
Data Stream Sharing∗

Richard Kuntschke and Alfons Kemper

Technische Universität München, Munich, Germany
〈firstname.lastname〉@in.tum.de

Abstract. Recent research efforts in the fields of data stream process-
ing and data stream management systems (DSMSs) show the increasing
importance of processing data streams, e. g., in the e-science domain. To-
gether with the advent of peer-to-peer (P2P) networks and grid comput-
ing, this leads to the necessity of developing new techniques for distribut-
ing and processing continuous queries over data streams in such networks.
In this paper, we present a novel approach for optimizing the integra-
tion, distribution, and execution of newly registered continuous queries
over data streams in grid-based P2P networks. We introduce Windowed
XQuery (WXQuery), our XQuery-based subscription language for con-
tinuous queries over XML data streams supporting window-based op-
erators. Concentrating on filtering and window-based aggregation, we
present our stream sharing algorithms as well as experimental evaluation
results from the astrophysics application domain to assess our approach.

1 Introduction

Over the past few years, data stream processing and data stream management
systems (DSMSs) have been very active research areas. This trend is promoted
by the increasing need to process streaming data on-the-fly whenever possible,
instead of storing intermediate results or buffering whole input data sets before
processing. Newly upcoming and evolving fields, such as e-science applications
in physics and astronomy, deal with huge volumes of data and render storing
all of the delivered data increasingly impractical. Also, transmitting all the data
over physically limited and therefore eventually congested network connections
is a problem. This is especially true if only small subsets of the data or some
processing results—which usually constitute a much smaller data volume than
the input data—are actually needed.

We propose data stream sharing as a new optimization technique addressing
these issues. Data stream sharing is based on two main optimization approaches.
These are (1) in-network query processing for distributing and executing newly
registered continuous queries in the network and (2) multi-subscription opti-
mization for enabling the reuse of existing (parts of) data streams that were
generated to satisfy previously registered subscriptions.1

∗This research is supported by the German Federal Ministry of Education and
Research within the D-Grid initiative under contract 01AK804F and by Microsoft
Research Cambridge under contract 2005-041.

1The terms query, continuous query, and subscription are treated as synonyms
throughout this paper.

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

photons

P0

P1

P3

P2

P4

Query 1

Query 3

Query 2

Query 4

Fig. 1. No Stream Sharing

Super-Peer
Backbone

SP4 SP6

SP0 SP2

SP7

SP3SP1

SP5

photons

P0

P1

P3

P2

P4

Query 1

Query 3

Query 2

Query 4

Fig. 2. Stream Sharing

These optimizations are an integral part of our StreamGlobe system [1, 2]. To
enable them, we use peer-to-peer (P2P) networking techniques. In contrast to the
conventional use of P2P networks for file sharing, StreamGlobe uses P2P-based
networks for data stream sharing. The system architecture is based on a P2P
overlay backbone network that is organized as a super-peer network [3], i. e., peers
are classified into super-peers and thin-peers. Super-peers are powerful servers
which form a stationary super-peer backbone network. Thin-peers—often simply
called peers in the following—are less powerful devices that can be registered at
a super-peer and deliver data streams or register queries in the network. The
StreamGlobe implementation adheres to established grid computing standards
(OGSA) and therefore fits seamlessly into existing e-science platforms.

As a motivating example, we introduce an astrophysical e-science application.
Consider Figures 1 and 2 which both illustrate the same exemplary network.
Here, SP0 to SP7 are the super-peers that constitute the super-peer backbone
network and P0 to P4 are thin-peers. Peer P0 is a satellite-bound telescope that
detects photons and registers a data stream called photons at super-peer SP4.
This data stream contains real astrophysical data collected during the ROSAT
All-Sky Survey (RASS) which we obtained through our cooperation partners
from the Max Planck Institute for Extraterrestrial Physics (MPE).

In our scenario, we deal with streams of XML data. The data items in stream
photons comply to a DTD with the tree structure shown below. As its name im-
plies, the data stream delivers a stream of photons detected by the telescope’s
photon detector. Each photon contains its celestial and detector pixel coordi-
nates, its detector pulse, its energy, and its detection time.

ra dec

cel

dx dy

det

coord phc en det time

photon

We assume that peers P1 to P4 in the example network are devices of astro-
physicists used to register subscriptions in the network referencing the available
data stream as input. Subscriptions are registered using WXQuery, our XQuery-

based subscription language that will be introduced in detail in Section 2. We
will only consider Queries 1 and 2 of Figures 1 and 2 here. Queries 3 and 4 will be
presented in Section 2. All queries reference data stream photons as their single
input. Query 1 (Q1) is shown below.

Q1: <photons>

{ for $p in stream("photons")/photons/photon

where $p/coord/cel/ra >= 120.0 and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0 and $p/coord/cel/dec <= -40.0

return <vela> { $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/phc } { $p/en } { $p/det_time } </vela> }

</photons>

This query selects the area of the vela supernova remnant. The stream function
was newly introduced by us and indicates a possibly infinite data stream used
as input to the query. Query 2 (Q2) below filters a smaller section of the sky.

Q2: <photons>

{ for $p in stream("photons")/photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5 and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0 and $p/coord/cel/dec <= -45.0

return <rxj> { $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/en } { $p/det_time } </rxj> }

</photons>

This query selects the area of the RXJ0852.0-4622 supernova remnant which
is situated within the area of vela. Note that the section of the sky selected
by Query 2 is completely contained in the section selected by Query 1. Also,
Query 2 is only interested in photons having an energy of at least 1.3 keV.

We first consider Figure 1 which shows the traditional scenario of data ship-
ping. The thickness of the arrows associated with the various network connec-
tions indicates the size of the data streams transmitted over these connections.
Each of the four queries in the system only needs a certain part of the original
data stream. However, in each case, the whole stream gets transmitted from the
data source to the data sink leading to the transmission of unnecessary data.
Since query execution for each subscription takes place at the super-peer that
the subscribing peer is connected to, queries that perform the same operations
on the same input data streams cause redundant execution of operators.

Figure 2 shows the benefits of using our stream sharing approach which
answers newly registered subscriptions using (parts of) data streams already
present in the network. This includes data streams which have been generated
earlier for satisfying previously registered continuous queries. We assume that
Queries 1 to 4 have been registered one after another in ascending order in our
example. Obviously, network traffic and processing overhead can be significantly
reduced by avoiding redundant transmissions and computations through sharing
previously generated data streams. For example, when Query 1 is registered, its
execution can be pushed into the network and computed at SP4 instead of SP1.
The result is then routed to P1 via SP5 and SP1. When Query 2 is registered
afterwards, it can reuse the stream constituting the answer for Query 1 at SP5

because the result of Query 2 is completely contained in the answer for Query 1.

The result data stream of Query 1 is duplicated at SP5, yielding two identical
streams. One is used to answer Query 1, the other is filtered using the selection
and projection specified by Query 2. This results in a new stream that constitutes
the result of Query 2 which is subsequently routed to P2 via SP7.

The contributions presented in this paper are as follows. First, we introduce
Windowed XQuery (WXQuery), our XQuery-based subscription language for
continuous queries over XML data streams enabling the formulation of queries
including window-based aggregation operators. Second, we present a properties
representation of data streams and subscriptions, a cost model, and algorithms
for optimizing the evaluation of newly registered continuous queries in a data
stream management system by sharing possibly preprocessed data streams.

The paper is organized as follows. In Section 2, we introduce WXQuery. Our
new data stream sharing approach is presented in Section 3. Section 4 describes
some related work. Section 5 concludes and states ongoing and future work.

2 Subscription Language

In StreamGlobe, subscriptions over XML data streams are registered using Win-
dowed XQuery (WXQuery). WXQuery is a fragment of XQuery that has been
augmented with support for window-based operators.

In Definition 1 below, α and β are WXQuery expressions and χ denotes a con-
dition. A tag name is denoted by t. Further, $x and $y are variables representing
XML trees, where $y can also represent a reference to the root of a data stream
like stream("photons") in the example subscriptions. A variable representing the
result of a window-based aggregation operation is denoted by $a. The variable $z
can represent any of the three kinds of variables $x, $y, or $a as described above.
We use ψ to denote a relative path that only employs the child axis (“/”). It does
not include wildcards (“*”), conditions (“[p]”), or other axes (e. g., “//”). A rel-
ative path ψ differs from ψ in that it can also contain conditions. An aggregation
operator is denoted by Φ, i. e., Φ ∈ {min,max,sum,count,avg}.

Expressions enclosed in [[]]?, [[]]∗, or [[]]+ in the definition are optional, can
occur zero or more times, or can occur one or more times, respectively. A vertical
bar (|) indicates an alternation. An expression of the form αi1,...,in represents
a WXQuery expression from a restricted set of expressions. For example, α1,2

stands for any one of the two element constructor expressions numbered 1 and
2 in the definition below and α3,4,5,6,7 stands for any one of the remaining ex-
pressions numbered 3 to 7.

Definition 1 (WXQuery). The WXQuery subscription language comprises
all subscriptions that consist only of the following expressions:

1. <t/> (empty direct element constructor)
2. <t> [[α1,2]]∗ </t> | <t> [[{α3,4,5,6,7}]]∗ </t> (direct element constructor)
3. [[for $x in $y[[/ψ]]?[[|count ∆ [[step µ]]?| | |[[/]]?ψ diff ∆ [[step µ]]?|]]? |

let $a := Φ($y[[/ψ]]?)]]+ [[where χ]]? return α (FLWR expression)
4. if χ then α else β (conditional expression)
5. $y/ψ (output of subtrees reachable from node $y through path ψ)

6. $z (output of subtree rooted at node $z)
7. () (empty sequence)

The FLWR expression in the WXQuery definition introduces our new syn-
tax for expressing data windows, e. g., for use with window-based aggregation
operators. Query 3 (Q3) in the network of Figures 1 and 2 is an example for the
use of such an operator.
Q3: <photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and coord/cel/ra <= 138.0

and coord/cel/dec >= -49.0 and coord/cel/dec <= -40.0]

|/photon/det_time diff 20 step 10|

let $a := avg($w/photon/en)

return <avg_en> { $a } </avg_en> }

</photons>

Query 4 (Q4) employs a different window.
Q4: <photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and coord/cel/ra <= 138.0

and coord/cel/dec >= -49.0 and coord/cel/dec <= -40.0]

|/photon/det_time diff 60 step 40|

let $a := avg($w/photon/en)

where $a >= 1.3

return <avg_en> { $a } </avg_en> }

</photons>

The definition of a data window is enclosed in “|” characters. Element-
based windows—indicated by the keyword count—contain a fixed number of
elements given by the numeric value of ∆. Optionally, a step µ determining the
update interval of the data window can be specified. For example, the window
|count 20 step 10| defines a data window that always contains 20 elements and,
during each update, removes the 10 oldest entries from the window while adding
the next 10 new elements arriving in the stream. If omitted, the step defaults
to the value of ∆, meaning the contents of the window are completely replaced
by new ones during each update. The situation is analogous for time-based win-
dows, except that ∆ indicates the size of the window in time units and the
step indicates the time interval between two successive data windows. Again,
the step defaults to ∆ if omitted. Time-based windows can only be applied on
data streams that are sorted according to the values of the particular reference
element that is used to control the window. This premise could be somewhat re-
laxed to a fuzzy order by requiring that a fixed sized buffer is sufficient to derive
the total order. The value of the reference element of a time-based data window
can either be a real or an abstract timestamp. An example for a time-based
window is |/photon/det time diff 60 step 40| in Query 4. Note that the path
inside the window is not meant to be evaluated yielding a sequence as defined
by the conventional XPath semantics. Rather, it specifies the reference element
controlling the window.

Conditions in our context, whether they appear in a where clause (“χ”) or
within a path (“[p]”), are conjunctions of atomic predicates. Atomic predicates

Properties

Query 1

Stream

photons

Operator

σ

Operator

π

Condition

Condition

{ra●,dec●,phc●,en●,det_time●}
0

ra dec

138.0

-120.0

-40.0

49.0

Fig. 3. Abstract Properties of Query 1

are of the form $v θ c, $v θ $w, or $v θ $w + c, where $v and $w represent paths
of the form ψ, c represents a constant value, and θ ∈ {=, <,≤, >,≥}. Constant
values can be negative and are either integer values or decimal values with a
finite number of decimal places.

Restructuring (introducing new elements, reordering output elements, etc.)
is done in a postprocessing step at the super-peer that is connected to the peer
that registered the subscription. The result of the post processing is delivered
to the final destination and is not considered for reuse in the network. Since
attributes in XML data can always be converted into corresponding elements,
we restrict ourselves to dealing with elements.

3 Data Stream Sharing

This section introduces our properties-based approach for representing subscrip-
tions and data streams, our cost model, and the algorithms for searching, iden-
tifying, and choosing appropriate streams for satisfying new subscriptions.

3.1 Properties

In our context, subscriptions and data streams can be represented by the same
properties data structure. This is due to the fact that a subscription can always
be seen as producing a result data stream and a data stream can always be seen
as the result of a subscription.

The properties of subscriptions and data streams consist of three parts and
describe how the associated (result) data stream was generated. An abstract
schematic illustration of the properties of Query 1 from Section 1 is shown in
Figure 3. A subscription or data stream is described by an original input data
stream, a set of operators used to transform the input data stream into the
represented (result) data stream and, for each operator, a set of conditions spec-
ifying the operator (i. e., selection predicates, projection elements, data window
specifications, or aggregation operators together with the identifier of the corre-
sponding aggregated element). Predicates (e. g., selection predicates) are stored
using a graph representation as shown in Figure 3. Data window specifications
are also stored in a specific format that contains the ordered reference element
(only for time-based windows), the window type (count or diff), the window
size (∆) and the step (µ). This approach supports flat WXQueries without nest-
ing. An advanced approach supporting nested queries is part of future work.

3.2 Cost Model

We now introduce the cost model used by our algorithm. The cost function C cur-
rently focuses on the amount of additional network traffic and peer load caused
by answering a new subscription. Other parameters, e. g., latency of network
connections, could easily be added. Let p be the properties of a new continuous
query q that is to be registered in the network. Then size(p) denotes the average
size of one data stream item (e. g., one photon) of the stream represented by p.
Let Iq be the set of properties of all input data streams of q, occ(ni) the average
occurrence and size(ni) the average size of element ni in input stream i, and
πpi

the set of projection elements of p concerning input stream i. Then, size(p)
is calculated using the following formula:

size(p) :=
∑
i∈Iq

(
size(i) −

∑
ni /∈πpi

(occ(ni) · size(ni))
)

Note that, in the above formula, size(p) denotes the average size of one data
stream item in the stream represented by p (e. g., one photon element in stream
photons), whereas size(ni) denotes the average size of one element of type ni

(e. g., the phc element of a photon). Furthermore, for window and aggregation
operators, size(p) has to consider average window and aggregate result sizes.

The average frequency of data items in the stream represented by p is denoted
by freq(p). With sel(σp) denoting the selectivity of the subscription represented
by p, freq(p) can be computed as follows:

freq(p) := sel(σp) ·
∑
i∈Iq

freq(i)

Note that the expression
∑

i∈Iq
freq(i) in this formula depends on the seman-

tics of the employed operators in q. The above formula is valid for selection
operators. Projection operators do not influence freq(p). For window-based op-
erators, freq(p) depends on the step defined for the data window and the average
frequency of the input data stream.

Introducing b(e) as the maximum bandwith of a network connection e, we can
characterize the relative amount ub(e) of bandwith of e used by the additional
data streams routed over e for answering q using the following formula:

ub(e) :=

∑
p∈Pe

(size(p) · freq(p))
b(e)

Here, Pe denotes the set of properties of all additional data streams added over
e to answer q.

The average computational load caused by an operator o on a peer v with a
set of input stream properties Io is denoted load(o, v, Io). The maximum load of
a peer v is represented by l(v). The relative amount ul(v) of computational load
on a peer v caused by the additional operators in Ov installed at v for answering
a new subscription can be computed as follows:

ul(v) :=

∑
o∈Ov

load(o, v, Io)
l(v)

Cost function inputs like average frequencies of data stream items, average
sizes and occurrences of elements, and selectivities of operators are obtained
from statistics and selectivity estimations. The average load load(o, v, Io) of an
operator o on a peer v with input stream properties Io depends on the perfor-
mance of the executing peer, expressed by a performance index (pindex(v)), and
the characteristics of the operator itself. For example, assuming a linear depen-
dency of the load caused by a selection operator σ from the frequency freq(i)
of its only input stream i, the average load caused by σ on a peer v can be
defined as load(σ, v, i) := bload(σ) ·pindex(v) ·freq(i). Here, bload(σ) represents
a base load factor for the selection operator. Factors like base loads of operators
and performance indices of peers as well as formulas for combining these factors
yielding realistic load estimations have to be determined, e. g., on the basis of
reference values.

The cost function C is then defined as follows:

C(EP) := γ ·

(∑
e∈EEP

(
ub(e) + max(0, (ub(e) − ab(e))) · e(ub(e)−ab(e))

))
+

(1 − γ) ·

(∑
v∈VEP

(
ul(v) + max(0, (ul(v) − al(v))) · e(ul(v)−al(v))

))

In this function, EP denotes the evaluation plan of the new subscription (i. e., the
operators that have to be installed, the peers on which they have to be installed,
and the additional data streams that are generated and routed through the
network). Furthermore, EEP is the set of network connections and VEP is the
set of peers affected by plan EP . A weighting factor γ ∈ [0, 1] determines, which
part of the cost function should be more dominant (network traffic or peer load).
An exponential penalty is given for overload situations on peers and network
connections. The relative amount of available bandwith on network connection
e and of available computational load on peer v is represented by ab(e) and
al(v), respectively. A plan EP is better than another plan EP ′ according to
cost function C, expressed by EP ≺C EP ′, if and only if C(EP) < C(EP ′).

3.3 Stream Sharing Algorithms

We now describe our stream sharing algorithms for registering and efficiently
satisfying new continuous queries.

Query Registration The algorithm for continuous query registration searches
for shareable data streams in the network and decides if a certain available data
stream can actually be shared for answering a new query by comparing the
corresponding properties. Further, it decides whether a newly found evaluation
plan for the new query is better than the previously best plan.

The inputs to the algorithm are pq and vq, the properties of the new sub-
scription q and the network node where it is registered, respectively. The output
of the algorithm is the evaluation plan EP , describing how the network has to

be changed in terms of installed operators and routed data streams in order to
satisfy q. Note that there will always be at least one plan that is suitable for
answering q—provided q refers to existing inputs—namely the plan using q’s
original input streams. The goal of our approach is to find transformed versions
of these streams—generated by projection, selection, or aggregation operators
in the network for answering other continuous queries—that can also be used to
answer q, possibly by applying some further transformations.

The algorithm starts with the initialization of a FIFO queue LV for network
nodes (peers) and another queue LP for properties. Installing the whole new
subscription at the super-peer at which it is registered and using the original
input streams, routed to the subscription via shortest paths in the network, is
set as the initial evaluation plan. Note that this plan does not reuse any existing
preprocessed data streams in the network. The algorithm then basically performs
a breadth-first search in the network graph for each input stream, inserting the
node that corresponds to the super-peer at which the corresponding original
input stream of q is registered into LV . Using LIFO queues for LV and LP

instead of FIFO queues would cause the algorithm to perform depth-first search
which would be equally possible. The peers in LV are dequeued one after another.
Each peer in LV is marked in order to handle circles in the network graph (i. e.,
consider each node at most once). For each such peer, all properties of data
streams travelling on network connections connected to the currently handled
peer are subsequently inserted into LP . These properties are then consecutively
taken out of the queue and matched against the properties pq of q. This is
described below. Network connections that do not have any associated properties
because they do not carry any data streams are ignored during the breadth-first
search. Also, non-matching properties do not add any peers to LV since following
these paths cannot yield a reusable data stream. Pruning the search in this way
leads to the breadth-first search traversing only the relevant part of the network
instead of the whole network. If a property p has been successfully matched, its
corresponding stream can be reused for answering q. If the target peer of p (the
peer to which the stream corresponding to p is delivered) is still unmarked, it is
added to LV to be processed later on during the breadth-first search. Then, the
value of cost function C for the plan reusing the found data stream is computed
and compared against the current best solution. Only if the new solution is better
according to C, it replaces the current best solution and is stored along with its
cost function value for future comparisons. When there are no properties left in
queue LP , the next node of LV is considered. If there are no more nodes left in
LV and all input streams of q have been considered, the algorithm terminates
and returns the current best solution for plan EP as the final result.

Matching Properties For each input data stream of a subscription, the prop-
erties of the subscription reflect which operators and operator conditions are
employed to transform the respective input stream into the subscription result.
These properties have to be matched with the properties of data streams already
present in the network to find shareable streams for each input stream of the
new subscription. The inputs for the properties matching are the properties of
the data stream that is considered for reuse and the properties of the newly reg-

1 3 5 7 9
2 4 6 8 10

1
2

det_time

10

20
60

40

Query 3

Query 4

Fig. 4. Reusing Window-based Aggregates

istered subscription. The algorithm returns true if these properties match and
false otherwise. For the properties to match, the data stream considered for reuse
and the respective input stream of the new subscription must reference the same
original input data stream in the network (e. g., the stream photons in the in-
troductory example). Furthermore, for the streams to match, the operators and
operator conditions applied to the streams must be compatible. In the case of
selections, this means that each selection predicate in the data stream properties
must be implied by a corresponding selection predicate in the properties of the
new subscription. The next section presents more details on this. In the case of
projections, the set of projection elements in the properties of the data stream
considered for sharing must be a superset of the set of elements referenced in the
properties of the new subscription. Finally, window-based aggregation operators
and their data windows must be compatible.

Matching Predicates A predicate is represented by a weighted directed graph
G = (V,E) within the corresponding properties. The construction and represen-
tation of predicate graphs are an extension of related work on the processing of
conjunctive predicates [4]. In addition to integer valued variables and constants,
we also allow decimal values with a finite number of decimal places.

The algorithm for matching predicates can match any predicates (e. g., selec-
tion predicates, join predicates, etc.) in that graph representation. In this paper,
it is used to match the predicates of selection operators. The algorithm takes
the data structures G and G′ of the weighted directed graphs representing the
selection predicates of the existing data stream and the new subscription which
are to be compared and returns true if the predicates of G′ imply those of G,
i. e., reusability of the data stream is not prevented by the predicates.

Window-based Aggregation The sharing of result data streams of window-
based aggregation queries is illustrated in Figure 4, using Queries 3 and 4 of
Section 2 as examples. We require three conditions to hold for aggregate sharing
to be possible. These are that the size and the step of the query window must
be multiples of the size and the step of the window of the data stream to be
reused, respectively. Further, the size of the stream window must be a multiple
of its step. Note that all three conditions hold in our example.

Figure 5 shows some evaluation results for a set of 100 randomly gener-
ated queries, confirming the reduction of network traffic achieved by our stream
sharing technique compared to traditional data and query shipping approaches.
For more details on sharing the result data streams of window-based aggrega-

 0

 2

 4

 6

 8

 10

 12

SP 0
SP 2

SP 4
SP 6

SP 8
SP 10

SP 12
SP 14

A
ve

ra
ge

 C
P

U
 L

oa
d

(%
)

Peers

Data Shipping
Query Shipping
Stream Sharing

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

SP 0
SP 2

SP 4
SP 6

SP 8
SP 10

SP 12
SP 14

N
et

w
or

k
T

ra
ffi

c
(M

B
it)

Peers

Data Shipping
Query Shipping
Stream Sharing

Fig. 5. 4 × 4 Grid Scenario: 16 Super-Peers, 2 Data Streams, 100 Queries

tion queries along with pseudocode representations of our algorithms and further
performance evaluation results we refer to an accompanying technical report [5].

4 Related Work

Numerous DSMSs have been proposed in recent years [6–10]. The contributions
presented in this paper can be used to augment existing DSMSs to support
efficient integration of incrementally subscribed continuous queries.

The approach of optimizing query execution by computing identical or simi-
lar parts of queries only once and reusing them multiple times for various queries
is similar to multi-query optimization [11]. However, instead of optimizing a set
of queries all at once, we incrementally optimize queries one after another when
they are registered in the network, based on the current network state. Shar-
ing of work between queries over streams has also been addressed in previous
work [12, 13]. Our solution differs from these approaches in that we can adap-
tively distribute subscription evaluation among peers in a network.

Of further interest is the problem of query containment, which has also been
discussed in the context of XML queries with nesting [14]. Query containment,
especially for XML queries, is a difficult problem. We were able to make it
manageable by exploiting the properties of our distributed system architecture.

5 Conclusion

In this paper, we have presented a subscription language, a properties approach,
a cost model, and algorithms for registering continuous queries over data streams
in P2P networks using data stream sharing. Our approach takes three steps.
First, the properties of a newly registered subscription are constructed. Second,
shareable data streams generated for answering previously registered subscrip-
tions in the network are identified by matching properties. An appropriate stream
for answering the new subscription is chosen according to a cost model that fo-
cuses on the reduction of network traffic and peer load. Finally, operators are
placed in the network to execute the new subscription.

We are currently working on an enhanced version of the approach presented
in this paper that is able to handle nested queries and to widen data streams.

This enables the system to consider data streams for sharing that initially do
not contain all the necessary data for a new query but can be altered to do so by
changing some operators in the network. Apart from that, there are numerous
opportunities for future work. One is to address the issue of scalability by intro-
ducing a hierarchical network organization with several interconnected subnets
where each subnet is optimized separately.

References

1. Stegmaier, B., Kuntschke, R., Kemper, A.: StreamGlobe: Adaptive Query Process-
ing and Optimization in Streaming P2P Environments. In: Proc. of the Intl. Work-
shop on Data Management for Sensor Networks, Toronto, Canada (2004) 88–97

2. Kuntschke, R., Stegmaier, B., Kemper, A., Reiser, A.: StreamGlobe: Processing
and Sharing Data Streams in Grid-Based P2P Infrastructures. In: Proc. of the
Intl. Conf. on Very Large Data Bases, Trondheim, Norway (2005) 1259–1262

3. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proc. of the
IEEE Intl. Conf. on Data Engineering, Bangalore, India (2003) 49–60

4. Rosenkrantz, D.J., Hunt, H.B.: Processing Conjunctive Predicates and Queries.
In: Proc. of the Intl. Conf. on Very Large Data Bases, Montreal, Canada (1980)
64–72

5. Kuntschke, R., Stegmaier, B., Kemper, A.: Data Stream Sharing. Technical Report
TUM-I0504, Technische Universität München (2005)

6. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa,
I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering Bulletin 26(1) (2003) 19–26

7. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: Proc.
of the Conf. on Innovative Data Systems Research, Asilomar, CA, USA (2003)

8. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. In: Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data, Dallas, TX, USA (2000) 379–390

9. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing,
Y., Zdonik, S.B.: Scalable Distributed Stream Processing. In: Proc. of the Conf.
on Innovative Data Systems Research, Asilomar, CA, USA (2003)

10. Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in
Sensor Networks. ACM SIGMOD Record 31(3) (2002) 9–18

11. Sellis, T.K.: Multiple-Query Optimization. ACM Trans. on Database Systems
13(1) (1988) 23–52

12. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive
Continuous Queries over Streams. In: Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, Madison, WI, USA (2002) 49–60

13. Krishnamurthy, S., Franklin, M.J., Hellerstein, J.M., Jacobson, G.: The Case for
Precision Sharing. In: Proc. of the Intl. Conf. on Very Large Data Bases, Toronto,
Canada (2004) 972–986

14. Dong, X., Halevy, A.Y., Tatarinov, I.: Containment of Nested XML Queries. In:
Proc. of the Intl. Conf. on Very Large Data Bases, Toronto, Canada (2004) 132–143

