
499

ScyPer: A Hybrid OLTP&OLAP Distributed Main
Memory Database System for Scalable Real-Time Analytics

Tobias Mühlbauer∗, Wolf Rödiger, Angelika Reiser, Alfons Kemper, Thomas Neumann

Technische Universität München · Boltzmannstraße 3 · D-85748 Garching
{muehlbau, roediger, reiser, kemper, neumann}@in.tum.de

Abstract: ScyPer is an abbreviation for Scaled-out HyPer, a version of the HyPer main
memory hybrid OLTP&OLAP database system that horizontally scales out on shared-
nothing commodity hardware. Our demo shows that ScyPer a) achieves a near-linear
scale-out of OLAP query throughput with the number of active nodes, b) sustains
a constant OLTP throughput, c) is resilient to node failures, and d) offers real-time
analytical capabilities through market-leading query response times and periodically
forked TX-consistent virtual memory snapshots with sub-second lifetime durations.

1 Motivation

Database systems face two distinct workloads: online transactional processing (OLTP)
and online analytical processing (OLAP). These two workloads are nowadays mostly pro-
cessed in separate systems, a transactional one and a data warehouse for OLAP, which is
periodically updated by a so-called extract-transform-load (ETL) phase. However, ETL
interferes with mission-critical OLTP performance and is thus often carried out once ev-
ery night which inevitably leads to a problem of data staleness. Industry leaders such as
Hasso Plattner of SAP argue that this data staleness is inappropriate for real-time busi-

ness analytics [PZ11]. New hybrid OLTP&OLAP main memory database systems such as
SAP’s HANA or HyPer [KN11] achieve best-of-breed transaction processing throughput
and OLAP query response times in one system in parallel on the same database state.

Back-of-the-envelope calculations show that these main memory database systems can,
on the one hand, handle the OLTP workload and transactional data volumes even for the
largest commercial enterprises. E.g., for Amazon we estimate a yearly volume of 54GB
for the order lines, the dominating repository in such a sales application [KN11]. Today,
servers with 1TB of main memory are available for less than $40,000 and database systems
such as HyPer can process more than 100,000 transactions per second on such machines
— enough to process a human generated OLTP workload even during busy hours. Fur-
thermore, limited main memory is not a restriction as data can be divided into hot and cold
data where the latter can be compacted and swapped to disk [FKN12]. Thus, we conjecture
that for the vast majority of use cases OLTP can be managed by a single database server.

Analytical queries on the other hand can be quite complex and computationally expensive.
Thus, to maintain performance under high OLAP load, the database needs to be scaled

∗Tobias Mühlbauer is a recipient of the Google Europe Fellowship in Structured Data Analysis, and this
research is supported in part by this Google Fellowship.

500

out. A scale-out also addresses the need for high availability in the sense that the database
can fail-over to an active replica on the fly. In this work we demonstrate ScyPer, a version
of the HyPer database system that horizontally scales out on commodity hardware.

2 The HyPer Main Memory Database System

HyPer [KN11] is a hybrid OLTP&OLAP relational main memory database system in
which OLAP queries are processed on arbitrarily recent virtual memory (VM) snapshots
of the transactional database. This isolation prevents long-running OLAP queries from
interfering with mission-critical OLTP processing for which the ACID properties are guar-
anteed. Unlike traditional database systems, HyPer achieves market-leading performance
(compared to state-of-the-art main memory OLTP or OLAP database systems) for both,
OLTP and OLAP workloads, operating simultaneously on the same database. HyPer’s
performance is, among others, due to the following key characteristics: (i) HyPer relies
on in-memory data management which eliminates the ballast caused by DBMS-controlled
page structures and buffer management. (ii) OLAP processing is separated from mission-
critical OLTP processing by forking transaction (TX)-consistent VM snapshots using the
POSIX system call fork(). The hardware- and operating system-supported “copy on
update” mechanism then preserves the consistency of the snapshot by copying pages only
if a page is modified. No concurrency control mechanism — other than a short synchro-
nization between the fork and OLTP processing — is needed to separate the two workload
classes. (iii) Transactions and queries are specified in SQL or in a scripting language and
are efficiently compiled into LLVM code [Neu11]. (iv) As in VoltDB, parallel transactions
are separated via lock-free admission control. Thus, non-conflicting transactions can be
simultaneously processed in multiple threads (working on different partitions (Ptn)) with-
out the need of concurrency control. (v) HyPer relies on logical logging where, in essence,
the invocation parameters of transaction procedures are logged via a high-speed network.

3 ScyPer Architecture

A ScyPer cluster consists of one primary and several secondary nodes where each node
runs a ScyPer instance. The architecture of the system is shown in Figure 1.

The primary node is the entry point of the system for transactions as well as analytical
queries. The OLTP workload is processed in an OLTP process and the logical redo log is
multicasted to all secondary nodes using pragmatic general multicast (PGM). The PGM
protocol is scalable and provides the reliable delivery of packets in guaranteed ordering
from a single sender to multiple receivers. The redo log, in essence, contains the invocation
parameters of transaction procedures together with log sequence numbers. The primary
node is not restricted to but usually uses a row-store data layout which is a suitable choice
for OLTP processing and keeps indexes that support efficient transaction processing. It
can, but does not necessarily have to have TX-consistent snapshots on which it can process
OLAP queries or write TX-consistent backups out to a storage node. A coordinator process
on the primary node receives incoming OLAP queries and load balances these queries
among the secondary nodes.

Secondary nodes receive the multicasted logical redo log from the primary node and rerun
each of the transactions. As a large portion of a usual OLTP workload is read-only (i.e.,

501

Backup
Process

Coordinator

Primary Node

OLTP
Process

Ptn 1

Ptn 3
tim
e

Ptn 2

Ptn 4

Sh
ar
ed

A B C D E
Row-Store

OLTP

Secondary NodeSecondary Node

A B C D E

Column-Store

OLAP
Process ti-1OLAP

Process ti

fork()

OLTP
Process

Ptn 1

Ptn 3

Ptn 2

Ptn 4

Sh
ar
ed

tim
e

Non-Transactional
Data on Disk

...

OLAP

fork()

OLAP Load BalancingRedo Log Multicasting

Storage
Node

Redo Log

Figure 1: ScyPer architecture

no redo is necessary), secondary nodes usually face less OLTP work than primary nodes.
These additional resources are used to process incoming OLAP queries or create backups
on forked TX-consistent snapshots. Furthermore, indexes for efficient analytical query
processing can be created. Secondary nodes can either store data in a row-, column-,
or hybrid row- and column-store data format. Additionally, these nodes can have non-
transactional data on disk which can be queried by OLAP queries.

Clients are not restricted to stored transactions and may add new transaction definitions.
Internally, such a request is converted to a system-internal transaction which treats the
transaction definition as an input of a system-internal compile transaction. Similarly, cross-
node consistent snapshots can be created where the snapshots have the common logical
time of the log sequence number of the system-internal transaction. On such snapshots,
queries can be parallelized over several nodes.

All nodes multicast heartbeats such that node failures can be detected. Secondary nodes
can fail arbitrarily as we assume that clients re-send OLAP query requests after a timeout.
Alternatively OLAP requests can be replicated in the system so processing can be resumed
if a secondary node fails. In case of a primary node failure, the secondary nodes elect a new
primary using a PAXOS-based protocol. The latest acknowledged log sequence number
when failing over is determined by majority consensus.

502

Figure 2: ScyPer CLI Client Figure 3: ScyPer Web Client

4 Demonstration Setup

To demonstrate the capabilities of ScyPer, we run (i) a benchmark demo and (ii) an inter-
active demo where we simulate the sales order processing system (order entry, payment,
delivery) of a merchandising company. The schema and a mixed OLTP and OLAP work-
load for this system are based on the CH-benCHmark [C+11], a “merge” of the standard
TPC-C (OLTP) and TPC-H (OLAP) benchmarks. This scenario resembles the core busi-
ness of a commercial merchandiser like Amazon.

The demos run on a ScyPer cluster composed of a varying number of commodity machines
(Intel Core i7-3770 CPU, 32 GB dual-channel DDR3-1600 DRAM, Linux 3.5 64bit) and
located at TUM. The primary node of the cluster solely processes the OLTP workload;
secondary nodes process the logical redo log and periodically fork TX-consistent snap-
shots with a varying lifetime for OLAP processing. During both demos we simulate node
failures to demonstrate ScyPer’s high availability capabilities.

(i) In the benchmark demo we run the CH-benCHmark with a varying number of nodes.
Performance metrics such as the linearly-scalable OLAP and the constant OLTP through-
put as well as query response times are visualized on a dashboard.

(ii) In the interactive demo we only run the OLTP workload of the CH-benCHmark while
participants can simultaneously enter analytical SQL-92 queries via a command line (see
Figure 2) or a web (see Figure 3) interface that presents results “at the keystroke”.

References
[C+11] R. Cole et al. The mixed workload CH-benCHmark. In DBTest, pages 8:1–8:6, 2011.

[FKN12] F. Funke, A. Kemper, and T. Neumann. Compacting Transactional Data in Hybrid
OLTP&OLAP Databases. PVLDB, 5(11):1424–1435, 2012.

[KN11] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In ICDE, pages 195–206, 2011.

[Neu11] T. Neumann. Efficiently compiling efficient query plans for modern hardware. PVLDB,
4(9):539–550, 2011.

[PZ11] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for Enterprise
Applications. Springer, 2011.

