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Abstract
Multicore computers pose a substantial challenge to infras-
tructure software such as operating systems or databases.
Such software typically evolves slower than the underlying
hardware, and with multicore it faces structural limitations
that can be solved only with radical architectural changes.
In this paper we argue that, as has been suggested for op-
erating systems, databases could treat multicore architec-
tures as a distributed system rather than trying to hide the
parallel nature of the hardware. We first analyze the limita-
tions of database engines when running on multicores using
MySQL and PostgreSQL as examples. We then show how to
deploy several replicated engines within a single multicore
machine to achieve better scalability and stability than a sin-
gle database engine operating on all cores. The resulting sys-
tem offers a low overhead alternative to having to redesign
the database engine while providing significant performance
gains for an important class of workloads.

Categories and Subject Descriptors H.2.4 [Information
Systems]: DATABASE MANAGEMENT—Systems

General Terms Design, Measurement, Performance

Keywords Multicores, Replication, Snapshot Isolation

1. Introduction
Multicore architectures pose a significant challenge to exist-
ing infrastructure software such as operating systems [Bau-
mann 2009; Bryant 2003; Wickizer 2008], web servers [Veal
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2007], or database engines [Hardavellas 2007; Papadopou-
los 2008].

In the case of relational database engines, and in spite of
the intense research in the area, there are still few practical
solutions that allow a more flexible deployment of databases
over multicore machines. We argue that this is the result of
the radical architectural changes that many current proposals
imply. As an alternative, in this paper we describe a solution
that works well in a wide range of use cases and requires no
changes to the database engine. Our approach is intended
neither as a universal solution to all use cases nor as a
replacement to a much needed complete redesign of the
database engine. Rather, it presents a new architecture for
database systems in the context of multicores relying on
well known distributed system techniques and proving to be
widely applicable for many workloads.

1.1 Background and Trends

Most commercial relational database engines are based on
a decades old design optimized for disk I/O bottlenecks
and meant to run on single CPU computers. Concurrency is
achieved through threads and/or processes with few of them
actually running simultaneously. Queries are optimized and
executed independently of each other with synchronization
enforced through locking of shared data structures. All these
features make the transition to modern hardware platforms
difficult.

It is now widely accepted that modern hardware, be it
multicore, or many other developments such as flash stor-
age or the memory-CPU gap, create problems for current
database engine designs. For instance, locking has been
shown to be a major deterrent for scalability with the num-
ber of cores [Johnson 2009a] and the interaction between
concurrent queries when updates or whole table scans are
involved can have a severe impact on overall performance
[Unterbrunner 2009]. As a result, a great deal of work pro-
posed either ways to modify the engine or to completely
redesign the architecture. Just to mention a few examples,
there are proposals to replace existing engines with pure
main memory scans [Unterbrunner 2009]; to use dynamic



programming optimizations to increase the degree of paral-
lelism for query processing [Han 2009]; to use helper cores
to efficiently pre-fetch data needed by working threads [Pa-
padopoulos 2008]; to modularize the engine into a sequence
of stages, obtaining a set of self-contained modules, which
improve data locality and reduce cache problems [Hari-
zopoulos 2005]; or to remove locking contention from the
storage engine [Johnson 2009a,b]. Commercially, the first
engines that represent a radical departure from the estab-
lished architecture are starting to appear in niche markets.
This trend can be best seen in the several database appliances
that have become available (e.g., TwinFin of IBM/Netezza,
and SAP Business Datawarehouse Accelerator; see [Alonso
2011] for a short overview).

1.2 Results

Inspired by recent work in multikernel operating systems
[Baumann 2009; Liu 2009; Nightingale 2009; Wentzlaff
2009], our approach deploys a database on a multicore
machine as a collection of distributed replicas coordinated
through a middleware layer that manages consistency, load
balancing, and query routing. In other words, rather than
redesigning the engine, we partition the multicore machine
and allocate an unmodified database engine to each partition,
treating the whole as a distributed database.

The resulting system, Multimed, is based on techniques
used in LANs as part of computer clusters in the Ganymed
system [Plattner 2004], adapted to run on multicore ma-
chines. Multimed uses a primary copy approach (the mas-
ter database) running on a subset of the cores. The mas-
ter database receives all the update load and asynchronously
propagates the changes to satellite databases. The satellites
store copies of the database and run on non overlapping sub-
sets of the cores. These satellites are kept in sync with the
master copy (with some latency) and are used to execute the
read only load (queries). The system guarantees global con-
sistency in the form of snapshot isolation, although alterna-
tive consistency guarantees are possible.

Our experiments show that a minimally optimized ver-
sion of Multimed exhibits both higher throughput with lower
response time and more stable behavior as the number of
cores increase than standalone versions of PostgreSQL and
MySQL for standard benchmark loads (TPC-W).

1.3 Contribution

The main contribution of Multimed is to show that a share-
nothing design similar to that used in clusters works well in
multicore machines. The big advantage of such an approach
is that the database engine does not need to be modified to
run in a multicore machine. The parallelism offered by mul-
ticore is exploited through the combined performance of a
collection of unmodified engines rather than through the op-
timization of a single engine modified to run on multiple
cores. An interesting aspect of Multimed is that each engine
is restricted in the number of cores and the amount of mem-

ory it can use. Yet, the combined performance of several en-
gines is higher than that of a single engine using all the cores
and all the available memory.

Like any database, Multimed is not suitable for all possi-
ble use cases but it does support a wide range of useful sce-
narios. For TPC-W, Multimed can support all update rates,
from the browsing and shopping mix to the ordering mix,
with only a slight loss of performance for the ordering mix.
For business intelligence and data warehouse loads, Mul-
timed can offer linear scalability by assigning more satellites
to the analytical queries.

Finally, in this paper we show a few simple optimizations
to improve the performance of Multimed. For instance, par-
tial replication is used to reduce the memory footprint of the
whole system. Many additional optimizations are possible
over the basic design, including optimizations that do not re-
quire modification of the engine, (e.g., data placement strate-
gies, and specialization of the satellites through the creation
of indexes and data layouts tailored to given queries).

The paper is organized as follows. In the next section
we motivate Multimed by analyzing the behavior of Post-
greSQL and MySQL when running on multicore machines.
The architecture and design of Multimed are covered in sec-
tion 3, while section 4 discusses in detail our experimen-
tal evaluation of Multimed. Section 6 discusses related work
and section 7 concludes the paper.

2. Motivation
To explore the behavior of traditional architectures in more
detail, we have performed extensive benchmarks over Post-
greSQL and MySQL (open source databases that we can
easily instrument and where we can map bottlenecks to con-
crete code sequences). Our analysis complements and con-
firms the results of similar studies done on other database
engines over a variety of multicore machines [Hardavellas
2007; Johnson 2009b; Papadopoulos 2008].

The hardware configuration and database settings used
for running the following experiments are described in
section 4.1. The values for L2 cache misses and context
switches were measured using a runtime system profiler
[OProfile].

2.1 Load interaction

Conventional database engines assign threads to operations
and optimize one query at a time. The execution plan for
each query is built and optimized as if the query would run
alone in the system. As a result, concurrent transactions can
significantly interfere with each other. This effect is minor in
single CPU machines where real concurrency among threads
is limited. In multicores, the larger number of hardware
contexts leads to more transactions running in parallel which
in turn amplifies load interaction.
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(d) PostgreSQL: L2 data cache miss ratio

 0

 20

 40

 60

 80

 100

Browsing Browsing
 without

 BestSellers

BestSellers
 Only

Po
st

gr
eS

Q
L

 s
lo

ck
ca

ch
e 

m
is

s 
pe

rc
en

ta
ge

 [
%

]

 
 

4 Cores - 100 Clients
4 Cores - 1000 Clients
48 Cores - 100 Clients
48 Cores - 1000 Clients

(e) PostgreSQL: s lock cache misses

 0

 50

 100

 150

 200

 250

 300

 350

Perfect-
Over-

Under-
Perfect-

Over-
Under-

Perfect-
Over-

T
hr

ea
d 

yi
el

ds
 to

 s
ch

ed
ul

er
/T

ra
ns

ac
tio

n

 

Mutex
RW Shared Row Latch
Exclusive Row Latch

            load
 48 Threads

            load
 24 Threads

            load
 12 Threads

(f) MySQL: Context switches

Figure 1. Current databases on multicore

We have investigated load interaction in both PostgreSQL
and MySQL using the Browsing mix of the TPC-W Bench-
mark (see below for details on the experimental setup).

PostgreSQL’s behavior with varying number of clients
and cores is shown for the Browsing mix in figure 1(a); for
all other queries in the mix except BestSellers in figure 1(b);
and for the BestSellers query only in figure 1(c).

For the complete mix (figure 1(a)), we observe a clear
performance degradation with the number of cores. We
traced the problem to the BestSellers query, an analytical
query that is performing scans and aggregation functions
over the three biggest tables in the database. On one hand
the query locks a large amount of resources and, while do-
ing this, causes a large amount of context switches. On the
other hand all the concurrent queries have to wait until the
BestSellers query releases the locked resources. When this
query is removed from the mix, figure 1(b), the throughput
increases by almost five times and now it actually improves
with the number of cores. When running the BestSellers
query alone (figure 1(c)), we see a low throughput due to the
interference among concurrently running queries and, again,
low performance as the number of cores increases.

The interesting aspect of this experiment is that Best-
Sellers is a query and, as such, is not doing any updates.
The negative load interaction it causes arises from the com-
petition for resources, which becomes worse as the larger
number of cores allows us to start more queries concurrently.

Similar effects have been observed in MySQL, albeit for
loads involving full table scans [Unterbrunner 2009]. Full ta-
ble scans require a lot of memory bandwidth and slow down
any other concurrent operation, providing another example
of negative load interaction that becomes worse as the num-
ber of cores increases.

2.2 Contention

One of the reasons why loads interact with each other is
contention. Contention in databases is caused mainly by
concurrent access to locks and synchronization primitives.

To analyze this effect in more detail, we have profiled
PostgreSQL while running the BestSellers query. The indi-
vidual run time for this query, running alone in the system,
is on average less than 80ms, indicating that there are no
limitations in terms of indexing and data organization.

Figure 1(d) shows the L2 data cache misses for the full
Browsing mix, the Browsing mix without the BestSellers
and the BestSellers query alone. The L2 data cache miss
ratio was computed using the expression below based on
measured values for L2 cache misses, L2 cache fills and L2
requests (using the CPU performance counters). We have
done individual measurements for each CPU core, but as
there are no significant differences between the cores, we
used the averaged values of the measured metrics.

L2DC Miss Ratio =
100× L2Cache Misses

(L2Cache F ills + L2Requests)



With more clients and cores, we see a high increase in
cache misses for the workloads containing the BestSellers
query. We have traced this behavior to the “s lock” (spin
lock) function, which is used in PostgreSQL to control ac-
cess to the shared buffers data structures (held in shared
memory). Every time a lock can not be acquired, a context
switch takes place, forcing an update of the L2 cache.

Figure 1(e) shows that the time spent on the “s lock”
function increases with both clients and cores, only when
the BestSellers query is involved. We would expect to see
an increase with the number of clients but not with more
cores. Removing again the BestSellers query from the mix,
we observe that it is indeed the one that causes PostgreSQL
to waste CPU cycles on the “s lock” function as the number
of cores increases. Finally, looking at the “s lock” while
running only the BestSellers query we see that it dictates the
behavior of the entire mix.

The conclusion from these experiments is that, as the
number of cores and clients increase, the contention on
the shared buffers significantly degrades performance: more
memory leads to more data under contention, more cores
just increase the contention. This problem that has also been
observed by Boyd-Wickizer [2010].

The performance of MySQL for the Browsing mix with
different number of cores and clients is shown in figure 5.
MySQL’s InnoDB storage engine acts as a queuing system:
it has a fixed number of threads that process client requests
(storage engine threads). If more client requests arrive than
available threads, MySQL will buffer them until the previous
ones have been answered. In this way MySQL is not affected
by the number of clients but it shows the same pathological
behavior as PostgreSQL with the number of cores: more
cores result in lower throughput and higher response times.

While running this experiment, we monitored the times
a thread had to yield to the OS due to waits for a lock or a
latch. Figure 1(f) presents the number of thread yields per
transaction for different loads on the system.

Running one storage engine thread for each CPU core
available to MySQL, we looked at three scenarios: under-
load (a total of 12 clients), perfect-load (same number of
clients as storage engine threads) and over-load (200 concur-
rent clients). Running on 12 cores, we see very few thread
yields per transaction taking place. This indicates that for
this degree of multi-programming MySQL has no intrinsic
problems. Adding extra cores and placing enough load as to
fully utilize the storage engine threads (perfect load and over
load scenarios), we see that the number of thread yields per
transaction significantly increases. We also observe that the
queuing effect in the system does not add extra thread yields.
With increasing cores, the contention of acquiring a mutex
or a latch increases exponentially.

Of the possible causes for the OS thread yields, we ob-
serve less than half are caused by the latches that MySQL’s
InnoDB storage engine uses for row level locking. The rest

are caused by mutexes that MySQL uses throughout its en-
tire code. This implies that there is not a single locking bot-
tleneck, but rather a problem with locking across the entire
code-base, making it difficult to change the system so that it
does not become worse with the number of cores.

In the case of the BestSellers query, MySQL does not
show the same performance degradation issues due to the
differences in engine architectures. MySQL has scalability
problems with an increasing number of hardware contexts
due to the synchronization primitives and contention over
shared data structures.

2.3 Our approach

Load interaction is an intrinsic feature of existing database
engines that can only become worse with multicore. Simi-
larly, fixing all synchronization problems in existing engines
is a daunting task that probably requires major changes to
the underlying architecture. The basic insight of Multimed
is that we can alleviate the problems of load interaction and
contention by separating the load and using the available
cores as a pool of distributed resources rather than as a single
parallel machine.

Unlike existing work that focuses on optimizing the ac-
cess time to shared data structures [Hardavellas 2007; John-
son 2009b] or aims at a complete redesign of the engine
[Harizopoulos 2005; Unterbrunner 2009], Multimed does
not require code modifications on the database engine. In-
stead, we use replicated engines each one of them running
on a non-overlapping subset of the cores.

3. The Multimed System
Multimed is a platform for running replicated database
engines on multicore machines. It is independent of the
database engine used, its main component being a middle-
ware layer that coordinates the execution of transactions
across the replicated database engines. The main roles of
Multimed are: (i) mapping database engines to hardware
resources, (ii) scheduling and routing transactions over the
replicated engines and (iii) communicating with the client
applications.

3.1 Architectural overview

From the outside, Multimed follows the conventional client-
server architecture of database engines. Multimed’s client
component is implemented as a JDBC Type 3 Driver. Inter-
nally, Multimed (figure 2) implements a master-slave repli-
cation strategy but offers a single system image, i.e., the
clients see a single consistent system. The master holds a
primary copy of the data and is responsible for executing
all updates. Queries (the read only part of the load) run on
the satellites. The satellites are kept up to date by asyn-
chronously propagating WriteSets from the master. To pro-
vide a consistent view, queries can be scheduled to run on a
satellite node only after that satellite has done all the updates
executed by the master prior to the beginning of the query.



Figure 2. A possible deployment of Multimed

The main components of Multimed are the Communi-
cation component, the Dispatcher and the Computational
Nodes. The Communication component implements an
asynchronous server that allows Multimed to process a high
number of concurrent requests. Upon receiving a transac-
tion, Multimed routes the transaction to one of its Computa-
tional Nodes, each of which coordinates a database engine.
The routing decision is taken by the Dispatcher subsystem.

With this architecture, Multimed achieves several goals.
First, updates do not interfere with read operations as the
updates are executed in the master and reads on the satellites;
second, the read-only load can be separated across replicas
so as to minimize the interference of heavy queries with the
rest of the workload.

3.2 How Multimed works

We now briefly describe how Multimed implements replica-
tion, which is done by adapting techniques of middleware
based replication [Plattner 2004] to run in a multicore ma-
chine. In a later section we explore the optimizations that
are possible in this context and are not available in network
based systems.

3.2.1 Replication model

Multimed uses lazy replication [Gray 1996] between its
master and satellite nodes but guarantees a consistent view
to the clients. The master node is responsible for keeping a
durable copy of the database which is guaranteed to hold the
latest version of the data. All the update transactions are ex-
ecuted on the master node as well as any operation requiring
special features such as stored procedures, triggers, or user
defined functions.

The satellite nodes hold replicas of the database. These
replicas might not be completely up to date at a given mo-
ment but they are continuously fed with all the changes done
at the master. A satellite node may hold a full or a partial
replica of the database. Doing full replication has the advan-
tage of not requiring knowledge of the data allocation for
query routing. On the downside, full replication can incur
both higher costs in keeping the satellites up to date due to
larger update volumes, and lower performance because of
memory contention across the replicas. In the experimental
section we include an evaluation of partial replication but all
the discussions on the architecture of Multimed are done on
the basis of full replication to simplify the explanation.

Each time an update transaction is committed, the mas-
ter commits the transaction locally. The master propagates
changes as a list of rows that have been modified. A satel-
lite enqueues these update messages and applies them in the
same order as they were executed at the master node.

Multimed enforces snapshot isolation as a consistency
criterion (see [Daudjee 2006] for a description of snapshot
isolation and other consistency options such as session con-
sistency in this type of system). In snapshot isolation queries
are guaranteed to see all changes that have been committed
at the time the transaction started, a form of multiversion
concurrency control found today in database engines such
as Oracle, SQLServer, or PostgreSQL. When a query enters
the system, the Dispatcher needs to decide where it can run
the transaction (i.e., to which node it should bind it, which
may involve some small delay until a copy has all necessary
updates) and if multiple options are available, which one to
choose. Note that the master node is always capable of run-
ning any query without any delay and can be used as a way
to minimize latency if that is an issue for particular queries.

Within each database, we rely on the snapshot isolation
consistency of the underlying database engine. This means
that an update transaction will not interfere with read trans-
actions, namely the update transaction is applied on a differ-
ent “snapshot” of the database and once it is committed, the
shadow version of the data is applied on the active one. In
this way, Multimed can schedule queries on replicas at the
same time they are being updated.

3.2.2 WriteSet extraction and propagation

In order to capture the changes caused by an update trans-
action, Multimed uses row-level insert, delete and update
triggers in the master database on the union of the tables
replicated in all the satellites. The triggers fire every time a
row is modified and the old and new versions are stored in
the context of the transaction. All the changed rows, with
their previous and current versions, represent the WriteSet
of a transaction. In our system, this mechanism is imple-
mented using SQL triggers and server side functions. This
is the only mechanism specific to the underlying database
but it is a standard feature in today’s engines.



input : Connection con, Server Count Number scn
WriteSet ws← con.getWriteSet();
if ws.getStatementCount()> 0 then

synchronized lock object
con.commit();
ws.setSCN(scn.atomicIncrement());
foreach satellite sat do sat.enqueue(ws);

end
else con.commit();

Algorithm 1: WriteSet Propagation

When an update transaction is committed on the master
node, the WriteSet is extracted (by invoking a server side
function), parsed and passed on to each satellite for enqueu-
ing in its update queue, following algorithm 1.

A total order is enforced by Multimed over the commit
order of the transactions on the master node. This total order
needs to be enforced so that it can be respected on the satel-
lite nodes as well. This might be a performance bottleneck
for the system, but as we show in the experimental section,
the overhead induced by WriteSet extraction and by enforc-
ing a total order over the commits of updates is quite small.
In practice, Multimed introduces a small latency in starting
a query (while waiting for a suitable replica) but it can exe-
cute many more queries in parallel and, often, the execution
of each query is faster once started. Thus, the result is a net
gain in performance.

3.3 Multimed’s components

The main components of Multimed are the computational
nodes, the dispatcher, the system model and the client com-
munication interface.

3.3.1 Computational nodes

A Computational Node is an abstraction over a set of hard-
ware (CPUs, memory, etc.) and software (database engine
and stored data, connection pools, queues, etc) resources.
Physically, it is responsible for forwarding queries and up-
dates to its database engine.

Each Computational Node runs in its own thread. It is
in charge of (i) executing queries; (ii) executing updates and
(iii) returning results to the clients. Each transaction is bound
to a single Computational Node (can be the master) which
has the capability of handling all the requests that arrive in
the context of a transaction.

Multimed has one master Computational Node and any
number of satellite Computational Nodes. Upon arrival,
queries are assigned a timestamp and dispatched to the first
satellite available that has all the updates committed up to
that timestamp (thereby enforcing snapshot isolation). Satel-
lite nodes do not need to have any durability guarantees (i.e.,
do not need to write changes to disk). In the case of failure of
a satellite, no data is lost, as everything is durably committed
by the master Computational Node.

3.3.2 Dispatcher

The Multimed Dispatcher binds transactions to a Computa-
tional Node. It routes update transactions to the master node,
leaving the read transactions to the satellites. The differenti-
ation of the two types of transactions can be done based on
the transaction’s readOnly property (from the JDBC API).

The Dispatcher balances load by choosing the most
lightly loaded satellite from among those that are able to
handle the transaction. The ability of a satellite to handle a
transaction is given by the freshness of the data it holds and
by the actual data present (in the case of partial replication).
The load can be the number of active transactions, the CPU
usage, average run time on this node, etc. When no capable
satellite is found, the Dispatcher waits until it can bind to
a satellite with the correct update level or it may choose to
bind the transaction to the master node.

3.3.3 System model

The system model describes the configuration of all Compu-
tational Nodes. It is used by the Dispatcher when processing
client requests.

The System Model currently defines a static partitioning
of the underlying software and hardware resources (dynamic
partitioning is left for future work as it might involve re-
configuring the underlying database). It is used at start-time
to obtain a logical and physical description of all the Com-
putational Nodes and of the required connection settings to
the underlying databases. It also describes the replication
scheme in use, specifying what data is replicated where, the
tables that are replicated, and where transactions need to be
run.

3.3.4 Communication component

The communication subsystem, on the server side, has been
implemented based on Apache Mina 2.0 [Apache Mina].
The communication interface is implemented as an asyn-
chronous server using Java NIO libraries. Upon arrival, each
client request is passed on to a Computational Node thread
for processing. We have implemented the server component
of the system as a non-blocking message processing system
so as to be able to support more concurrent client connec-
tions than existing engines. This is important to take ad-
vantage of the potential scalability of Multimed as often the
management of client connections is a bottleneck in database
engines (see the results for PostgreSQL above).

3.4 System optimizations

Multimed can be configured in many different ways and
accepts a wide range of optimizations. In this paper we
describe a selection to illustrate how Multimed can take
advantage of multicore systems in ways that are not possible
in conventional engines.

On the communication side, the messages received by
the server component from the JDBC Type 3 Driver are
small (under 100 bytes). By default, multiple messages will



be packed together before being sent (based on Nagle’s
algorithm [Peterson 2000]), increasing the response time of
a request. We disabled this by setting the TCP NODELAY
option on the Java sockets, reducing the RTT for messages
by a factor of 10 at the cost of a higher number of packets on
the network.

On the server side, all connections from the Computa-
tional Nodes to the database engines are done through JDBC
Type 4 Drivers (native protocols) to ensure the best per-
formance. Using our own connection pool increases perfor-
mance as no wait times are incurred for creating/freeing a
database connection.

At the Dispatcher level, the binding between an external
client connection and an internal database connection is kept
for as long as possible. This binding changes only when the
JDBC readOnly property of the connection is modified.

For the underlying satellite node database engines, we
can perform database engine-specific tweaks. For instance,
for the PostgreSQL satellites, we turned off the synchronous
commit of transactions and increased the time until these
reach the disk. Consequently, the PostgreSQL specific op-
tions like fsync, full page writes and synchronous commit
were set to off, the commit delay was set to its maximum
limit of 100, 000µs, and the wal writer delay was set to
10, 000ms. Turning off the synchronous commit of the
satellites does not affect the system, since they are not re-
quired for durability. Similar optimizations can be done with
MySQL although in the experiments we only include the de-
lay writes option. In the experimental section, we consider
three optimization levels:

C0 implements full data replication on disk for all satel-
lites. This is the naı̈ve approach, where we expect perfor-
mance gains from the reduced contention on the database’s
synchronization primitives, but also higher disk contention.

C1 implements full data replication in main memory for
all satellites, thereby reducing the disk contention.

C2 implements partial or full data replication in main
memory for the satellites and transaction routing at the Dis-
patcher. This approach uses far less memory than C1, but
requires a-priori knowledge of the workload to partition the
data adequately (satellites will be specialized for running
only given queries). For the case of the 20GB database used
in our experiments, a specialized replica containing just the
tables needed to run the BestSellers query needs only 5.6GB
thus allowing us to increase the number of in-memory satel-
lite nodes. For CPU-bound use cases this approach allows us
to easily scale to a large number of satellite nodes, and ef-
fectively push the bottleneck to the maximum disk I/O that
the master database can use.

4. Evaluation
In this section we compare Multimed with conventional
database engines running on multicore. We measure the
throughput and response time of each system while run-

ning on a different number of cores, clients, and different
database sizes. We also characterize the overhead and appli-
cability of Multimed under different workloads. Aiming at a
fair comparison between a traditional DBMS and Multimed,
we used the TPC-W benchmark, which allows us to quantify
the behavior under different update loads.

4.1 Setup

All the experiments were carried out on a four way AMD
Opteron Processor 6174 with 48 cores, 128GB of RAM and
two 146GB 15k RPM Seagate R© Savvio R© disks in RAID1.

Each AMD Magny Cours CPU consists of two dies, with
6 cores per die. Each core has a local L1 (128KB) and L2
cache (512KB). Each die has a shared L3 cache (12MB).
The dies within a CPU are connected with two HyperTrans-
port (HT) links between each other, each one of them having
two additional HT links.

For the experiments with three and five satellites, each
satellite was allocated entirely within a CPU, respectively
within a die, to avoid competition for the cache. In the
experiments with ten satellites, partial replication was used,
making the databases smaller. In this case, each satellite was
allocated on four cores for a total of 3 satellites per socket.
Two of these satellites are entirely within a die and the third
spawns two dies within the same CPU. Due to the small
size of the replicas (the point we want to make with partial
replication), we have not encountered cache competition
problems when satellites share the L3 cache.

The hard disks in our machine prevented us from explor-
ing more write intensive loads. In practice, network attached
storage should be used, thereby allowing Multimed to sup-
port workloads with more updates. Nevertheless, the features
and behavior of Multimed can be well studied in this hard-
ware platform. A faster disk would only change at which
point the the master hits the I/O bottleneck, improving the
performance of Multimed even further.

The operating system used is a 64-bit Ubuntu 10.04 LTS
Server, running PostgreSQL 8.3.7, MySQL 5.1 and Sun Java
SDK 1.6.

4.2 Benchmark

The workload used is the TPC-W Benchmark over datasets
of 2GB and 20GB. Each run consists of having the clients
connect to the database and issue queries and updates, as
per the specifications of the TPC-W mix being run. Clients
issue queries for a time period of 30 minutes, without think
times. Each experiment runs on a fresh copy of the database,
so that dataset evolution does not affect the measurements.
For consistent results, the memory and threading parameters
of PostgreSQL and MySQL are fixed to the same values for
both the standalone and Multimed systems.

The clients are emulated by means of 10 physical ma-
chines. This way more than 1000 clients can load the target
system without incurring overheads due to contention on the
client side. Clients are implemented in Java and are used to
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Figure 3. PostgreSQL: Standalone vs. Multimed, Browsing mix

emit the workload as well as to measure the throughput and
response time.

The TPC-W benchmark specifies three workload mixes:
TPC-W Browsing (10% updates), TPC-W Shopping (20%
updates) and TPC-W Ordering (50% updates). Out of these
three, we focus on the Browsing and Shopping mixes. The
Ordering mix is disk intensive and hits an I/O bottleneck
before any proper CPU usage is seen.

The TPC-W benchmark specifies both an application and
a database level. We implemented only the database level,
as this is the point of interest for this work. Due to the
lack of the application level, some features required for cor-
rectly implementing the benchmark had to be emulated at the
database level. For example the shopping cart, which should
reside in the web server’s session state, is present in our im-
plementation as a table in the database. In order to limit the
side effects of holding the shopping cart in the database, an
upper bound is placed on the number of entries that it can
hold, equal to the maximum number of concurrent clients.

We have done extensive tests on Multimed, trying to find
the optimal configuration to use in the experiments. The
number of cores on which the satellites and the master nodes
are deployed can be adjusted. Also, the number of cores allo-
cated for Multimed’s middleware code can be configured. In
the experiments below we mention the number of satellites
(#S) and the optimization (C0-C2) that were used.

4.3 PostgreSQL: Standalone vs. Multimed version

This section compares the performance of PostgreSQL and
Multimed running on top of PostgreSQL.

4.3.1 Query intensive workload

Figures 3(a) and 3(d) present the scalability of PostgreSQL
compared to Multimed C1, in the case of the 2GB database,
and 200 clients. The x-axis shows the number of cores used
by both Multimed and PostgreSQL, as well as the number
of satellites coordinated by Multimed. Both the throughput
(figure 3(a)) and the response time (figure 3(d)) show that the
TPC-W Browsing mix places a lot of pressure on standalone
PostgreSQL, causing severe scalability problems with the
number of cores. Multimed running on 4 cores, the master
node on 4 cores, and each satellite on 4 cores scales up al-
most linearly to a total of 40 cores (equivalent of 8 satel-
lites). The limit is reached when the disk I/O bound is hit:
all queries run extremely fast, leaving only update transac-
tions in the system to run longer, and facing contention on
the disk. The gap between the linear scalability line and Mul-
timed’s performance is constant, being caused by the com-
putational resources required by Multimed’s middleware.

4.3.2 Increased update workload

Figures 3(b) and 3(c) present the throughput of PostgreSQL
(running on different number of cores) and of Multimed
(running with different configurations), as the number of
clients increases. Note that PostgreSQL has problems in
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Figure 4. PostgreSQL: Standalone vs. Multimed, Shopping mix

scaling with the number of clients issuing the workload, and
its performance at 48 cores is lower than at 12.

For both dataset sizes, Multimed (at all optimization lev-
els) outperforms the standalone version of PostgreSQL. The
C0 optimization level for Multimed shows higher error bars,
as all satellites are going concurrently to disk, in order to
persist updates. Switching to the C1 optimization level, we
reduce the contention on disk, by using more main mem-
ory. We see an improvement of more than 1000 transactions
per second between the naı̈ve C0 and optimized C1 versions
of Multimed. Finally, switching to the less generic optimiza-
tion level C2, Multimed accommodates more satellites in the
available memory, and can take advantage of the available
computational resources, until a disk I/O limit is hit. Using
the C2 optimization, the problem of load interaction is also
solved by routing the “heavy”, analytical, queries to differ-
ent satellite nodes, offloading the other nodes in the system.
In all these experiments we have used static routing.

Note the fact that Multimed retains a steady behavior
with increasing number of concurrent clients (up to 1000),
without exhibiting performance degradation. Looking at the
corresponding response times, even under heavy load, Mul-
timed’s response time is less than 1 second, indicating that
Multimed is not only solving the problems of load interac-
tion, but also the client handling limitations of PostgreSQL.
For the Shopping mix, standalone PostgreSQL’s perfor-
mance is slightly better than for the Browsing mix due to
the reduced number of heavy queries.

Figures 4(a) and 4(d) show that even in the case of the
Shopping mix, PostgreSQL can not scale with the number of
available cores, on the 2GB database, with 400 clients. Mul-
timed scales up to 16 cores (2 satellites), at which point the
disk becomes a bottleneck. Multimed’s performance stays
flat with increasing cores, while that of PostgreSQL drops.

Figures 4(b) and 4(c) show that PostgreSQL can not scale
with the number of clients for this workload either, regard-
less of the database size. In the case of Multimed, for a small
number of clients, all queries run very fast, leaving the up-
dates to compete for the master node. Past 150 clients, the
run time of queries increases and the contention on the mas-
ter node is removed, allowing Multimed to better use the
available satellites. We again observe that Multimed’s be-
havior is steady and predictable with increasing load.

Using the C0 optimization level and for a low number
of clients, Multimed performs worse than PostgreSQL, es-
pecially on the 20GB database, although it is more stable
with the number of clients. With more updates in the sys-
tem and with all of the satellites writing to disk, Multimed
is blocked by I/O. As in the previous case, the C1 optimiza-
tion solves the problem: standard deviation is reduced and
the throughput increases. The C2 optimization, at the same
number of satellites, also gives the system a performance
gain as fewer WriteSets need to be applied on the satellites
(they run faster).

Both in the case of a query intensive workload (Browsing
mix) and in the case of increased update workload (Shopping
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Figure 5. MySQL: Standalone vs. Multimed, Browsing mix

mix), PostgreSQL does not scale with the number of cores
or with the number of clients, regardless of the database
size. PostgreSQL’s inability to scale with the number of
clients is due to the fact that for each new client a new
process is spawned on the server. This might lead to the
conclusion that the number of processes is far greater than
what the operating system and the hardware can handle. This
is disproved by Multimed, which can cope with 1000 clients
in spite of the limitations of PostgreSQL. The problem in
this case is not the large number of processes in the system,
but rather the inability of a single PostgreSQL engine to
handle high concurrency. Since Multimed splits the number
of clients over a set of smaller sized satellites, it reduces the
contention in each engine, resulting in a higher throughput

4.4 MySQL: Standalone vs. Multimed version

In this section we compare standalone MySQL to Multimed
running on top of MySQL computational nodes.

For MySQL, we have done our experiments using its Inn-
oDB storage engine. This engine is the most stable and used
storage engine available for MySQL. However it has some
peculiar characteristics: (i) it acts as a queuing system, al-
lowing just a fixed number of concurrent threads to oper-
ate over the data (storage engine threads); (ii) it is slower
than the PostgreSQL engine for disk operations. In all the
results presented below, the number of cores available for
MySQL is equal to the number of storage engine threads.
Being a queuing system, MySQL will not show a degrada-

tion in throughput with the number of clients, but rather ex-
hibits linear increase in response time. For this reason, the
experiments for MySQL only go up to 400 clients.

4.4.1 Query intensive workload

Figures 5(a) and 5(d) present the ability of the standalone en-
gine, and of Multimed running on top of it, to scale with the
amount of computational resources, in the case of the 2GB
database and 200 clients. The x-axis, as before, indicates the
total number of cores available for MySQL and Multimed,
as well as the number of satellites coordinated by Multimed.
Each satellite runs on 4 cores.

In the case of the TPC-W Browsing mix, we notice that
MySQL does not scale with the number of cores. Figure 5(a)
shows that MySQL performs best at 12 cores. Adding more
cores increases contention and performance degrades.

The same conclusion can be seen in the throughput and
response time plots for both the 2GB and 20GB datasets (fig-
ures 5(b) and 5(c)), that show the performance of MySQL
(running on different number of cores) and of Multimed
(running on different configurations) with increasing clients.
Since the behavior is independent of the dataset, we con-
clude that the contention is not caused by a small dataset,
but rather by the synchronization primitives (i.e., mutexes)
that are used by MySQL throughout its entire code.

In contrast, Multimed scales with the number of cores.
Figure 5(a) shows that on the 2GB dataset, Multimed scales
up to 6 satellites, at which point the disk I/O becomes the
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Figure 6. MySQL: Standalone vs. Multimed, Shopping mix

bottleneck in the system, and the throughput and response
times are flat. The fact that Multimed on top of PostgreSQL
scaled in the same test up to 8 satellites corroborates the
fact the PostgreSQL’s storage engine is faster than MySQL’s
InnoDB for this workload.

The three configurations that we have run for Multimed
show that by replicating data, Multimed can outperform
standalone MySQL by a factor of 2, before it reaches the
disk I/O bound. The C0 configuration of Multimed shows a
behavior similar to standalone MySQL’s best run. Removing
this contention on disk from Multimed, by switching to its
C1 configuration, increases performance. The C2 optimiza-
tion does not yield better performance than C1. The system
is already disk bound and load interaction does not influence
MySQL for this workload. To improve performance here, a
faster disk or lower I/O latency would be needed.

4.4.2 Increased update workload

The scalability plot (figure 6(a)), shows that MySQL per-
forms best at 8 cores. With more cores performance de-
grades, confirming that contention is the bottleneck, not disk
I/O. Multimed scales up to 16 cores, at which point the
throughput flattens confirming that the disk becomes the bot-
tleneck.

Figures 6(b) and 6(c) show that on larger datasets data
contention decreases, allowing standalone MySQL to per-
form better. On the 2GB database, Multimed brings an im-

provement of 3x. In the case of the 20GB database, Mul-
timed achieves a 1.5x improvement.

5. Discussion
Multimed adapts techniques that are widely used in database
clusters. As a database replication solution, Multimed in-
herits many of the characteristics of replicated systems and
database engines. In this section we discuss such aspects to
further clarify the effectiveness and scope of Multimed.

5.1 Overhead

The main overhead introduced by Multimed over a stand
alone database is latency. Transactions are intercepted by
Multimed before being forwarded either to the master or to
a satellite. In the case the transactions go to a satellite, there
might be further delay while waiting for a satellite with the
correct snapshot.

Multimed works because, for a wide range of database
loads, such an increase in latency is easily compensated by
the reduction in contention between queries and the increase
in the resources available for executing each query. Although
satellite databases in Multimed have fewer resources, they
also have less to do. For the appropriate workloads, Mul-
timed is faster because it separates loads across databases
so that each can answer fewer queries faster than a large
database can answer all the queries.



5.2 Loads supported

There is no database engine that is optimal for all loads
[Stonebraker 2008]. Multimed is a replication based solution
and, hence, it has a limitation in terms of how many updates
can be performed as all the updates need to be done at the
master. Although this may appear a severe limitation, it is
not so in the context of database applications.

As the experiments above show, Multimed provides sub-
stantial performance improvements for the TPC-W browsing
and shopping mixes. For the ordering mix, with a higher rate
of updates, Multimed offers similar performance as the sin-
gle database since the bottleneck in both cases is the disk.
Multimed can be used to linearly scale read dominated loads
such as those found in business intelligence applications and
data warehousing. For instance, it is possible to show lin-
ear scale up of Multimed by simply assigning more satel-
lites to complex analytical queries. As a general rule, the
more queries and the more complex the queries, the better
for Multimed.

Workloads with high update rates and without complex
read operations are less suitable for Multimed – and indeed
any primary copy replication approach – because the master
becomes the bottleneck (regardless of why it becomes the
bottleneck: CPU, memory, or disk). In cluster based replica-
tion, this problem is typically solved by simply assigning a
larger machine to the master. Multimed can likewise be con-
figured to mitigate this bottleneck with a larger allocation of
resources (cores, memory) to the master.

5.3 Configuration

Tuning and configuring databases is a notoriously difficult
problem. Some commercial database engines are known to
provide thousands of tuning knobs. In fact, a big part of
the impetus behind the autonomic computing initiative of a
few years ago was driven by the need to automatically tune
databases.

Similarly, tuning Multimed requires knowledge of database
loads, knowledge of the engines used, and quite a bit of ex-
perimentation to find the right settings for each deployment.
The advantage of Multimed over a stand alone database is
that the number of global tuning knobs is less as each ele-
ment of the system needs to be tailored to a specific load.
The master can be tuned for writes, the satellites for reads.
It is even possible to configure Multimed so that a satellite
answers only specific queries (for instance, particularly ex-
pensive or long running ones) and then optimize the data
placement, indexes, and configuration of that satellite for
that particular type of query.

In terms of the interaction with the operating system and
the underlying architecture, Multimed can be configured
using simple rules: allocate contiguous cores to the same
satellites, restrict the memory available to each satellite to
that next to the corresponding cores, prevent satellites from
interfering with each other when accessing system resources

(e.g., cascading updates instead of updating all satellites
at the same time), etc. Such rules are architecture specific
but rather intuitive. Note as well that Multimed is intended
to run in a database server. These are typically powerful
machines with plenty of memory, often fast networks and
even several network cards, and SAN/NAS storage rather
than local disks. The more main memory is available, the
faster the I/O, and the more cores, the more possibilities
to tune Multimed to the application at hand and the bigger
performance gains to be obtained from Multimed.

5.4 Optimizations

The version of Multimed presented in the paper does not
include any sophisticated optimizations since the goal was
to show that the basic concept works. There are, however,
many possible optimizations over the basic system.

WriteSet extraction is currently done through triggers.
Depending on the system and load, this can become a bot-
tleneck (although note that the master where the trigger runs
no longer handles any query, so it has extra capacity to run
the triggers). An alternative is to extract the changes directly
from the log buffers (which requires access to the database
internals but has been done before in a number of systems).
Another option is to capture the changes from the log, a com-
mon solution in many database replication products such as
Data Streams of Oracle.

As mentioned, using a SAN/NAS storage will signifi-
cantly speed up Multimed because the I/O bottleneck can be
greatly reduced. Similarly, as has been done in some com-
mercial systems like Oracle Exadata, one can use SSDs as
caches between the remote disks and the server to minimize
the I/O impact. In the same way that these solutions speed up
traditional databases, Multimed will be faster using them.

The extra communication cost incurred by Multimed is
very small compared to the total run time of each transaction.
Even so, we have presented in section 3.4 a couple of tweaks
that we have performed in order to reduce it even more.

Like any replicated database, Multimed requires addi-
tional resources for every copy of the database. In a mul-
ticore machine, the number of satellites that can be used de-
pends on the available memory. The situation can be im-
proved by using partial replication as we have shown in
this paper. If each satellite contains only part of the original
database, then the available memory allows for the creation
of more satellites (subject to the deployment constraints dis-
cussed above). Multimed offers many options for exploring
such settings: satellites can be tailored for answering certain
queries (which only need the data necessary to answer those
queries), or satellites with special indexes for given work-
loads. Satellites could also be enhanced with user defined
functions, offering a way to extend the functionality of sys-
tem without having to modify the master database. Several
such optimizations have been shown to work well in cluster
based system and can easily be adapted to run in Multimed
[Plattner 2008].



6. Related work
Multimed builds on work done in database replication and
multikernel operating systems.

6.1 Database Replication

Multimed uses many ideas from database replication strate-
gies developed during the last decade starting with the work
on Postgres-R [Kemme 2000]. Of the many existing sys-
tems [Cecchet 2008], however, not all approaches are suit-
able for multicore machines. For instance, many middleware
database replication solutions use group communication to
coordinate the copies [Bettina 2003; Elnikety 2006]. These
solutions require a multi-master configuration and rely on
full replication. As our experiments have shown, running the
satellites in main memory and being able to implement par-
tial replication is a great boost in performance. Neverthe-
less, some of the innovative applications pursued with these
systems could also be implemented using the Multimed ap-
proach within a single multicore machine rather than on a
cluster. An example is the work on tolerating byzantine fail-
ures using heterogeneous replicas [Vandiver 2007] or com-
mercial version used in data warehousing [Xkoto].

The approaches closer to the design of Multimed are
those relying on single master replication [Daudjee 2006;
Plattner 2004] and that can support specialized satellites
and partial replication. This type of design is starting to
be widely used in cloud computing, for instance, in the
Microsoft SQL Azure database [Campbell 2010].

6.2 Multikernel Operating Systems

The problems that multicore creates in system software ei-
ther because of the increasing number of cores [Agarwal
2007; Borkar 2007] or their potential heterogeneity [Hill
2008; Kumar 2004] are by now well known. This has trig-
gered a lot of activity in the area of operating systems to
address these problems. For instance, [Wickizer 2008] pro-
poses a new exokernel based operating system, Corey, which
tries to manage the complexity of multicore machines by
moving the responsibility into the application space. Disco
[Bugnion 1997] and Cellular Disco [Govil 2000], make the
case for resource partitioning by running a virtualization
layer over a shared memory architecture, allowing the execu-
tion of multiple commodity operating systems, and treating
multicore as a cluster. Finally, [Baumann 2009; Nightingale
2009; Wentzlaff 2009] make a clean statement that multi-
core machines should be viewed as distributed systems and
adequate algorithms and communication models should be
employed.

The work in Multimed borrows many of these concepts
and applies them to the special (and architecturally very
different) case of database engines.

7. Conclusions
In this paper we address the problem of making databases
run efficiently on multicore machines. Multimed, the system
we present in the paper, represents a departure from existing
work in that it solves the problem for a wide range of loads
without having to modify the engine. Instead, it uses existing
databases in a replicated configuration and deploys them
over a multicore machine as if the multicore machine were a
distributed system. As shown in the evaluation, Multimed
exhibits better and more stable performance on multicore
architectures than PostgreSQL and MySQL.

A key aspect of Multimed is that it is independent of the
database engine and it will benefit from current hardware
developments, something that is not always the case for al-
ternative approaches. Multimed will get better as the num-
ber of cores increases, as more main memory is available,
through network attached storage, and by using SSD/Flash
storage. In addition, it is in a better position to cope with the
impending heterogeneity of multicore machines by allowing
asymmetric replicas of the database that can be specialized
to the characteristics of the underlying cores.
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