine,
we compute an optimal operator-to-core deployment. In the experimental evaluation I showed that it minimizes
resource utilization (up to 7x more efficient for the TPC-W workload benchmark) without sacrificing tail latency
and throughput predictability.

In Basslet [5] I propose using the multi-kernel OS architecture [1] to split the machine resources into a con-
trol and compute plane. The control plane runs the full OS kernel/stack and the main application threads. The
compute plane, however, is a lightweight kernel (LWK) which is solely responsible for executing jobs on behalf of
applications in a noise-free environment, which can be customized to the requirements of specific workloads. The
current prototype is based on the Barrelfish OS [12] and extends the traditional UNIX process model to also offer
task-based execution for parallel data-intensive jobs on hardware isolation islands via a kernel-integrated runtime
scheduler. The system provides an interface that captures the different parallelism job requirements from complex
multithreaded applications, analogous to MapReduce cluster type frameworks.

1.2 Architecture for hybrid data processing

Many businesses today rely on data driven decisions, preferably by doing analytics on fresh data. As a result, it
is increasingly important that modern data processing systems provide support for efficient execution of hybrid
workloads applications. Even though there are several enterprise and research systems which offer support to run
such HTAP workloads, concurrent execution significantly degrades the throughput of both workloads.

The system architecture we proposed and implemented (BatchDB [8]) achieves good performance, provides a
high level of data freshness, and minimizes the load interaction between the transactional and analytical engines,
thereby allowing for real time analysis over fresh data under tight service level objectives for throughput and latency
for both type of workloads. To achieve these goals, BatchDB’s architecture relies on primary-secondary replication
with dedicated replicas optimized for a particular workload type, a light-weight propagation mechanism for transac-
tional updates, and isolated resource allocation either by scheduling the different engines on separate NUMA-islands
or across different machines. This project has already attracted a lot of attention from leading industry companies
such as Oracle Labs and SAP.

1.3 Hardware accelerators for data processing

Almost a decade ago as CPU frequencies have stopped increasing, multicore systems became prevalent. As a result,
the effort of improving the system and application performance has transferred to the developer. This becomes
more difficult with trends of increasing hardware heterogeneity and various new hardware accelerators optimized
for different purposes (e.g., Google’s TPU for machine learning, NVIDIA’s Tesla for deep neural networks, Oracle’s
SPARC M7 for advanced relational analytics). As opposed to building system software which continuously tries to
keep up with the pace at which hardware evolves, we have taken the complementary approach and also explored the
potential of hardware/software co-design and directly influencing the upcoming hardware features.

In this direction, I contributed to the early design and development of Oracle’s RAPID accelerator [9]. More con-
cretely, I was responsible for the implementation of a (distributed) join operator co-designed with the new hardware
architecture, and building a detailed cost model. I have also worked on projects which explore hybrid platform co-
processing (CPU+FPGA) for relational operations. In a recent paper we demonstrated the feasibility of the approach,
by implementing a hash-based partitioner on an FPGA circuit [7], which can be easily integrated as a pre-phase for
highly optimized operations (e.g., a radix hash join).

2 Future research

It is an exciting time to be a systems researcher. Looking forward, I want to re-design the system stack support for
data science and modern data analytics workloads to take advantage of the many changes taking place in hardware
architecture and computing platforms. I discuss some concrete ideas in this section, but I would be happy to continue
my work on a wider range of topics and in collaboration with colleagues from adjacent areas.
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2.1 Support for Data Science workloads

Sub-operators as first class citizens. Databases have over decades developed a wealth of technologies that have
been successfully used in many settings. Unfortunately, most of it is left aside in the pursuit of performance (e.g.,
NoSQL) or new functionality (e.g., graph processing, machine learning). Part of this is due to the coarse granularity
of the principal DB components – the relational operators. Thus, my proposal is to make databases a more flexible
platform with extended support for new data types and operations by lowering the level of abstraction: instead
of working with SQL, the DB runtime engine should compile, optimize, and run a collection of sub-operators for
manipulating and managing data. As a result, the database will shift from being a virtual machine executing SQL
programs to a language runtime executing a complex instruction set architecture (ISA) made up of sub-operators.
Such a change enables three things: (1) building more expressive dataflows for a variety of data scientific workloads
(e.g., machine learning, data mining, etc.), (2) easier portability across different platforms, and (3) influencing the
design of future hardware features. Our FPGA-based partitioner is just one example of such a sub-operator. Its
circuit could (in the future) be integrated on-chip, and be used as a building component for many different dataflows
beyond SQL hash-join and aggregation.

Adaptive OS for data science. The policies and mechanisms suitable for data science workloads can vary. A
transactional workload is characterized by latency sensitive, short running jobs, interacting with both the storage and
network layers. Analytical queries are more bandwidth intensive, rely on main memory processing and are typically
longer running parallel jobs. Thus, an important property of the Basslet OS architecture from my dissertation work is
its adaptability. It allows customizing the LWKs to the different workloads requirements, and dynamically updating
the compute plane as the workload mix changes. As a follow up project I intend to use our hybrid data processing
engine (BatchDB) on top of the Basslet OS architecture, and implement the suitable compute plane kernels for both
workload types. That way we can evaluate the benefits of a customized system stack for hybrid workloads.

2.2 Future rack-scale machines

New hardware technologies started changing the landscape of data center computing, and rack-scale computers (with
high-bandwidth low-latency network fabrics connecting thousands of cores and terabytes of memory) are projected
to become the dominant unit of deployment in many large scale companies. From a systems perspective this opens up
plethora of questions, including how to co-design the multiple layers of the software stack in order to improve both
performance and efficiency. I plan to build upon my current research to address the challenges of heterogeneous
resources, managing memory, storage, and network in the light of such new technologies (e.g., NVRAM, active
DRAM, system- or network-on-chip, etc.).

Heterogeneous hardware. From the OS perspective an interesting challenge is how to capture and model the
diversity of resources, monitor their utilization, and expose some of that information to the applications. But also to
explore how the OS policy engine can assist data processing applications to map their work units onto a diverse set
of platforms (e.g., a Xeon Phi or an FPGA). Furthermore, current trends suggest that we are headed towards active
resources (e.g., smart NICs, active near-memory processing, intelligent storage, etc.). As oppose to treating them as
external devices, we should have the OS manage their computational capacities (i.e., the control plane) and export
their services directly to the applications (i.e., the data or compute plane). By design the Basslet architecture enables
us to customize the compute plane kernels for the underlying platform, and scale to large rack-scale machines.

More efficient use and access to I/O devices. Due to lack of support from conventional operating systems, most
data processing engines today optimize their implementations for network operations by removing the OS from the
critical data path (e.g., using RDMA over InfiniBand) and rely on the network interface card (NIC) driver to do the
resource multiplexing. Recent research OSes [2, 10] use hardware virtualization capabilities of I/O devices to give
applications direct access to the device without involving the OS kernel – data plane. I would like to explore: (1) how
the policies devised by the control plane (i.e., the OS) can be improved given more knowledge of application’s needs;
and (2) how to design and implement the I/O system stack so that performance improves without entirely offloading
the complexity to the application.

Memory management. For certain classes of applications and workloads, the virtual memory system is becom-
ing the bottleneck (e.g., overhead of virtual to physical memory translation, managing terabytes of main memory,
etc.). Recently proposed techniques which allow applications to take over more control over their address space
and virtual to physical page translation (e.g., self-paging, direct segments, etc.) could be of use to applications like
databases, especially at rack-scale.
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