
Put All Eggs in One Basket: an OLTP and OLAP Database
Approach for Traceability Data

Veneta Dobreva
Technische Universität München

Boltzmannstr. 3
D-85748 Garching, Germany

dobreva@in.tum.de

Martina-Cezara Albutiu
Technische Universität München

Boltzmannstr. 3
D-85748 Garching, Germany

albutiu@in.tum.de
supervised by Alfons Kemper (kemper@in.tum.de)

and Thomas Neumann (neumann@in.tum.de)

ABSTRACT
Accurate tracking and tracing of moving objects is an emerg-
ing trend in vertical industries like retail, logistics, and man-
ufacturing. In order to monitor objects in business pro-
cesses, more and more companies are deploying upcoming
technologies like Radio Frequency Identification (RFID).
Therefore, modern databases have to be able to cope with
the challenges originating from the specifics of traceability
data: efficient incremental update as well as efficient trans-
actional and analytic ad-hoc querying and efficient storage
of the data. Another requirement of business intelligence
applications is to provide “real world awareness” [7] by us-
ing the latest information in the descision-making process.
We therefore present an approach for efficient storing and
managing of traceability data (on the example of RFID
data), where the OLAP and OLTP components reside in
one database and which meets the defined challenges. We
discuss and analyze the experimental results and lessons
learned and take them as a basis for our future research
direction.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design

1. INTRODUCTION
Tracking and tracing of moving objects is a key aspect of
many vertical industries like retail, logistics, and manufac-
turing. In order to monitor objects in business processes,
more and more companies are deploying maturing technolo-
gies like Radio Frequency Identification (RFID) [4]. It al-
lows automated recording of information about an object
movement even without line of sight. In contrast to bar
codes [11], RFID tags can be assigned to individual objects
(instead of object groups). The Real World Awareness de-
scribed by Claus Heinrich in [7] defines the process of ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Fourth SIGMOD PhD Workshop on Innova-
tive Database Research (IDAR 2010), June 11, 2010, Indianapolis,
USA.
Copyright 2010 ACM 978-1-4503-0191-6/10/06... $10.00

tracting realtime information in order to gain a better in-
sight into different kinds of business processes. Object move-
ment and related traceability data are valuable business in-
formation, which gives companies a greater visibility into
their supply chain and a better understanding of their pro-
duction processes. Modern database systems are therefore
willing to cope with the challenges that traceability data im-
poses. These are: efficient incremental update, efficient ana-
lytical ad-hoc querying, and efficient storage. Furthermore,
real-time business intelligence applications are not only in-
terested in “old” data for their decision-making processes,
but need to involve the latest information as well. Hasso
Plattner [12] discusses in his work the need for a common
database approach for OLTP and OLAP since this “could
make both components more valuable to their users” [12].
Former database approaches for handling traceability data
[6, 8, 9] (in particular on the example of RFID data) try
to fulfill one or more of the requirements mentioned above.
However, they either ignore the OLTP part of the data and
focus on the OLAP data, or have a hybrid approach, where
OLTP and OLAP reside in different systems. We present
a database approach for managing traceability data, which
meets the challenges listed above, and merges the OLTP
and OLAP components, so they reside in one system. Since
traceability applications need to refer to the up-to-date in-
formation in order to conduct a good analysis for the deci-
sion process, our approach provides an “up-to-the-minute”
currency.

The rest of the paper is organized as follows: In Section 2 we
present the characteristics of traceability data. In Section 3
we give an overview of related work and discuss to what
extent these approaches are applicable to our scenario. In
Section 4 we present our approach for efficient data staging
and query processing for traceability data. We evaluate this
approach and report our results in Section 5. Finally, we
summarize our experiences and conclude in Section 6.

2. DATA CHARACTERISTICS
We describe the specifics of traceability data in detail, in or-
der to motivate why modern database systems have to cope
with additional challenges when managing this data.
Why is storage and management of traceability data
challenging?
In contrast to traditional warehouses, where updates occur

EVENT

oid sid ts

� s1 t1
� s1 t1
M s2 t1
...

Figure 1: Example data for the naive data model.

only at predicted time intervals, e.g., at night or during the
weekends, traceability information has to be updated “on
demand”. As soon as new events arrive, the data staging
process is triggered. Accessing the most current information
is important not only for OLTP applications that are often
interested in locating an object by searching for its latest
position, but it is also an upcoming requirement of decision
processes based on business intelligence applications execut-
ing OLAP queries. Analytical processing of business data
is often applied in tactical problem solving where decisions
are made on a daily basis. Therefore, we need an efficient
incremental update (data staging) for traceability data as
well as acceptable response times for both OLTP and OLAP
queries. A typical query in a traceability scenario determines
the path of an object (pedigree query [1]). Another group
of common queries for this scenario are the contamination
queries. They reconstruct only a part of the object’s history,
which is of interest for a particular use case or application,
e.g., they determine which products were stored together
with product X in the stock. If these products are incom-
patible an alert should be produced by the application.

Another challenge is the vast amout of data that the sen-
sors produce continually. For a medium-sized enterprise this
would be about 18 million events per day. (The estimation
relies on the assumption that events are produced within 10
hours each day and on data published by BMW [2] from
which we derive an average event generation frequency of
500 events/second.) The data has to be filtered and aggre-
gated in order to be reasonably stored and managed. If we
stored each event in one table, this table would “explode”
and we would not be able to retrieve information efficiently.
Figure 1 shows the data schema of the naive approach which
is referenced in different works on RFID. This approach sim-
ply stores all data (consisting of the object’s identifier oid,
the sensor sid which reported the event and the timestamp
ts when the event was generated) in one huge table. As
we will demonstrate in Section 5 the naive approach has a
poor scalability and the query response times for most of
the traceability queries are not acceptable.

In the context of traceability (e.g., RFID data), the challenge
of false or missing event data is often considered. However,
this issue is beyond our scope. In this work we assume that
the generated events are correct and complete.

What are the challenges to a database design posed
by traceability data?
The challenges posed by traceability data form the crite-
ria (metric 1 to 6) by which we measure the applicability
of different approaches. Metric 1: As already mentioned,
supporting incremental updates is essential for traceability

applications. In order to realize the real world awareness, ef-
ficient data staging mechanisms must be guaranteed. Met-
ric 2: Dynamic insertion of new sensors has to be provided,
due to the fact that the sensor landscape can change over
time. Metric 3: In most traceability scenarios objects move
in groups and split into smaller groups. This tree-like object
movement has to be mapped on the data model. Metric
4: More complex scenarios demand more complex object
movements like the graph-like object movement. That kind
of movement can be seen in a post office, where parcels that
come from a lot of different small post offices are gathered
in one central post office. Metric 5: Consider the post
scenario again. If a mail is returned to its sender, a cycle
occurs in our movement graph. Therefore we need storage
solutions that can deal with cyclic object movements. Met-
ric 6: Some objects may “stay” at a location and not move
any further. This implies that paths of different length occur
in the movement tree or graph.

3. RELATED WORK
In this section we discuss the current state of the art for
storing and managing RFID traceability data in relational
databases.

The data model of Gonzalez et al. [6] aggregates and com-
presses the path data of objects based on the observation
that objects move in clusters. This approach also motivates
that the movement of clusters in, e. g., the pharma-scenario,
can be visualized as a tree: products move in large groups
and split into smaller groups as they move from the manufac-
turer to different pharmacies (fulfills metric 3). Even if this
data model was not optimized for a graph-like movement,
it is still possible to realize it by storing data redundantly
(metric 4). Metric 2 and 6 are implemented as well. The
approach of Gonzalez et al. is a typical warehouse approach
based on the idea of materializing the hierarchical relations
between the objects’ paths. Because of these hierarchical re-
lations it is not possible to implement cycles in a movement
graph, so metric 5 is not supported. The database design
enables a data staging process, i.e. metric 1 is fulfilled. How-
ever, this database design is not suitable for managing big
amounts of data efficiently due to the hierarchical identi-
fier that has to be processed for the queries and has to be
stored as a VARCHAR in the database. Furthermore, this
approach is not optimized for OLTP queries, it focuses on
OLAP queries.

The approach of Krompass et. al. [8] stores the complete
path of an object, taking advantage of the cluster feature
of the data. This means that objects that move together
share the same path. It provides path information redun-
dantly, though in order to improve performance for some
traceability queries. The database design provides one table
for storing the last location of an object and one table that
materializes the path for a cluster of objects. This model
is optimized for a tree-like object movement, however it can
also be applied to a graph-like movement and even to a cyclic
graph movement (supporting metrics 3, 4 and 5). Efficient
incremental update is provided, which is required by met-
ric 1. The database design is flexible, so we can insert new
nodes (metric 2) and handle object’s paths of different length
(metric 6). The approach is a hybrid model, which has two
components: an OLTP and an OLAP part. The cache com-

ponent contains the most recent events in order to answer
OLTP queries. Aged events are propagated to the ware-
house component where OLAP queries are running. The
difference to our approach is that we aim to have OLTP and
OLAP in one database, in order to fulfill the requirements
of real-life business intelligence applications’ analysis.

The database design of Lee and Chung [9] uses the math-
ematical characteristics of prime numbers for encoding and
decoding an object’s path. This results in a very compact
representation of the path information. Using a path en-
coding scheme, the object’s path (a sequence of sensors) is
materialized. To encode a path the authors assign a prime
number to each location and build the product of all lo-
cations which occur in the object’s path. This product of
prime numbers can be uniquely defactorized using the Fun-
damental Theorem of Arithmetic [5], i.e. we can decode
the locations participating in a path. In order to determine
the ordering between the locations the Chinese Remainder
Theorem CRT [3] is applied. The encoding scheme can han-
dle a tree-like and a graph-like object movement (supports
metrics 3 and 4), but has the drawback that it cannot han-
dle cycles in the object movement (metric 5), since CRT
could not be applied in this case. Storing paths of different
length (metric 6) is supported, though. Further, the authors
use a so called region numbering scheme, which is described
in detail in [9], to construct a time tree. It gives informa-
tion about the locations visited by an object at a particular
time and is represented as a table in the database design.
The region numbering scheme represents a limitation of this
approach, though, since it is not possible to incrementally
update the database design. This means that metric 1 is
not supported, as well as metric 2, which requires the dy-
namic insertion of new nodes. For instance if objects move
at different times along the same locations, a new time tree
has to be built every time. This means that data staging
cannot be performed and the data model can only be ap-
plied if the object movement is known in advance, which
is a major drawback for traceability applications. Due to
these disadvantages this approach is not suitable for storing
traceability data of moving objects.

Based on the classification presented in Section 2, we com-
pare the described approaches concerning their applicabil-
ity for the traceability scenario. The approach of Krompass
et. al. [8] fulfills all the checkpoints. For more complex move-
ments however, redundant information has to be stored. The
database design of Gonzalez et al. [6] has the same problem.
It is also not suitable for handling cycles in the object move-
ment, because of the hierarchical identifier. In addition to
the drawbacks of the above two approaches, the data model
of Lee and Chung [9] does not support an incremental up-
date and dynamic insertion of new sensors. Our approach
that is presented in Section 4 is designed to meet the re-
quirements that traceability data poses.

4. AN OLTP AND OLAP APPROACH FOR
TRACEABILITY DATA

We aim at creating a database schema that fulfills the re-
quirements of traceability applications described in 2. Our
approach is based on a new path encoding using a Bloom
filter which enables the materialization of the object’s his-
tory and also functions as an index. In order to provide an

OLTP

oid rdr ts bloom

� s4 tn 101
� s4 tn 101
© s3 t1 010
...

Region1

oid rdr ts

� s1 t1
� s1 t1
M s2 t2
...

Region2

oid rdr ts

© s3 t1
3 s3 t1
N s4 t2
...

Region3

oid rdr ts

� s4 tn
� s4 tn
M s5 tn
...

Figure 2: Bloom filter approach

efficient data staging we pursue an append-only approach,
i.e., there exist only inserts and no updates, and consolidate
the database regularly.

4.1 Data Model Description
Figure 2 shows our database design consisting of the OLTP
table where the most current data is kept and the REGION
tables where (historical) path information is stored. A re-
gion is a geographical unit that comprises the sensors located
in it and may represent a country, a city, or a single factory,
depending on the use case. In the OLTP table the last oc-
currence of an object (idendified by its oid), the sensor that
scanned it (rdr) and the timestamp (ts) when the object
passed the sensor are stored. Using this generic data repre-
sentation, metrics 2, 3, 4, 5, and 6 can easily be supported.
The Bloom filter (more specifically, the positions ri where a
1 occurs) in the OLTP table points to the regions in which an
object was scanned, i.e., the corresponding REGION tables
that hold the information about those (potentially outdated)
read operations. Each REGION table has the schema of the
naive approach and stores events produced by sensors from
the respective region. We employ a Bloom filter with a size
equal to the number of regions which is reasonable for a
medium-size business. Thus, we do not have to consider
false positives.

Our approach efficiently answers both OLTP and OLAP
queries. As the name indicates, the OLTP table serves
OLTP requests which require up-to-date information. A
typical OLTP request in a traceability scenario is to deter-
mine the last position of an item. OLAP queries, e.g. asking
for all readers an item has passed, can be answered by join-
ing the OLTP table and the REGION tables the Bloom
filter points to. Queries examining a data flow in only one
region read data only from the corresponding region table.

4.2 Data Staging
An efficient incremental update (metric 1) is one of the
biggest challenges when designing a data model for trace-
ability data. In order to achieve this, we do not insert each
single event, but process a batch of events. The more events
a batch contains the higher the throughput. However, a
database supporting OLTP has to contain the most current

Algorithm 1: Algorithm processBatch

input : A set of SQL statements S

1 create a temporary table T ;
2 forall the statements s ∈ S do
3 rewrite s as insert i and append i to file F ;
4 end
5 BULK INSERT data from F to T ;
6 forall the epc values e ∈ T do
7 forall the tuples d: d.epc = e.epc ∧ d.timestamp <

e.timestamp; /* outdated tuples */
8 do
9 write d to deathlist file D;

10 end

11 end
12 U ← T 1 OLTP; /* tuples to be updated */
13 forall the tuples u ∈ U do
14 write u to deathlist file D;
15 forall the tuples t ∈ T with t.epc = u.epc do
16 write t to oltp file O with updated bloom value;
17 write t to corresponding region file Ri;

18 end

19 end
20 forall the tuples i ∈ T ∧ i /∈ U; /* tuples to be inserted */
21 do
22 forall the tuples t ∈ T with t.epc = u.epc do
23 write t to oltp file O with bloom value pointing to one

region;
24 write t to corresponding region file Ri;

25 end

26 end
27 forall the files Ri do
28 BULK INSERT data from Ri to corresponding region table;
29 end
30 BULK INSERT data from O to OLTP table;
31 BULK INSERT data from D to Deathlist;

data, so there is a trade-off between batch size and data up-
date latency. We consider a batch size of 5000 events/second
to be a reasonable trade-off for our scenario. Since updates
of indexed data are more expensive than inserts we further
replace the updates in the OLTP table by inserts. We use
two auxiliary tables in order to make use of the efficient
batch and insert processing of database systems. The tem-
porary TEMP table holds each batch before it is processed.
The Deathlist table contains outdated events.

In the implementation of batch processing described in Al-
gorithm 1 we exploit the database’s efficient BULK INSERT
and join computation. In lines 1 to 5 the temporary table
T is created in the database, all tuples to be processed are
written to a file F and the data contained in F is loaded to
T . In lines 6 to 11 all tuples in the processed batch which
represent already outdated data are identified and written to
the deathlist file D. If multiple subsequent reads of the same
item are found in the same batch, only the last read (with
the most current timestamp) is valid OLTP data, the rest is
historical data. In line 12, T is joined with the OLTP table,
thereby determining the logical updates within the current
batch. All tuples within the join result have to be treated
as updates (lines 13 to 19), while the rest of the batch tu-
ples represent “real” inserts (lines 20 to 26). For all tuples
to be updated, the current tuple is written to the deathlist
file (as the new tuple now is the most current one). Finally,
the OLTP table, the REGION tables, and the Deathlist are
loaded.

As described above, OLTP queries have to be answered using
only the most current data, which is obtained by computing

Algorithm 2: Algorithm consolidate

1 O ← OLTP −Deathlist;
2 forall the tuples o ∈ O do
3 write o to file F ;
4 end
5 drop OLTP table;
6 drop Deathlist table;
7 create OLTP table;
8 BULK INSERT data from F to OLTP;
9 create Deathlist;

the set difference between the OLTP table and the Deathlist.
In order to keep the overhead as small as possible and to
avoid very large tables, we consolidate the OLTP table and
the Deathlist from time to time (i.e., after a certain number
of batch inserts). The consolidation procedure (which equals
a delete from the OLTP table) is described in Algorithm 2.

5. BENCHMARKS
We present some experiments comparing the naive approach
and the Bloom filter approach implementations on a com-
mercial row-store database. The results show that our ap-
proach succeeds in handling a continuous event stream as
expected in a medium-size business and even outperforms
the naive approach in query processing.

5.1 Traceability Data and Queries
Traceability events are triples of the form (epc, rdr, ts), where
epc is the EPC-code of an item, rdr is the sensor that read
the EPC-code, and ts is a timestamp denoting the time when
the sensor read the EPC code. As there is no publicly avail-
able data or experimental environment for traceability data,
we use an event generator to simulate the movement of items
through different regions by creating event tuples. Thereby,
20% of the events represent new objects, and 80% are posi-
tional updates of these objects. The average data generation
frequency relevant to our scenario is 500 events/second (see
Section 2). Therefore, we conduct our experiments with
this event frequency (generated by two client threads) if not
stated otherwise.

Figure 3 lists the queries we employed in our benchmark and
their semantic. Queries 1 to 4 are OLTP-style queries that
may be submitted to the system for almost every object that
is tracked. Queries 5 through 11 are OLAP-style queries,
processing big amounts of data and usually long-running.
OLAP queries are typically submitted for report generation
or decision making and occur less often than OLTP queries.

5.2 Experiments
We report benchmark results for experiments conducted on
the row-store database implementing the Bloom filter ap-
proach (denoted “Row-store” in the figures) and the naive
approach (“Naive”).

The database runs on a 64bit-Red Hat Enterprise Linux
server with two Intel Xeon 3.16GHz CPUs, 8GB main mem-
ory, and 8 SAS disks associated with RAID level 5.

5.2.1 Data Staging
We first examined only the data staging procedure of our ap-
proach without any queries being processed in parallel. As

qid Query

q1 Last location of an object

q2 The pedigree (complete path) of an object

q3 The number of objects scanned by a certain sensor

q4 A list of objects scanned by a sensor within a time in-
terval

q5 A list of objects, which were scanned by sensors s1 and
s2 (no order)

q6 A list of objects, which were scanned by sensors s1 and
s2 in this order

q8 A list of objects that were at sensor s, together with
object x within a certain time interval

q10 Listing the number of all objects scanned by all the
readers in 10 regions, ordered by region, reader, and a
time interval of a second

q11 Listing the number of all objects which were scanned
by the sensors s1, s2, and s3 in this order aggregated
per second

Figure 3: Queries for Traceability Scenario.

we motivated above, a suitable system has to be able to han-
dle an average data arrival frequency of 500 events/second.
We thus ran benchmarks with this fixed event generation
frequency and found out that the different data models and
database systems are able to cope with the arriving events
in the data staging process. However, as there might be
peaks in event generation, the system must be able to han-
dle event frequencies greater than the expected ones, that
is why we analyze the upper limit the database designs can
handle. The naive approach has a very high insert through-
put (15466 events/second), since the events do not need to
be transformed in any way, but are directly inserted into the
database. The Bloom filter implementation has a through-
put of only 2240 events/second due to the overhead of Bloom
filter processing during data staging. The conclusion would
be to fall back on the naive appraoch in periods of very high
loads. However, the query response times will show that the
naive approach does not support efficient query processing
and is therefore not an appropriate long-term solution.

5.2.2 Data Staging and Query Workload
We also analyzed whether the specified frequency can be
kept while executing a mixed workload consisting of OLTP
and OLAP queries. Thereby, the workload is designed as
follows: two insert clients continuously insert events dur-
ing one hour, thus generating a total of 1.8 million events.
The query clients start submitting queries after the bench-
mark has been running for 5 minutes, so that approximately
150000 events are preloaded before the first query arrives at
the database. Each query type is handled by one query
client. Depending on the query type, a think time of 1 re-
spectively 60 seconds is set up for OLTP and OLAP queries.
The clients submit one query, retrieve the result and wait
for the think time before submitting the next query.

Figure 4 shows the average response times of the OLTP
queries. The row-store Bloom filter approach has better re-
sponse times for all OLTP queries except q2. For this query,
the Bloom filter approach is a factor 2 slower than the naive
approach. This is due to the Bloom filter processing which
requires a two-step communication of the application and
the database for determining the relevant regions and query-

0
20
40
60
80

100
120
140

q1 q2 q3 q4

Response time [ms]

Queries

Row-store
Naive

Figure 4: Mixed Workload: OLTP Queries

0

50

100

150

200

250

300

q5 q6 q8 q10 q11

Response time [ms]

Queries

Row-store

Naive

Figure 5: Mixed Workload: OLAP Queries

ing the corresponding tables. Determining the last position
of an object (q1) has nearly the same response time for both
approaches, since both times we sort the tuples by ts and
select the most current event. The contamination queries q3
and q4 are much more efficient for the Bloom filter approach,
because the data is segmented in smaller tables, compared
to the big table of the naive approach.

The response times of the OLAP queries are presented in
Figure 5. All shown queries except query q10 are executed
a factor of 20 slower on the naive approach schema. This is
due to the much higher amount of data the naive approach
has to process for each query. Query q10 takes half the time
on the row-store database schema. The query processes a
union over 10 subquery results.

6. CONCLUSIONS AND FUTURE WORK
RFID is becoming a widespread adopted technology for seam-
lessly tracing products, possibly across a global supply chain.
It provides manufacturers with up-to-date information about
their whole network. However, this also poses the challenge
to efficiently store and manage big amounts of data which
traceability technology produce. The Bloom filter approach
we developed is derived from the naive approach and opti-
mized for efficiently handling both OLTP and OLAP queries
while providing a sufficient data staging performance. It
makes use of a new path encoding technique (Bloom filter),
which organizes the data hierarchically and provides effe-
cient data retrieval. In our first experiments we compared
the Bloom filter approach to the naive approach often ref-
erenced in RFID works. We further examined our approach
implemented on a commercial column-store database sys-
tems. However, the results indicate that the column-store
database is not suitable for combining efficient data stag-
ing and fast OLTP and OLAP processing as it could han-
dle the insert as well as the query workload separately but
failed when both workloads were executed concurrently. The

lessons learned can be summarized as follows:

Benefit of Bloom filter: There is a trade-off between
the event processing throughput and the query processing.
When comparing the Bloom filter approach to the naive ap-
proach, the Bloom filter approach achieves a lower event
processing throughput because of the overhead incurred by
the Bloom filter processing. However, this decrease in data
staging performance is negligible in our scenario as we are
considering medium-sized businesses with event processing
requirements falling into our results. Further, when it comes
to query processing, the Bloom filter approach clearly out-
performes the naive approach. An important point concern-
ing the Bloom filter processing is that the database systems
we employed do not support the direct extraction of the right
regions out of the Bloom filter, so that query 2 is processed
in two steps which is a drawback for its performance.
Benefit of splitting: In particular when regarding trace-
ability scenarios where the majority of queries request in-
formation about a certain object or sensor, the Bloom filter
approach shows to have performance advantages in terms of
shorter query response times. Those can be attributed to
the following factor: the splitting of information is benefi-
cial for queries interested only in a particular segment of the
hierarchically structured data as only a fraction of the data
(e.g., one REGION) table is scanned.

Our results show, that for some scenarios our Bloom filter
approach implemented on a row-store database is feasible.
However, the achieved throughput in data staging is only
sufficient for medium-sized businesses. Further, we cannot
fully exploit the advantages of the Bloom filter data struc-
ture as this feature is not implemented in the database sys-
tems themselves and thus requires a two-step communica-
tion of application and database system: the Bloom filter is
extracted from the database, the corresponding regions are
determined inside the application, and a new query accessing
the relevant REGION tables is submitted to the database.
Implementing this inside the database would improve both
data staging (where Bloom filters have to be re-computed
for updates) and query processing performance (especially
the pedigree query). Thus, regarding traceability data, we
agree with Stonebreaker that the “one size fits all” era in
database design comes to an end [13].

Therefore, we intend to develop a new RISC style database
system focussing on the characteristics of traceability data
(see Section 2), which is based on the RDF-3X engine for
scalable management of RDF data by Neumann et al. [10].
This database system is optimized for efficiently handling
OLTP queries with a high selectivity on huge amounts of
RDF data. The data model ressembles the naive approach
storing all information in one huge table. By making use of
exhaustive indexes for all permutations of the table columns,
RDF-3X supports very fast merge joins and range selections.
As the indexes are highly compressed, the additional space
requirements are negligible. Further, the system provides
good support for efficient updates by means of a staging
architecture. Overall, the RDF-3X engine fulfills most of
the requirements that we presented in Section 2. In order to
adapt the system to our requirements we have to focus on the
following changes: compared to a traceability scenario, RDF
data is relatively static, i.e. updates do not occur as often as

this is the case in our RFID example. Thus, index building
and maintenance have to be revised for our use case. Fur-
ther, OLAP queries processing great parts of the database
cannot exploit the good selectivity performance provided by
the indexes. We need to examine to what extent this will
affect our query performance. Besides, the RDF-3X system
uses data dictionary compression which may be suitable for
our scenario as well, e.g., for the sensors in our scenario
(as there exists a limited number of them). For the EPC-
codes and timestamps new values are continuously produced
which provides different challenges for compression. Our on-
going work aims therefore at adopting the RDF-3X system
for traceability data and creating a dedicated RSIC-style
DBMS for efficient traceability data management.

7. REFERENCES
[1] R. Agrawal, A. Cheung, K. Kailing, and S. Schonauer.

Towards Traceability across Sovereign, Distributed
RFID Databases. In 10th Intl. Database Engineering
and Applications Symposium (IDEAS), 2006.

[2] BMW. Quarterly Report to 30 September 2009.
http://www.bmwgroup.com. accessed February 19,
2010.

[3] Chinese remainder theorem. http://en.wikipedia.
org/wiki/Chinese_remainder_theorem, 2008.

[4] K. Finkenzeller. RFID Handbook: Fundamentals and
Applications in Contactless Smart Cards and
Identification. Wiley Publishing, 2003.

[5] Fundamental theorem of arithmetic.
http://en.wikipedia.org/wiki/Fundamental_

theorem_of_arithmetic, 2008.

[6] H. Gonzalez, J. Han, X. Li, and D. Klabjan.
Warehousing and Analyzing Massive RFID Data Sets.
In Proc. of the 22nd Intl. Conf. on Data Engineering
(ICDE), 2006.

[7] C. Heinrich. RFID and Beyond: Growing Your
Business Through Real World Awareness. Wiley
Publishing, 2005.

[8] S. Krompass, S. Aulbach, and A. Kemper. Data
Staging for OLAP- and OLTP-Applications on RFID
Data. In Datenbanksysteme in Business, Technologie
und Web (BTW), 2007.

[9] C.-H. Lee and C.-W. Chung. Efficient Storage Scheme
and Query Processing for Supply Chain Management
using RFID. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data, 2008.

[10] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. The VLDB
Journal, 19(1):91–113, 2010.

[11] T. Pavlidis, J. Swartz, and Y. P. Wang. Fundamentals
of bar code information theory. Computer, 23:74–86,
1990.

[12] H. Plattner. A common database approach for oltp
and olap using an in-memory column database. In
SIGMOD ’09: Proc. of the 35th SIGMOD Intl. Conf.
on Management of data, pages 1–2, New York, NY,
USA, 2009. ACM.

[13] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era. In VLDB ’07: Proc. of the
33rd Intl. Conf. on Very large data bases, pages
1150–1160. VLDB Endowment, 2007.

