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AbstractÐIt is striking that the optimization of disjunctive queriesÐi.e., those which contain at least one or-connective in the query

predicateÐhas been vastly neglected in the literature, as well as in commercial systems. In this paper, we propose a novel technique,

called bypass processing, for evaluating such disjunctive queries. The bypass processing technique is based on new selection and join

operators that produce two output streams: the true-stream with tuples satisfying the selection (join) predicate and the false-stream

with tuples not satisfying the corresponding predicate. Splitting the tuple streams in this way enables us to ªbypassº costly predicates

whenever the ªfateº of the corresponding tuple (stream) can be determined without evaluating this predicate. In the paper, we show

how to systematically generate bypass evaluation plans utilizing a bottom-up building block approach. We show that our evaluation

technique allows to incorporate the standard SQL semantics of null values. For this, we devise two different approaches: One is based

on explicitly incorporating three-valued logic into the evaluation plans; the other one relies on two-valued logic by ªmovingº all

negations to atomic conditions of the selection predicate. We describe how to extend an iterator-based query engine to support bypass

evaluation with little extra overhead. This query engine was used to quantitatively evaluate the bypass evaluation plans against the

traditional evaluation techniques utilizing a CNF- or DNF-based query predicate.

Index TermsÐQuery optimization, query processing, disjunctive queries, query evaluation plans, expensive query predicates, bypass

processing.
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1 INTRODUCTION

SINCE the early stages of relational database development,
query optimization has received a lot of attention.

Consequently, this attention has recently shifted to so-
called ªnext-generationº database systems [3]. References
[4], [5], [6] made rule-based query optimization popular,
which was later adopted in the object-oriented context as,
e.g., [7], [8], [9]. Many researchers have worked on
optimizer architectures that facilitate flexibility: [5], [10],
[11], [12] are proposals for optimizer generators; [13], [14]
describe extensible optimizers in the extended relational
context; [15], [16] propose architectural frameworks for
query optimization in object bases.

Besides these works on optimizer architectures, optimi-

zation strategies for both traditional and ªnext-generationº

database systems are being developed. Levy et al. [17]

introduce a technique for moving predicates across query

components, where a component constitutes, for instance, a

view definition. Hellerstein and Stonebraker [18] optimize

the placement of predicates within the query graph. The

authors pointed out that the ordering of the selection
predicate evaluation is particularly important in the
presence of expensive conditions. These may occur in
relational systems in the form of nested subqueries and, in
extended relational and object-oriented systems, addition-
ally in the form of user-defined functions. Hellerstein and
Stonebraker's [18] work is based on ordering the conditions
in a sequence according to their relative selectivity and
evaluation costÐadapting a technique developed in opera-
tions research [19]. Their [18] work was recently extended
by [20].

It is striking that, in all these works, the optimization of
disjunctive query predicates tends to be neglected. Refer-
ences [21] and [22] are the only worksÐto the authors'
knowledgeÐthat dealt with disjunctions in particular. We
will comment on their work later in this section.

The traditional approaches transform a query predicate
(consisting of selection and/or join predicates) into a
normal form (namely, conjunctive or disjunctive normal
form), thus reducing the problem to the common, purely
conjunctive case: Either disjunctions are considered atomic
within a single conjunction (conjunctive normal form, for
instance in System R [23]) or the predicate is subdivided
into several conjunctive streams that are optimized sepa-
rately (disjunctive normal form, e.g., [7], [24], [25], [26]).

In this paper, we show that either approach fails to
exploit a vast optimization potential because a sufficiently
fine-tuned adaptation to a particular query's characteristics
cannot be achieved that way. The bypass technique fills the
gap between the achievements of traditional query optimi-
zation and the theoretical potential. In this technique,
specialized operators are employed that yield the tuples
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that fulfill the operator's predicate and the tuples that do not

on two different, disjoint output streams: the true-stream

and the false-stream. This gives the opportunity of perform-

ing an individual, ªcustomizedº optimization for both

streams. Particularly costly and/or less selective predicates

may thereby be bypassed by certain tuple streams because

the fate of those tuples may be determined without

evaluating the particular predicate. As an example, consider

the following (normalized) relational algebra expression:

�o1
��C�o1�_J�o1;o2��R1 �R2��:

A selection operation with the predicate C�o1� _ J�o1; o2�
(where o1 2 R1 and o2 2 R2) is performed on the Cartesian

product R1 �R2, followed by a projection on R1's attri-

butes. The DNF approach transforms the selection pre-

dicate's disjunction into a union operation, yielding

�C�o1��R1� [ �o1
�R1 �J�o1;o2� R2�:

The CNF approach, on the other hand, has to join the two

extensions with the Boolean factor C�o1� _ J�o1; o2� as join

condition:

�o1
�R1 �C�o1�_J�o1;o2� R2�:

It is not possible in either conventional approach to perform

the restriction C�o1� first in order to minimize the input

cardinalities of the join. The bypass technique, however,

computes the result of this query as the union

�C�o1��R1� [ �o1

ÿ
�:C�o1��R1� �J�o1;o2� R2

�
;

where the two selections �C�o1��R1� and �:C�o1��R1� are

implemented as a single bypass selection, so we may expect

cost reductions in comparison with both the DNF- and

CNF-based evaluation plan. Fig. 1 shows the three evalua-

tion plans. The bypass plan contains the bypass selection

with two output streams, the true-stream for tuples

matching C�o1� and bypassing the expensive join, and the

false-stream for tuples that do not satisfy C�o1�. (Of course,

all three plans can be further optimized by transforming the

join and the subsequent projection into a semijoin.)
This new class of evaluation plans requires the develop-

ment of adequate construction algorithms. We present an

algorithm generating the optimal bypass plan and another

one producing near optimal plans exploring the search

space only partially.

We also show that our evaluation technique allows us to
incorporate the standard SQL semantics of null values. For
this we devise two different approaches: One is based on
explicitly incorporating three-valued logic into the evalua-
tion plans. Thereby, sometimes three output streams (the
true-, the false-, and the unknown-streams) are generated for
a selection or join-node. However, very often, two of the
three streams can be combined since they lead to the same
final outcome of the entire selection predicate. The other
technique remains within two-valued logic by ªmovingº all
negations to atomic conditions of the selection predicate.
For this technique, we need two different ªpolarizationsº of
the condition evaluation: The positive polarization maps an
unknown outcome to true and the negative polarization
maps it to false.

In this paper, we do not content ourselves with pointing
out the theoretical merits of the bypass technique, but show
its superiority by means of an actual implementation and
experimental assessment. Since the efficient implementa-
tion of bypass operators, on one hand, poses several
questions and is, on the other hand, crucial for competitive
performance, we present a number of proven strategies. In
principle, this puts the reader into the position of incorpor-
ating the bypass technique into existing optimizers and
execution engines and emphasizes the technique's practical
feasibility.

Let us compare our bypass processing with the two
related works of [21] and [22], which offer special
approaches to deal with disjunctions. Muralikrishna [21]
tries to reduce the number of file scans and join operations
for disjunctive predicates. Starting from disjunctive normal
form, merge graphs are employed to combine multiple
disjunctive selection conditions on the same relation and
evaluate them in a single operation. For example,

��C1�o1�^J�o1;o2��_�C2�o1�^J�o1;o2���R1 �R2�
is simplified to use a single join operation:

��C1�o1�_C2�o1��^J�o1;o2���R1 �R2�
Muralikrishna's [21] major concern is to identify common
subexpressions in order to prevent repeated evaluation of
the same predicate on the same tuples (objects). Our bypass
evaluation technique guarantees that any predicate is
evaluated at most once for any given object.

Bry [22] converts predicates with disjunctions and
quantifiers into the so-called Miniscope form, which is

CLAUSSEN ET AL.: OPTIMIZATION AND EVALUATION OF DISJUNCTIVE QUERIES 239

Fig. 1. Evaluation plans for �o1
��C�o1�_J�o1 ;o2��R1 �R2��.



achieved by pushing quantifiers as far inside as possible (as
opposed to the prenex normal form [26], where all quantifiers
are moved outside). Disjunctions in predicates are then
evaluated using a newly introduced constrained outer-join
operator. The operator allows the evaluation of disjunctive
predicates over multiple relations without the necessity of a
setunion operator. Already qualified tuples are marked by a
special attribute such that redundant computation of
predicates is avoided. This solution keeps a single output
stream (as does [21]'s) and is thus probably easier to
implement than our bypassing, but it is not as powerful as
our approach. In particular, both [21] and [22] only avoid
the evaluation of predicates, but they do not bypass
expensive operations in general. Furthermore, separate
(i.e., individual) optimization of the two output streams is
not possible.

The rest of the paper is organized as follows: Section 2
illustrates the bypass technique by means of a sample query
and points out the differences to conventional evaluation
plans. Section 3 introduces bypass operators in a more
detailed way. This is used for the construction of both
conventional evaluation plans and bypass plans. The
construction strategies for all plans are described in
Section 4. In Section 5, we extend the evaluation technique
to deal with null values. In Section 6, efficient implementa-
tion techniques for bypass operators are discussed and
Section 7 quantitatively compares sample bypass evaluation
plans with conventional evaluation plans on an experi-
mental basis. Section 8 concludes the paper. In the

appendices, we give a description of the optimization
algorithm in pseudocode and we provide a more detailed
description of our benchmarking environment.

2 BYPASS TECHNIQUE

2.1 Running Example

In order to illustrate the optimization potential that is made
available by the bypass technique, let us consider a sample
query. It is based on a (partial) schema of a flight
reservation system, the ER-schema of which is shown in
Fig. 2. The query itself retrieves all airports that may act as
ªimmigration airportsº into the USA. Those airports may be
characterized as:

. US airports; or

. non-US airports, from which a direct flight's
distance to a US airport does not exceed 400 miles.

The OQL [29] rendering of this query is

select distinct a
from Airport as a, Flight as f
where a.country = ªUSAº or

(a = f.from and f.to.country = ªUSAº and

f.distance() � 400)

A sample object base according to the schema in Fig. 2 is
depicted in Fig. 3. It contains two flights, namely from
Toronto to New York City and from Mexico City to New
York City. Although the attribute distance is implemented as
a type-associated function and will be computed ªon
demand,º the result is listed in Fig. 3 for the purpose of
clarity. Thus, the query stated above would yield id3 (inside
the USA) and id4 (starting point of a flight into the USA of
less than 400 miles) as ªimmigration airports.º For
convenient handling, we abbreviate the query's atomic
conditions and assume probabilities as listed in Table 1. The
(relative) cost figures given in the following subsections for
the different evaluation plan alternatives denote total
elapsed processing time as obtained from experiments in
Section 7 and assume a database containing 1,000 objects of
type Airport and 29,000 objects of type Flight.

2.2 Drawbacks of Common Techniques

The prevailing techniques use the conjunctive normal form
(CNF) or the disjunctive normal form (DNF) as construction
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Fig. 2. ER-schema of the flight reservation system.

Fig. 3. Sample object base.



base for query evaluation plans. However, both these
approaches suffer from certain drawbacks, particularly
when dealing with disjunctive queries. In Fig. 4, the optimal
evaluation plan that can be derived from the conjunctive
normal form is depicted. The conjunctive normal form of
the query predicate is

CUSA�a� _ Jfrom�a; f�
ÿ � ^ CUSA�a� _ Cto�f�� �
^ CUSA�a� _ Cdistance�f�� �:

The three selection and join processing nodes correspond to
the so-called Boolean factors of the conjunctive normal form.
In the first processing node, the join operation�CUSA_Jfrom is
performed. Objects from the Cartesian product Airport�
Flight that satisfy the condition CUSA immediately move on
to the second stage; those that do not must be tested by the
second condition, the join condition Jfrom.

The same procedure is repeated for the second and third
stage, respectively: If an object satisfies the first condition of
the Boolean factor, it is moved on; otherwise the second
condition determines its fate. The final operation of this
evaluation plan performs the projection on the desired
attributes and yields the resulting set.

This evaluation plan is the optimal CNF-based plan
under the assumption that a result cache for the condition
CUSA is available, i.e., the test for any given object must be
carried out at most once. This evaluation plan suffers from a
number of drawbacks. First, partitioning the query's
conditions into Boolean factors leads to an overly expensive
first operation node, where the entire Cartesian product of
Airport and Flight must be considered in order to carry out
the join. It would be much better if the selection CUSA would
be carried out in advance in order to reduce the number of
Airport objects that participate in the join operation. Second,
one of the four conditions, namely CUSA, appears in every
operation node's predicate, making a result cacheÐas
proposed by [30]Ðindispensable for a more expensive
predicate if competitive performance is desired. A predicate
may become expensive, e.g., because of the evaluation of a
complex user-defined function involving possibly disk i/o.
And third, we cannot do without the (duplicates eliminat-
ing) projection �a because the query demanded duplicate
elimination (ªselect distinctº). These drawbacks are also
reflected in the high observed cost for this evaluation plan:
It is 150 times higher than the observed cost of the optimal
bypass plan.

The second ªclassicalº alternative uses the disjunctive
normal form (DNF) as the foundation for constructing
evaluation plans. The DNF of the example query's predicate
is

CUSA�a� _ Cto�f� ^ Cdistance�f� ^ Jfrom�a; f�
ÿ �

:

In contrast to CNF-based plans, which always consist of a
single object stream, DNF-based plans maintain as many
object streams as the disjunctive normal form contains
minterms. The individual results of these object streams are
combined in a final union operation that represents the
DNF's or-operations. Fig. 5 shows the implementation of
this strategy for the sample query ªImmigration Airports.º
In order to ascertain the compliance of the evaluation plan
to the query's semantics as specified by the OQL standard,
the test of whether the object extension Flight is empty must
be carried out in advance. If it is, the result is definitely
empty; if it is not, the actual evaluation plan is invoked. The
stream on the lefthand side of Fig. 5 represents the DNF's
minterm with the single condition CUSA, which is turned
into the selection operation �CUSA . Objects from Airport that
satisfy CUSA are certain to be elements of the result set and
move on immediately to the above-mentioned final union
operation node.

The second object stream starts on the righthand side
with Flight objects, which is filtered by the two selection
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TABLE 1
Abbreviations and Probabilities for ªImmigration Airportsº

Fig. 4. CNF-based evaluation plan for ªImmigration Airports.º (Relative

Cost: Factor 150).

Fig. 5. DNF-based evaluation plan for ªImmigration Airportsº (relative

cost: 240 percent).



operations �Cto and �Cdistance before serving as one input for
the semijoin .<Jfrom . The semijoin's second input is the set of
all Airport objectsÐthis set is a ªcloneº of the input set for
CUSA. The resulting objects satisfy the three conditions Cto,
Cdistance and Jfrom, i.e., the DNF's second minterm Cto�f� ^
Cdistance�f� ^ Jfrom�a; f� and are therefore elements of the
result set, too.

The union operation ] that unites the two object streams
must remove duplicate elements that are caused by objects
that pass both streams, i.e., objects that satisfy both
minterms. In general, DNF-based plans for queries where
tuples may satisfy more than one minterm do not work
without duplicate removal and thus cannot preserve
duplicates according to the SQL semantics. Therefore, the
DNF-based evaluation techniqueÐas presented hereÐcan
only be used if duplicate preservation is not required. If
duplicate preservation were required one would have to
associate additional identifiers (e.g., TIDs) with the tuples in
order to distinguish ªwantedº duplicates from ªunwantedº
ones. However, we will not further elaborate on this issue
since our bypass processing technique correctly retains
duplicates without any additional control mechanisms.

Although this DNF-based evaluation plan does not yet
constitute the optimal strategy, the observed cost is already
much lower than for the CNF-based plan, namely ªonlyº
240 percent of the optimal bypass plan's observed cost.
There are mainly two places where the lever for further cost
reductions can be positioned: First, one can observe that all
objects, even those that satisfy CUSA, are subject to testing by
condition Jfrom. Restricting this test to objects that do not
satisfy CUSA would eliminate that redundancy. This re-
dundancy also forces the duplicate eliminating union
operationÐhere denoted ]Ðas a final step, an operation
that also is quite costly. Second, depending on the query
predicate, it may turn out that a certain condition appears in
more than one mintermÐthe corresponding evaluation
plan then has to evaluate that condition more than once per
object. This consideration is particularly important when
the evaluation costs for the conditions in question are high.

If we compare the two classic approaches, CNF- and
DNF-based evaluation plans, we conclude that neither is
capable of yielding the minimum cost plan. Both strategies
suffer from various, albeit different, weaknesses. In the
following sections of this paper, we present a technique, the
so-called bypass technique, that provides remedies for these
weaknesses.

2.3 Benefits of the Bypass Technique

In Section 2.2, we identified two main causes for the poor
handling of disjunctive queries by traditional evaluation
techniques. Evaluation plans based on the conjunctive
normal form suffer from the (rather coarse) partitioning
into Boolean factors. That isÐapart from redundant
computations of conditionsÐalso the main reason for the
suboptimal performance of plans that are based on the
disjunctive normal form. Our new evaluation technique, the
bypass technique, addresses both points: It allows fine-
grained allocation of the query predicate's conditions to
operation nodes (i.e., on the level of individual atomic
conditions, not merely of Boolean factors), and it avoids
redundant computations entirely. Both achievements are

made possible by introducing a new class of operators, so-
called bypass operators, namely bypass selection and bypass
joins. Those operators are characterized by two result sets
instead of a single one: They do not simply determine those
input objects that satisfy the operation's predicate, but
distinguish the input set into two disjoint output sets,
consisting of objects that satisfy the predicate and those that
do not. An example of the application of bypass operators is
the bypass plan for our sample query ªImmigration
Airportsº (Fig. 6). This evaluation plan does not merely
constitute the lowest-cost bypass plan for the sample query,
but the optimal evaluation plan with respect to the
presented construction methods.

Let us now study how the evaluation plan works in
detail. Again, the test for an empty Flight extension must be
carried out in advance in order to guarantee the correct
semantics. On the lefthand side of Fig. 6, Airport objects are
tested as to whether they satisfy the condition CUSA, similar
to the DNF-based evaluation plan (cf. Fig. 5). However,
whereas, in the DNF-based evaluation plan all objects of
type Airport must be submitted to the test Jfrom, the bypass
plan tests only those objects that are not already certain to
be elements of the result (i.e., those that do not satisfy
CUSA). This task is performed by the bypass selection
operator �CUSA that separates its input into two disjoint
output streams. In Fig. 6, these two different streams are
marked with dotted lines (objects that satisfy the condition)
and dashed lines (objects that do not satisfy the condition),
respectively.

On the righthand side of Fig. 6, objects of type Flight
must satisfy the two conditions Cto and Cdistance, before the
semijoin Jfrom is carried out (similar to Fig. 5). The last
operation in the bypass evaluation plan is the union node
[ÿ , where the two streams are united. In contrast to the
DNF-based evaluation plan, this union operation is guar-
anteed to unite disjoint streams, so an elimination of
duplicates is not required, with lower processing cost as a
consequence. In order to emphasize this difference, the
common set union (with elimination of duplicates) is
denoted as ], and the union operation that can rely on
the disjointness of its operands and simply merges them is
denoted as [ÿ .
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100 percent (Optimum)).



Considering the differences between the CNF- and DNF-
based evaluation plans and the bypass evaluation plan, we
observe that the bypass evaluation plan does not only
bypass operation nodes (such as the semijoin node in Fig. 6),
but also bypasses the disadvantages of the two traditional
techniques. The bypass technique allows fine-grained
allocation of selection or join predicates to an extent not
available in CNF-based plans. Additionally, it avoids
redundant invocations of operation predicatesÐfor any
given object, a certain test is carried out at most once. These
facts are reflected in the evaluation cost for our sample
query's bypass evaluation plan, which is the lowest of the
three alternatives. As a matter of fact, it is the optimal
evaluation plan for our sample query. We recall that the
best CNF-based plan (Fig. 4) is 150 times as expensive, and
the best DNF-based plan (Fig. 5) is still 2.4 times more
expensive to evaluate than the bypass plan. Apart from
higher cost, the DNF plan has the disadvantage that it is
only applicable if duplicate elimination is desired. The cost
relationship between the CNF- and DNF-based plan is due
to our example query. Other queries, in particular joinless
ones (cf. [1]), may have the effect that the CNF-based plan is
superior to the DNF-based plan. However, in the vast
majority of cases, the optimal plan for evaluating a
disjunctive query is a bypass plan. So, the fact that the
bypass plan is the one with lowest cost is not a peculiarity of
the chosen example.

Several more questions remain to be answered in this
paper:

. What bypass operators are available for the con-
struction of evaluation plans?

. What techniques should be used for constructing
bypass plans?

. How can bypass operators be implemented effi-
ciently?

. What is the actual performance of bypass plans
compared to traditional plans?

Each of these questions will, in turn, be addressed in the
subsequent sections.

3 PRELIMINARIES

This section first describes the logical (object-oriented)
algebra and, second, outlines the algebraic extensions for
exploiting bypassing.

3.1 Basic (Logical) Algebra

For the purposes of this paper, a ªslimº object-oriented
algebra is sufficient. It consists of the well-known relational
operators selection ª�,º projection ª�,º Cartesian product
ª�,º join ª� ,º semijoin ª.<,º and ª>/,º division ª�,º set
difference ªÿ,º and union ª[.º Furthermore, the algebra
contains a so-called expand operator ª�º [8]Ðcomparable
with [11]'s materialize operator or the map function
[31]Ðthat is used for accessing object attributes, be they
stored or computed (i.e., methods). For instance, the two
path expressions

f:to:country and f:distance��
will be translated into

�to:f:to; �cou:to:country and �dis:f:distance��

with system-generated new variables to, cou, and dis. The

expand operator incorporates object-oriented concepts into

the relational algebra context. It constitutes the major

difference between the familiar relational algebra and the

object-oriented algebra (within the scope of this paper). It

does not play a decisive role with respect to the overall

shape of the discussed evaluation plans; this implies that

the presented concepts are in no way restricted to the

ªobject-oriented world,º but can be applied without major

modifications for any ªmodernº data model, be it relational,

object-relational, or object-oriented.
Subsequently, A�S� denotes the attribute set of a relation

S. For a formal definition of the expand operator, let S be a

relation with (at least) one attribute ai 2 A�S�, g be an

operation (attribute access or function invocation) defined

on ai, and a 62 A�S� be a further attribute name. Then, the

expand operator is defined as follows (ª�º is the tuple

concatenation operator):

�a:ai:g���S� :� fs � �a : s:ai:g��� j s 2 Sg
For reading the type extensions into memory, we use the

following operation:

reads�S� :� f�s : s0� j s0 2 Sg
A relation with one column s is generated.

3.2 (Logical) Bypass Operators

The operators discussed so far constitute the ªlowest

common denominatorº for all kinds of evaluation plans

considered in this paper. However, for bypass evaluation

plans, a new class of operators is required, namely so-called

bypass selections and bypass joins, as well as bypass semijoins.

What makes these operators stand out is the fact that they

yield two result sets instead of just one. In order to facilitate

the algebraic handling of the bypass operators, they are

separated into two ªhalves,º namely ��=�ÿ, �� = �ÿ , and

.<�=.<ÿ, that provide the two complementary result sets

Ðalthough this separation is not reflected in the actual

implementation, where the two result streams are provided

simultaneously (cf. Section 6).
The definitions for bypass operators with predicate C

and operands S and T are as follows:

��C�S� :� fs j s 2 S ^ C�s�g
�ÿC�S� :� S ÿ ��C�S� �� fs j s 2 S ^ :C�s�g

S ��C T :� fs � t j s 2 S ^ t 2 T ^ C�s; t�g
S �ÿC T :� �S � T � ÿ �S ��C T �

�� fs � t j s 2 S ^ t 2 T ^ :C�s; t�g
S .<�CT :� fs j s 2 S ^ 9t 2 T : C�s; t�g
S .<ÿCT :� S ÿ �S .<�CT � �� fs j s 2 S ^ :9t 2 T : C�s; t�g:

Thus, bypass operators always come in pairs, one with a

ªpositiveº and the other with a ªnegativeº output, but the

two matching parts of a bypass operator are still one

operation. The input is split into two disjoint parts which

can subsequently be reunited by a merge operator without
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duplicate eliminations. We denote the bypass operators by
��, �� , >/�, and .<�.

Note that, in the above definitions, we have to carefully
handle negations in order to obtain the equalities marked
with �. Usually, a condition C � x � y can easily be negated
by inverting the comparison operator �. For instance, ª=º
becomes ª 6� .º However, this transformation will be
counterintuitive, if null values are allowed. For example,
both conditions a:country � 00 USA00 and a:country 6�
00USA00 yield false whenever the attribute country of an

airport object a is not defined, i.e., is null. We discuss null
values in detail in Section 5. Until then we will assume that
the database contains no null values and, therefore, for all
conditions C and all objects (tuples) o, either C�o� or :C�o�
yields trueÐwhich is required for the ªstarredº equations.

4 CONSTRUCTION STRATEGIES

In this section, we shall discuss construction strategies for
building CNF-based, DNF-based, and bypass plans.

4.1 Conventional Plans: CNF and DNF

In the CNF-based approach, the normalized Boolean
function consists of the conjunction of so-called Boolean
factors (disjunctive terms of the predicate's conditions):

�C1;1 _ � � � _ C1;k1
�|���������������{z���������������}

1st Boolean factor

^ � � � ^ �Cm;1 _ � � � _ Cm;km�|����������������{z����������������}
mth Boolean factor

:

Thus, the optimization can be subdivided into two steps:

1. arranging the Boolean factors; and
2. arranging the conditions within the Boolean factors.

Determining the least-cost ordering can be carried out
efficiently at least for selection predicates [32] in the special
case when no condition appears in more than one Boolean
factor. In general, however, this is not the case. A duplicated
condition's probability for being true andÐprovided a
result cache is availableÐits invocation cost depends on the
condition's position within the CNF. In consequence, both
orderings cannot be carried out independently as soon as
one of the conditions Ci appears in more than one Boolean
factor. Hence, for disjunctive queries, an exhaustive search
seems necessary for determining the optimal CNF-based
query evaluation plan. We shall call this algorithm ªCNF.º

The DNF-based construction method starts from the
predicate's disjunctive normal form, consisting of Boolean
summands (conjunctive terms of the predicate's conditions):

�C1;1 ^ � � � ^ C1;k1
�|���������������{z���������������}

1st Boolean summand

_ � � � _ �Cm;1 ^ � � � ^ Cm;km�|����������������{z����������������}
mth Boolean summand

:

Since the _-operations are converted into one m-way union
operation with elimination of duplicates, the optimization
ªonlyº comprises the sorting of the conditions within the
Boolean summands according to [32]. However, in order to
minimize redundant computations, common subexpres-
sions must be identified. Muralikrishna reduced this
problem to a graph covering problem, which he proved to
be NP-hard [21]. Hence, the search for the optimal DNF-
based plan comprises two problemsÐdetermining the best

join order and determining common subexpressionsÐ-
which both have been shown to be NP-hard in general.

In the following, we will refrain from identifying
common subexpressions, but content ourselves with deter-
mining the best ordering of conditions within each Boolean
summand by exhaustive search. This algorithm we shall
call ªDNF.º

4.2 Bypass Plans

In this section, we shall outline the procedure for the
construction of bypass plans.

4.2.1 The Construction Algorithm

The basic idea is to start from the query's canonical
representation, namely as a selection �g (with g�C1; . . . ; Cm�
the selection predicate) on the Cartesian product R1 � . . .�
Rn of the involved relations (object extensions):

Q � �g�C1;...;Cm��R1 � . . .�Rn�:
Such a canonical representation can be decomposed into
selection and join operations with atomic conditions as their
predicates using the following two equations:

Q � �gjCi�false�R1 � � � � � �ÿCi�Rj� � � � � � Rn� [ÿ
�gjCi�true�R1 � � � � � ��Ci�Rj� � � � � � Rn�

�1�

Q � �gjCi�false�R1 � � � � � �Rj �ÿCi Rk� � � � � � Rn� [ÿ
�gjCi�true�R1 � � � � � �Rj ��Ci Rk� � � � � � Rn�:

�2�

At each step of the construction process, a condition Ci is

selected as a ªsplitting point,º depending on the nature ofCi:

If it is a selection condition, i.e., only a single relation Rj is

involved, (1) is employed; otherwise, if Ci is a join condition

on relations Rj and Rk, (2) is applied. For convenience

reasons, we shall use the notation fR1; . . . ; Rngg�C1;...;Cm� for a

canonical query �g�C1;...;Cm��R1 � . . .�Rn�. The expression

fR1; . . . ; Rngg�C1;...;Cm� is called a bundle with control function

g�C1; . . . ; Cm�. For instance, using this notation, (2) can be

rewritten as

fR1; . . . ; Rngg�C1;...;Cm� �
fR1; . . . ; �Rj �ÿCi Rk�; . . . ; RnggjCi�false�C1;...;Ciÿ1;Ci�1;...;Cm� [ÿ
fR1; . . . ; �Rj ��Ci Rk�; . . . ; RnggjCi�true�C1;...;Ciÿ1;Ci�1;...;Cm�:

For a query with a Boolean function g, the following
algorithms start with the initial bundle fR1; . . . ; Rngg and
apply (1) and (2) repeatedly until a set of bundles with
control functions g0 � true or g0 � false is obtained. A more
detailed description of the algorithm based on pseudocode
is given in Appendix A.

4.2.2 Application for the Example Query

Let us restate the example query ªImmigration Airportsº in
calculus representation:��a� j 9f : a 2 Airport ^ f 2 Flight

^ ÿCUSA�a� _ ÿJfrom�a; f� ^ Cto�f� ^ Cdistance�f���	:
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The starting bundle is derived from the range conditions,
i.e., from a 2 Airport and f 2 Flight. We obtain the
following bundle:

B1 �
reada�Airport�; readf�Flight�gCUSA�a�_�Jfrom�a;f�^Cto�f�^Cdistance�f��:

The control function of this bundle corresponds to the entire
selection predicate. Now, one condition of the control
function is introduced. Based on estimated selectivity and
evaluation cost, the optimizer chooses CUSA�a� and the
following two bundles are generated:

B11 � f��CUSA�a��reada�Airport��; readf�Flight�gtrue
B12 � f�ÿCUSA�a��reada�Airport��;

readf�Flight�gJfrom�a;f�^Cto�f�^Cdistance�f�:
B11's control function (g0 � true) indicates that the evalua-
tion of this bundle already yields solution tuples. B11's
tuples ªbypassº the expensive condition Cdistance�f� and the
join Jfrom�a; f�. Next, we introduce Cto�f� into B12:

B11 � f��CUSA�a��reada�Airport��; readf�Flight�gtrue
B121 � f�ÿCUSA�a��reada�Airport��;

��Cto�f��readf�Flight��gJfrom�a;f�^Cdistance�f�
B122 � f�ÿCUSA�a��reada�Airport��; �ÿCto�f��readf�Flight��gfalse:
The bundle B122 bears the control function false and can thus
be discarded (its tuples are certain not to be elements of the
result set). The removal of B122 implies that only the true-
output ��Cto yields tuples that are solution candidates.
Hence, this operator is nothing else but the familiar one-
output selection �Cto . After the next step, the introduction of
Cdistance�f� into B121, the following bundles are retained:

B11 � f��CUSA�a��reada�Airport��; readf�Flight�gtrue
B1211 � f�ÿCUSA�a��reada�Airport��;

��Cdistance�f����Cto�f��readf�Flight���gJfrom�a;f�
B1212 � f�ÿCUSA�a��reada�Airport��;

�ÿCdistance�f����Cto�f��readf�Flight���gfalse:
Again, the false-stream constituting the bundle B1212 cannot
lead to result tuples because its control function is false.

The next condition to be incorporated is Jfrom�a; f�
which joins the elements of B1211. Applying (2) leaves us
with two bundles with control functions g0 � true:

B11 � f��CUSA�a��reada�Airport��; readf�Flight�gtrue
B12111 � f�ÿCUSA�a��reada�Airport�� ��Jfrom�a;f�

��Cdistance�f����Cto�f��readf�Flight���gtrue
B12112 � f�ÿCUSA�a��reada�Airport�� �ÿJfrom�a;f�

��Cdistance�f����Cto�f��readf�Flight���gfalse:
Once again, the false-stream, i.e., bundle B12112, cannot
contribute result tuples. Since both remaining control
functionsÐi.e., bundles B11 and B12111Ðare reduced to
true, the decomposition process terminates. The just

exercised construction process is visualized in Fig. 7. Fig. 8
shows the resulting evaluation plan.

As a final optimization step, we can push projections that
eliminate one relation down in the evaluation plan. In our
example query, the select distinct clause indicates that set
semantics is desired. Therefore, the projection operator can
be pushed down in the evaluation plan. The resulting final
query evaluation plan is:

��CUSA�a��reada�Airport�� [ÿ
�ÿCUSA�a��reada�Airport�� .<Jfrom�a;f�
�Cdistance�f���Cto�f��readf�Flight���:

This plan has already been shown in Fig. 6. The case of an
empty Flight extension is treated by the separate if-
statement in the evaluation plan.

4.3 Generating Alternative Bypass Plans

The order for introducing conditions is chosen by the
optimizer based on selectivity and evaluation cost estima-
tion. It may sometimes be advantageous to construct
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Fig. 7. Visualization of the construction process.

Fig. 8. Preliminary query evaluation plan for ªImmigration Airports.º



evaluation plans where the evaluation orders are not
determined globally, but independently for each possible
path that a tuple might take from the first to the last stage.
For instance, it may be the best solution to pursue the
evaluation order C1, C2, C3 if C1 � true for a particular
tuple, but C1, C3, C2 in case C1 � false. This is the way the
strategy ªOPTº works: The order in which atomic condi-
tions are introduced into bundles is chosen for each bundle
independently. Thus, OPT is an exhaustive search algo-
rithm which always finds the optimal plan.

In contrast to OPT, the ªFIXº heuristics constructs
evaluation plans where the conditions' evaluation order is
the same for all possible paths from the first stage (read-
operations) to the final stage (union of all disjoint streams).
In other words, the evaluation order is always determined
globally for the entire evaluation plan. Consider an example
from [28], using the control function:

g � �C1�x� _ C2�x�� ^ �C2�x� _ C3�x�� ^ �C3�x� _ C4�x��:
Given appropriate selectivities and cost functions for the
conditions, the OPT strategy might yield the optimal bypass
plan as shown in Fig. 9a. On the true-stream of C1, the
remaining conditions are evaluated in the order C3, C2, C4,
as opposed to the order C2, C3, C4 on the false-stream. The
FIX strategy globally prescribes the order of conditions for
all streams such that the plan in Fig. 9a cannot be found by
FIX. Instead, both output streams of C1 must obey the same
order, possibly resulting in the plan in Fig. 9b. A more
thorough comparison of FIX and OPT plans is given in [28].

5 TREATMENT OF NULL VALUES

The treatment of null values requires a modification of the
evaluation process. Let us consider the example

�C _ :C�R�:
There, the elements of R for which the condition C is
unknown because of null values are not part of the resultÐat
least not according to the standard SQL semantics.

There have been various proposals for treating null
values in the literature. However, let us restrict the
discussion to the SQL semantics which is based on a
three-valued logic with the additional value unknown. The

truth tables for the three-valued logic are as follows:

In order to capture the SQL semantics, we need to refine
our construction algorithm to reflect the presence of null
values within the three-valued logic. Depending on
whether the query predicate contains negations, we devise
two cases. In the first case, where the query predicate does
not contain any negation, we proceed as before and remain
within two-valued logic by ªmappingº any unknown value
to false. As can be derived from the truth tables for and and
or above it does not cause harm to handle false and unknown
equivalently because tuples or objects qualify only if the
entire selection predicate evaluates to true.

As soon as any negation occurs in the query predicate,
however, this does not work any more. Just consider the
above example predicate C _ :C. Application of rule (1)
would yield two bundles each with control function true,
thus tuples with C � unknown would pass through into the
result via the false-stream. This would be a violation of SQL
semantics.

To overcome the problem, we offer two alternative
extensions to our construction algorithm.

5.1 (Potentially) Maintaining Three Streams

One approach is to convert (1) and (2) to three-valued logic
such that a bypass operator possibly yields three streams:

1. the true-stream
2. the false-stream, and
3. the unknown-stream with tuples for which the

corresponding selection or join predicate is unknown.

Thus, the two generating equations have the following
form:
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Q � �gjCi�false�R1 � � � � � �Ci�false�Rj� � � � � � Rn� [ÿ
�gjCi�true�R1 � � � � � �Ci�true�Rj� � � � � �Rn� [ÿ
�gjCi�unknown�R1 � � � � � �Ci�unknown�Rj� � � � � � Rn�

�10�

Q � �gjCi�false�R1 � � � � � �Rj �Ci�false Rk� � � � � �Rn� [ÿ
�gjCi�true�R1 � � � � � �Rj �Ci�true Rk� � � � � � Rn� [ÿ
�gjCi�unknown�R1 � � � � � �Rj �Ci�unknown Rk� � � � � � Rn�:

�20�
Applying the extended rule (1') to our simple example

�C _ :C�R� results in three bundles.1

! B1 � f�C�r��true�readr�R��gtrue _ :true!true
! B2 � f�C�r��false�readr�R��gfalse _ :false!true
B3 � f�C�r��unknown�readr�R��gunknown _ :unknown!unknown:

Simplification of the first two control functions yields true,

while the last one remains unknown. In the final step, we

ªswitch backº to two-valued logic, converting unknown to

false. Thus, we obtain the plan

�C�r��true�readr�R�� [ÿ �C�r��false�readr�R��
for evaluating the query �C _ :C�R� (see Fig. 10a). For this

example, the two result streams may be collapsed to form a

single output stream, as shown in Fig. 10b.

5.2 Different Polarizations of Condition Evaluation

The second approach is based on an idea proposed by von

BuÈ ltzingsloewen [33]. A ªtrickº makes it possible to retain

two-valued logic: We keep track of whether an unknown

result should be mapped to true or false. A superscript � or ÿ

indicates that unknown yields true or false, respectively. Let

us call this the positive or negative polarization of a condition.

Thus, a condition C� yields true if the three-valued logic

result were unknown, whereas Cÿ yields false if the three-

valued logic result were unknown. These polarizations are

not to be confused with the two output streams of the

bypass selection or bypass join operators. For example, the

operator ��Cÿ yields the true-stream of the selection condi-

tion C with negative polarization and �ÿCÿ yields the

corresponding false-stream (which also contains the un-

known tuples because of the negative polarization of the
condition).

The key idea of this approach can be derived from
Table 2a, b, c. Let us first concentrate on Table 2b which
shows the three-valued truth-table for a selection predicate
consisting of a conjunction of an atomic condition C
(negated and nonnegated) and the remaining predicate P ,
i.e., a predicate of the forms ª:C ^ Pº or ªC ^ P .º Keep in
mind thatÐin the endÐthe selection predicate has to yield
true in order for the corresponding object (tuple) to qualify.
From the truth tables, we observe that the final outcome of
the predicate ª:C ^ Pº is equivalent for C � true and
C � unknown. This is indicated by the two groups of bold-
faced truth-values. On the other hand, for the predicate
ªCwedgeP ,º the final result is equivalent for C � false and
C � unknown. The analogy holds for a selection predicate
with a disjunction, which is of the forms ª:C _ Pº or
ªCveeP .º This is shown in Table 2c. In addition, Table 2a
shows that, for a selection predicate consisting of merely
one negated atomic condition (i.e., ª:Cº) the result true is
obtained only if C � false. Again, C � true and C �
unknown are equivalent as far as the final result is
concerned.

Let us summarize these equivalences in the following
table, where we use (the above introduced) polarizations for
the atomic condition C:

Therefore, a selection predicate without any ªglobalº
negations can be converted to an equivalent predicate with
polarized atomic conditions that are evaluated in two-
valued logic.

In order to make use of this solution, we proceed as
follows:

1. Move all negations to atomic conditions applying
DeMorgan's laws.

2. Eliminate multiple negations by applying the rule of
double negation ::C � C.
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Fig. 10. Alternative evaluation plans for �C _ :C�R�: (a) three-valued, (b) merged streams, (c) two-valued variant.

1. In the following, a bundle whose control function definitely evaluates
to true is marked with a leading arrow and simplifications of control
functions are indicated by a small subsequent arrow.



3.

a. Polarize each condition C without a preceding
negation as Cÿ.

b. Polarize each condition C with a preceding
negation to C�.

4. Now, apply the ªnormalº construction process for
generating bypass evaluation plans as described in
Section 4.2; however, differently polarized occur-
rences of a condition, i.e., C� and Cÿ, have to be
treated as different conditions.

Note that the first two steps are carried out within three-

valued logic and, in Step 3, we switch to two-valued logic

by polarizing all the atomic conditions appropriately. In the

following, we will assume that the polarizations have

higher precedence than the negation, i.e., :�C�� will simply

be denoted as :C�.

5.3 Some Examples

Reconsider our example query �C _ :C�R�. Using the second

approach, we first check for negations that have to be

moved ªinside.º Since the only negation is already placed

correctly, we proceed with the polarization. The predicate

becomes Cÿ ^ :C�. Then, we employ rule (1) and sub-

stitute the conditions C� and Cÿ, resulting in the evaluation

plan depicted in Fig. 10c. The additional (u) adornment

indicates the route that unknown tuples take.
Let us now examine our two approaches by means of

another example. We will look at the predicate

g � neg�C1 ^ C2� _ �C1 ^ C3� :

1. Using the first approach based on three-valued logic,
we obtain the following bundles (unknown is
abbreviated to unk, simplifications of the control
functions are indicated by a small subsequent
arrow):

B1 � f�C1�r��true�readr�R��g:�true^C2�_�true^C3�
! B2 � f�C1�r��false

�readr�R��g:�false^C2�_�false^C3�!true
B3 � f�C1�r��unk

�readr�R��g:�unk^C2�_�unk^C3�
B11 � f�C2�r��true��C1�r��true

�readr�R���g:�true^true�_�true^C3�
! B12 � f�C2�r��false��C1�r��true

�readr�R���g:�true^false�_�true^C3�!true
B13 � f�C2�r��unk��C1�r��true

�readr�R���g:�true^unk�_�true^C3�
B31 � f�C2�r��true��C1�r��unk

�readr�R���g:�unk^true�_�unk^C3�!unk
! B32 � f�C2�r��false��C1�r��unk

�readr�R���g:�unk^false�_�unk^C3�!true
B33 � f�C2�r��unk��C1�r��unk

�readr�R���g:�unk^unk�_�unk^C3�!unk
! B111 � f�C3�r��true��C2�r��true��C1�r��true

�readr�R���g:�true^true�_�true^true�!true
B112 � f�C3�r��false��C2�r��true��C1�r��true

�readr�R���g:�true^true�_�true^false�!false
B113 � f�C3�r��unk��C2�r��true��C1�r��true

�readr�R���g:�true^true�_�true^unk�!unk
! B131 � f�C3�r��true��C2�r��unk��C1�r��true

�readr�R���g:�true^unk�_�true^true�!true
B132 � f�C3�r��false��C2�r��unk��C1�r��true

�readr�R���g:�true^unk�_�true^false�!unk
B133 � f�C3�r��false��C2�r��unk��C1�r��true

�readr�R���g:�true^unk�_�true^unk�!unk:

The lefthand side of Fig. 11 depicts the correspond-

ing evaluation plan.
2. To make use of the second variant (i.e., the one with

different polarizations of the conditions), we first
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transform our control function into an equivalent
one that can be evaluated with two-valued logic, i.e.,
we apply DeMorgan's law to move the negation and
then we polarize the conditions:

:�C1 ^ C2� _ �C1 ^ C3� � :C�1 _ :C�2 _ �Cÿ1 ^ Cÿ3 �:
Now, (1) and (2) for two-valued logic can be used

(remember that C�1 and Cÿ1 have to be treated as

different conditions, i.e., the substitution of a

constant true or false for C�1 does not affect Cÿ1 ).

B1 � f�C�
1
�r��true�readr�R��g:true_:C�

2
_�Cÿ

1
^Cÿ

3
�

! B2 � f�C�
1
�r��false

�readr�R��g:false_:C�
2
_�Cÿ

1
^Cÿ

3
�!true

B11 � f�C�
2
�r��true��C�

1
�r��true

�readr�R���g:true_�Cÿ
1
^Cÿ

3
�

! B12 � f�C�
2
�r��false��C�

1
�r��true

�readr�R���g:false_�Cÿ1 ^Cÿ3 �!true
B111 � f�Cÿ

3
�r��true��C�

2
�r��true��C�

1
�r��true

�readr�R����g�true^Cÿ
3
�

B112 � f�Cÿ
3
�r��false��C�

2
�r��true��C�

1
�r��true

�readr�R����g�false^Cÿ
3
�!false

! B1111 � f�Cÿ
1
�r��true��Cÿ

3
�r��true��C�

2
�r��true

��C�
1
�r��true�readr�R�����gtrue

B1112 � f�Cÿ
1
�r��false��Cÿ

3
�r��true��C�

2
�r��true

��C�
1
�r��true�readr�R�����gfalse:

Again, the corresponding evaluation plan is shown

in Fig. 11b.

5.4 Discussion of the Two Approaches

Both presented variants have pros and cons. The three-

valued approach sometimes introduces three output

streams for bypass operators, possibly causing higher

implementation and evaluation effort. The overhead is

alleviated, however, by the possibility to combine two of the
three output streams. This may be done (at optimization
time) in our first example. On the other hand, the second
solution guarantees the evaluation using always two
streams, at the additional cost of evaluating some condi-
tions twice, like C�1 and Cÿ1 in the second example. Multiple
evaluation of a condition C is only necessary, however, if
there are already multiple occurrences of C in the original
predicate and if these multiple occurrences end with
different polarizations. Summarizing, either variant causes
a limited overhead in some cases. The polarization
approach offers the additional advantage that these special
cases are user controllable, i.e., they occur only if the user
explicitly uses a condition C multiple times in a predicate.
Furthermore, the only required change to the query engine
is a slight modification of predicate evaluation as opposed
to introducing a third output stream in order to implement
the first approach. Keep in mind, however, that any special
handling of null values is only necessary if the query
predicate contains any negations at all. If it does not contain
negations, unknown can simply be handled like false.

6 EVALUATION TECHNIQUES FOR BYPASS

OPERATIONS

In this section, we will discuss some aspects of implement-
ing bypass operations in a query execution engine. First, we
outline some general architectural alternatives for query
engine implementation that are relevant to bypass evalua-
tion, afterward we sketch some details of our system,
especially with respect to the implementation of bypass
operators. The query engine served as the platform for the
experiments presented in the subsequent section.

6.1 Query Evaluation Strategies

Apart from the algorithms for implementing algebra
operators, choosing techniques for operator communication
and synchronization are critical tasks. Of course, these
design decisions are correlated. In the following, we restrict
ourselves to a client/server system where each query
constitutes a client to a page server. Other architectures,
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Fig. 11. Second example: �:�C1^C2�_�C1^C3��R�.



especially parallel and distributed execution, are out of the

scope of this paper.

6.1.1 Operator Scheduling

If operators do not pass complete tables but single records

or groups of records, one has to consider how control flow

is managed between operators. One approach that is very

easy to implement, especially when using per-record data

passing, is demand driven control flow. Starting at the top of

the QEP, each operator asks its input operator(s) to produce

records whenever it is ready to process new data. When

implementing operators as functions, this constitutes a

simple function call. Demand driven data flow has the

advantage that data is only computed if really needed. The

simplicity not only facilitates the implementation, but also

minimizes scheduling overhead (that is, no scheduler is

necessary).
The alternative to demand driven data flow is data-driven

control flow. In this case, processing starts at the leaves of a

query plan and proceeds bottom-up within the tree. Since

here we usually have several starting points (as opposed to

a single top), a simple implementation via function calls

does not suffice. An operator-independent manager mod-

ule, like a simple dispatcher, has to control the interaction of

operators. This would be advantageous, anyway, as soon as

parallel execution is taken into account.

6.1.2 Implementation

In our query engine, data is passed on a per-record basis by
default, but can also be transferred in units of pages. As
long as possible, only references to data are passed between
operators. Algebra operators are implemented as iterators as
proposed, e.g., by Graefe [34]. An iterator is an abstract data
type offering at least the functions Open, Next, and Close, for
initializing the iterator, producing a record, and final clean-
up, respectively. Considering the above classification, the
iterators implement demand-driven control flow.

The query engine is implemented in C++ [35]. Each
physical operator is implemented as a C++ class derived
from the abstract class QE_iterator, providing the above
mentioned virtual functions Open, Next, and Close. The
library of operators includes two kinds of file scans, e.g.,
reada�Airport�, one for scanning an index and returning
OIDs, another one for scanning a file and returning objects.
Furthermore, there is an expand operator for accessing
objects and computing method results (�, cf. Section 3),
nested loops join (�NL ), hybrid hash and merge join
(�hash , �merge ), selection (�), merge union ([ÿ ), set opera-
tions (];ÿ; . . . ), and a buffering operator (buf).

Fig. 12 depicts the generation of an executable query. A
query evaluation plan is a plain text file, thus allowing
manual editing for experimentation purpose. Usually, the
plan is generated by the query optimizer, in our case by our
blackboard optimizer [16]. The query compiler processes
the query execution plan as input, amends it with some
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information about resource management and DBMS access,
and finally generates a C++ program that serves as a
ªdriverº for the query evaluation. The driver instantiates
operators from the library and supplies them with addi-
tional parameters and support functions, e.g., predicate-,
hash-, and copying functions. The driver program is
compiled with a regular C++ compiler. The generated
object file is linked with the DBMS run-time system, the
operator library, and the implementation of methods of the
underlying database schema to form an executable pro-
gram. Alternatively, the query compiler can serve as an
interpreter instantiating the operators and driving the query
itself. This saves the compilation and linking phase at the
cost of some more run-time overhead.

6.2 Implementing Bypass Selection

Bypass operators have (at least) two output streams.2 Since
we assume a single result table, however, every plan has
only one topmost operator. Consequently, query evaluation
plans using bypass operators do not form a tree, as
conventional plans do, but, instead, they are DAGs.
Fig. 13a shows the general structure of a bypass DAG with
a fork at a bypass selection and a subsequent merge at the
corresponding merge-union ([ÿ ) operator. These fork/
merge-cycles do not cause any problems if the operators
are evaluated strictly sequentially and each operator stores
its intermediate result anyway. For the evaluation with a
demand-driven query engine, the top-down evaluation
strategy forces a merge union operator to choose one input
stream each time it is called. One (naive) approach to
choosing the correct stream is to abandon strict top-down
control flow and to evaluate the part of the query beneath
the bypass operator first in order to find out along which
branch the record will go. This approach, however, contains
a pitfall: Due to the nature of the bypass evaluation plans, at
least one branch of the bypass cycle contains several other
operators (as indicated by ªOPsº in Fig. 13). When trying to
follow the ªpreviewedº select result and choosing one input
stream, the expected record may possibly be filtered out on

the path to the merge union. Since this naive lookup
mechanism fails, we have decided to use an additional
buffer in our prototype to collect records that belong to the

ªwrongº output stream once we have selected a particular
stream.

The conceptual implementation of the buffering techni-
que is shown in Fig. 13b. The grid symbolizes the bypass
buffer. There is only one buffer for both output streams, and
a switch, depicted in Fig. 13 by the box currently containing
the label ªtrue,º is used to mark what records are cached in

the buffer. For three output streams, two buffers are
required, each equipped with a label indicating which
output streams are buffered (true, false, or unknown) and
with a counter for the number of stored records. Depending
on the buffer state, the bypass operator either serves a Next-

call from the buffer, or it retrieves new records from its
input operator and saves ªmisdirectedº records (i.e.,
designated for the other output stream) in the buffer until
one matching record can be returned. Whenever the merge
union operator has to choose the input operator, it looks at
the label of the buffer and selects an input that will fetch a

record from this buffer. This keeps the buffer quite small in
practice, but since buffer growth cannot be avoided in all
cases, overflow pages of the buffer may be written to
temporary segments, using the same mechanisms that are
used, e.g., for run files of an external sort operator or for
partition files of hash operators. In the worst case, assuming

the merge union operator chooses one input and all records
go to the other stream, the fraction of the bypass input that
does not fit into the buffer is written to the temporary
segment. In a way, this resembles the predicate caching
solved by [30]. However, our problem is much simpler

since we only retrieve objects sequentially from the cache.
Therefore, we need not maintain any data structures for
random access (e.g., hash tables) as [30] does. Other
merge union policies, apart from lookup, are feasible;
especially if very high or very low selectivity is expected,
simply exhausting one input while buffering nonmatching

records may be useful. If multiple bypass operators occur
within one plan, the corresponding [ÿ operators may
either be nested (the topmost [ÿ communicating with the
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values according to Section 5.1, bypass operators could have three output
streams.
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bottom-most bypass operator), or an n-ary [ÿ combines all
streams in one step.

A totally different way to avoid large bypass buffers is to
cause a rollback of execution: If too many nonmatching
records are found, control is given back to the calling merge
union operator, associated with a hint to call the other
input. Then, writing overflow pages to a temporary
segment is not necessary at all. The rollback mechanism
requires, however, even if implemented via C++ exceptions,
that all operators can cope with interruption and are able to
resume their work at the point of interruption.

6.3 Implementing Bypass Joins

Essentially, everything mentioned in the previous section
also applies to bypass joins. In addition, some features of
efficient join evaluation algorithms can be exploited.

In contrast to simple selection operators, some join
algorithms, like hash join and sort merge, join allocate
larger amounts of memory to make efficient evaluation
possible. This implies that a larger number of records is
already present in memory. If the join operator has
bypassing semantics, it can profit from the in-memory
structure. Instead of copying records for the ªwrongº
output stream to the bypass buffer, they can often be kept
in memory, e.g., in a hash table or in a buffer used by a
merge join. Generally, however, one cannot omit the bypass
buffer totally. Suppose, for example, that a hash partition
has been processed completely and memory is to be freed to
process the next partition. In this case, it is possible that
there remain records for one output stream. In order to be
able to continue processing, the remaining records must be
flushed to the bypass buffer before a new hash partition can
be processed.

For antijoins (i.e., �ÿ ), processing is usually quite
expensive. It does not suffice to find matching records,
but, additionally, nonmatching records must be combined
with all records from the other input, i.e., the bypass join
simply performs a partitioning of the cross product. It
incurs, therefore, the high cost of a cross product (therefore,
the optimizer will rarely generate plans containing these
operators). Because of the indispensable cost of the cross
product, we offer only two implementation methods: One
uses a nested loops algorithm in connection with a bypass
buffer. It does not impose any restrictions at all, but requires
the predicate evaluation for each combination of input
tuples. The other implementation assumes that one table
will fit into main memory. Then, all conventional join
algorithms are applicable. For example, a hash join could
first mark those tuples with a match found and, afterward,
output the unmarked tuples.

As with conventional semijoins, bypass semijoins can be
processed very efficiently. Since the total cardinality is
bounded by the size of one input stream, the additional false
output stream does not increase processing cost very much.
This is especially true for using hash-based methods since
the hash table may be used as bypass buffer if the build
input forms the returned output stream. Processing one
partition is then performed in two phases. First, the normal
algorithm is used, building the hash table from the build
input and using the probe input to mark matching records
in the hash table. In a second phase, the hash operator starts

returning records, choosing the output stream for each
record from the mark that was set in the first phase. Of
course, the control mechanisms for the merge-union ([ÿ )

work as before, with the additional advantage that the
bypass join operator knows the number of true/false records
present in the hash table.

This section has shown how bypass operators can be
integrated into conventional query engines with reasonable

effort. The following section will prove that the proposed
implementation offers good performance, too.

7 QUANTITATIVE ASSESSMENT

In this section, we present a quantitative assessment of our

novel bypass technique. In order to increase the intuitive
understanding of the results we derive the initial bench-
mark setup from the introductory example, i.e., we have an
object schema with meaningful queries.

Another (second) way for specifying benchmarks would
be first to generate all scenarios consisting of k object
extensions, l restrictions, and m joins, second to optimize
them by means of bypass, CNF-based, and DNF-based

techniques for numerous settings (we have to vary the
cardinality of each extension and the selectivity, as well as
the cost value of each condition), and, third, to compare the
resulting evaluation plans with respect to estimated costs

and evaluation times. Since this would result in an
enormous count of (possibly unrealistic) experiments, we
have chosen a compromise: We first benchmark the
ªImmigration Airportsº query using the same parameters

as in the introductory section. Then, we continue bench-
marking this query, but we examine the variation of
cardinality and selectivity parametersÐsometimes leading
to unrealistic cases, as, e.g., databases with more airports

than flights. In a second part, we examine abstract queries
on a schema with three extensions.

7.1 Benchmark Environment

Before we discuss individual benchmarks, we first describe
the benchmark environment common to all queries. The

experiments were run on a two-processor Sun SPARCsta-
tion 20 Model 502MP, running under the Solaris 2.5
operating system. The system is equipped with 64 MB of
main memory and a single 2 GB disk (Seagate ST12400N,

average access time 9ms read, 10.5ms write). Since, for all
queries, we measured elapsed real time, the system was
taken off/line while running the experiments in order to get

reproduceable results. As persistent storage system, we
used the locally developed Merlin client-server storage
system [36]. The system provides, e.g., storage manager,
buffering, and index structures. On top of the run-time

system, we built the query engine described in the previous
section. Both page server and querying client were run on
the same machine and the database was held on the local
disk, thus avoiding any network traffic and interference. On

the client side, a segmented page buffer was used to cache
data pages. Temporary files were handled in the same way
as persistent data files, i.e., they were transported to the
(local) server.
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7.2 Running the ªImmigration Airportº Query

We will first show experiments with the ªImmigration
Airportsº query already mentioned in Section 2.1. We have
created a database of 1,000 Airport objects and 29,000 Flight
objects. Each object had a constant size of 400 bytes,
consisting of the attributes mentioned before (coded as
integers) and an additional string attribute filling the
remaining bytes. This resulted in an on-disk database of
about 13MB. The attribute values were distributed uni-
formly in the range 0 to 9999. The selectivities of conditions
Cx were modified by comparing the attribute value with a
varying constant. We have run all plans mentioned before:
CNF (Fig. 4), DNF (Fig. 5), and bypass (Fig. 6). The client
page buffer was always configured to a total of 600KB. Since
the CNF-based plan can only be evaluated with a nested
loops join, we have first tried to provide the same
conditions for all plans, using nested loops join in all three
plans. Fig. 14 shows the result of running the DNF and
bypass query using a nested loops join. The selectivities of
Cto and Cdistance have been chosen as in the example, the
selectivity CUSA of the bypass operator has been varied
through the full range. The value of CUSA � 0:33 from

Table 1 has been marked with a vertical bar. The actually

consumed time for the bypass query at this point is about

43 seconds. The DNF plan with the same parameters took

about 105 seconds, which is about 240 percent of the bypass

plan's cost. The CNF plan, not shown in the figure, took

6,450 seconds (factor 150 against the bypass plan). Since the

CNF-based plans could not compete in any way with

bypass and DNF, we have omitted any further figures

regarding CNF.
The higher cost of DNF is partly due to the additional

duplicate elimination. Duplicate elimination suffered in this

case from the fact that a large amount of buffer space has

been allocated to the nested loops (semi)join. With increas-

ing CUSA, the runtime of the bypass query continuously

decreases (since the number of tuples bypassing the costly

join operation increases), while the runtime of the DNF

query slightly increases due to growing cost for duplicate

elimination. This first chart already shows the tendency that

will be observed in most following plots: With the bypass

selectivity factor (in this case, CUSA) close to 0, execution

time of DNF and bypass plans do not differ too much. With
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increasing selectivity factor, the bypassing advantage
increases, too.

The same experiment has been performed using a hybrid
hash join algorithm for join evaluation. The results are
depicted in Fig. 15. The tendencies are the same as in the
previous experiment, with the only difference that the fixed
cost of duplicate elimination does not cause a visible offset.
Since the select operations for Cto and Cdistance enormously
reduce the join input, the join operation is cheap in this case
anyway such that even nested loops evaluation seems
feasible in this example query.

7.3 Varying Other Parameters

So far, we have only changed the selectivity of the bypass
operator. Now, we want to vary other parameters influen-
cing the performance. Therefore, we do not restrict the
database to close-to-reality data. Instead, we have built a
variety of databases with different cardinalities. The total
amount of objects is kept constant at a number of 30,000,
with an object size of 400 bytes, as before. Altering the ratio
of cardinalities of Airport/Flight has the same effect as
changing the selectivities of Cto and Cdistance (i.e., changing
the join input size), thus we did not investigate these
selectivities. The result of a benchmark varying CUSA on the
one hand and the ratio of object cardinalities on the other
hand for the bypass query is shown in Fig. 16. The number
of airports has been varied from 1,000 to 29,000, thus
providing a ratio of #Airports/#Flights ranging from 1:29 to
29:1. The figure shows that minimal cost occurs if many
airports can bypass the join, i.e., if the number of flights is
quite small and the selectivity factor CUSA is close to 1. If
only one factor, either selectivity or cardinality ratio,
changes disadvantageously, execution time still stays quite
low. Only if both factors fall into a disadvantageous range,
execution time increases up to several hundred seconds.

Fig. 17 shows the relative cost of the DNF query in
comparison to the bypass query of Fig. 16 with identical
parameters. As one can see, the DNF query nearly always
causes higher cost. Only in the case with very few airports
and a selectivity factor for CUSA close to 0, i.e., hardly any
records can take advantage of bypassing, is DNF better than
bypassing. This is due to the buffering overhead of our

current bypass implementation, as mentioned in the
previous section. The bypass gain increases enormously
with growing selectivity factor. In order to retain read-
ability, we have restricted CUSA to a maximum of 0.9.
Otherwise, the maximum factor of 48 would have scaled
down everything else.

7.4 A More Complex Scenario

For generating more complex benchmark queries, we
extend our schema to three object extensions E1, E2,
and E3, as e.g., E1 � Airport, E2 � Flight, and
E3 � Airline. The objects are denoted by e1, e2, and
e3. We assume one restriction Ci for each extension
Ei, as, e.g., e1:location � 00 USA00, and join predicates Jij
between Ei and Ej, as e.g., e1:country � e3:nationality. The
queries always project on E1. Then, a generic query is
specified as follows:

fe1 j e1 2 E1 ^ 9e2 2 E2 ^ 9e3 2 E3 :

bool�C1; C2; C3; J12; J23; J13�g;
where bool determines a particular Boolean function
consisting of the conditions given by the arguments.
Evaluation of the predicate involves the invocation of
member functions which are implemented alternatively as
main memory operations or operations causing I/O by, e.g.,
evaluating a path expression. We have analyzed five
representative Boolean functions bool1; . . . ; bool5. We only
sketch the examined queries here. For further details about
the queries refer to Appendix B.

The extensions of all object types Ei and Ti had a
cardinality of 100,000 objects each, with objects of the
constant size of 100 bytes. This resulted in a database size of
about 42MB. For the second benchmark variant (ªderefer-
encingº), additional type extensions T4 . . .T9 have been
created, again each with a cardinality of 100,000 objects and
each object sized to 100 bytes. Thus, the total size of the
database amounted to 130MB. The client page buffer was
allocated on a per-operator basis. A memory chunk of 2MB
was assigned to each hash operator (set union, hash join,
and duplicate elimination), an amount of 1MB was
asssigned to each bypass operator and to each extent (for
scans and dereferencing). This is certainly not the optimal
allocation policy; however, it works reasonably for the
evaluated plans. When comparing bypass and DNF plans,
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the total amount of memory allocated by a DNF plan is

larger than the amount allocated by the corresponding

bypass plan since the set union operator obtains 2MB, while

the merge union operator does not need any buffer space

and the bypass buffer obtains only 1 MB. With respect to

our benchmark results, this allocation is unfair against the

bypass plans, but a fair strategy would only increase the

performance advantage of bypass evaluation.

Figs. 18, 19, 20, 21, and 22 summarize the results of

benchmarking the queries for bool1; . . . ; bool5. Each pair of

diagrams contains variants with main memory operations

for invoked type-based functions on the left-hand side and

object accesses, i.e., I/O operations, on the righthand side.

As before, all bypass queries are depicted by filled plot

symbols, DNF queries by hollow symbols. We have

generated matching CNF plans, too, but their restriction

to nested loops evaluation always caused run-times orders
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Fig. 18. bool1 � C1 _ �C2 ^ C3 ^ J12 ^ J23�.

Fig. 19. bool2 � �C1 ^ J13 ^ C3� _ �J12 ^ C2 ^ J23�.

Fig. 20. bool3 � C1 _ �J12 ^ �C2 _ �J23 ^ C3���.



of magnitudes larger than DNF and bypass and, therefore,
they have been discarded in the figures. Since the
construction of the evaluation plans has been explained
before in Section 4, we refrain from showing the generated
plans here. Sometimes the optimizer has generated more
than one reasonable plan. In these cases, all feasible
execution plans (i.e., those with close-to-optimal cost
estimation) have been run and, for each data point, the
best result for DNF and bypass has been plotted.

In all charts, the selectivities of all conditions Ci
(1 � i � 3) were equal. This has the consequence that effects
caused by changing the selectivity of one condition may
supersede contrary effects of changed selectivity of a
different condition. For example, increasing the selectivity
factor of a bypass operator causes a performance gain, but
another selection operation feeds more records to a join as a
consequence, thus reducing the visible bypass gain. Never-
theless, most charts still show an advantage of bypass
evaluation. If, in all queries, we had only changed the
selectivities of bypass operators, the advantage of bypassing
would be even greater.

For the first benchmark (main memory operations for
functions), we have separated two cases: First, all queries
were run with all functions fi as no-ops (marked as no
delay). Second, these functions performed a random delay
(implemented as a simple for-loop).

Let us browse through the single experiments of Figs. 18,
19, 20, 21, and 22. Depending on the structure of the
Boolean function, there can be observed some tendencies.
Both function bool1 and bool2 contain only one disjunction.
They differ only in the position of this disjunction and the
presence of a third join condition. The diagrams show that
the bypass gain is quite small for bool2, while much greater
in the case of bool1. From this difference, we can derive that
bypassing is especially useful if the Boolean function is
divided asymmetrically by disjunctions, giving one cheaper
part (used as bypass predicate) and one more expensive
part (that is bypassed), just as for bool1.

The remaining functions embody two, respectively, three
disjunctions. Fig. 22 shows the maximum bypass gain since
the Boolean factors are nested and the innermost Boolean
operator is a disjunction. Both properties enlarge the
potential gain of bypass processing.

7.5 Summary of the Quantitative Analysis

In this section, we have first benchmarked the query from
the introductory example; later the example has been
extended to an abstract three extension schema, where a
number of query patterns have been examined. Throughout
all experiments, it was evident that bypass plans were
either totally superior to DNF plans (in most cases) or there
was a small selectivity range (close to zero) where DNF
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Fig. 21. bool4 � C1 _ �J13 ^ C3� _ �J12 ^ C2 ^ J23�.

Fig. 22. bool5 � C1 _ �J12 ^ �C2 _ �J23 ^ �C3 _ J13����:



plans performed minimally better. These cases were due to
overhead of managing a bypass buffer. This is a restriction
of our current query engine and might well be eliminated in
a planned more powerful implementation. The CNF plans
were generally orders of magnitude inferior and were
therefore omitted in the curves.

8 CONCLUSION

In this paper, we have devised a novel evaluation technique
for disjunctive queries, i.e., queries whose selection pre-
dicate contains at least one or (_)-connective.

The evaluation technique is based on new selection and
join operators that generate two output streams: the true-
stream with tuples satisfying the corresponding selection-
or join-predicate and the false-stream with tuples not
satisfying the predicate. Each of these streams can then be
further processed individually. It thereby becomes possible
to ªbypassº certain costly or less selective predicates if the
ªfateº of the corresponding stream can be determined
without considering the particular predicate.

The ideas of bypass evaluation have been presented in
two prior conference papers: [1] introduced bypass selec-
tion and [2] contained the bypass join processing.

In this paper, we have covered the necessary issues to
incorporate bypass evaluation in a ªrealº system:

. We defined the underlying algebra,

. The equations for generating bypass evaluation
plans by the query optimizer were given and the
OPT and the FIX approaches for searching optimal
and suboptimal bypass plans were outlined,

. Two alternative ways to deal with null values within
our query evaluation technique were devised,

. The incorporation of the bypass operators into an
iterator-based query execution engine was de-
scribed, and

. A set of benchmark results comparing bypass plans
against conventional query execution plans based on
a CNF or DNF-query predicate was presented.

The quantitative evaluation proved that bypass plans are
superior to conventional plans. In particular, the CNF-based
evaluation plans are often orders of magnitude costlier than
bypass plans. The superiority of bypass plans over DNF-
based plans was less drastic; however, the reader should
keep in mind that the DNF-based processingÐas used in
this comparisonÐis not possible for queries that have to
preserve duplicates according to the SQL semantics. On the
other hand, the bypass plans do preserve SQL semantics.

APPENDIX A

OPTIMIZATION ALGORITHM: A MORE TECHNICAL

LOOK

The following algorithm is a simplification of the real
implementation in that it does not consider operations
besides join and selection. In the real implementation care
has to be taken in order to introduce �s and other operators.

1. while there exists a bundle with a control function
not equal to true

2. select such a bundle with control function g
3. choose conditions C occurring in g that are to be

considered next. For each such condition C do

a. let g� � g�C=true�; gÿ � g�C=false�
b. if C is a selection condition apply (1):

i. if gÿ � false, then add a regular selection
�C to the bundle and let g� be its new
control function

ii. else create two new bundles by adding the
bypass selections ��C and �ÿC and replace the
old bundle by the two new bundles with
control functions g� and gÿ, respectively

c. if C is a join condition apply (2):

i. search for the partner streams of C in the
bundle

ii. if gÿ � false, then add a regular join �C

connecting the partner streams to the
bundle and let g� be its new control
function

iii. else create two new bundles by adding the
bypass joins ��C and �ÿC to the original
bundle and replace the old bundle by the
two new bundles with control functions g�

and gÿ, respectively
iv. if there is a bundle with only one argument,

eliminate it

Step 3 is subject to several strategies concerning the
selection of the next predicate. These strategies are
discussed in Section 4.3.

Within the implementation, we represent each algebraic
operator by an instance of a class. For bypassing, the
following classes are used:

. Bundle is an operator used in intermediate optimiza-
tion steps and has an attribute g for the control
function

. BYPUnion, BYPSelect, and BYPJoin are operator
nodes for merge union, bypass selection and bypass
join, respectively

A.1 Example

Using this algebra, we illustrate the algorithm with a small
example. Two relations or extents x and y have to be joined
with a join predicate j which is conjunctively connected
with a disjunct of two simple selections x:a and y:b. The first
step translates the query into a simple plan featuring the
following characteristics (neglecting projections):

1. The top algebraic operator is always a BYPUnion,
2. The second level operator is always a Bundle,
3. The arguments of the Bundle are the relations or

extents to be joined and the control function.

Note that this translation isÐexcept for the top-level
BYPUnion operatorÐnot much different from the standard
translation of SQL queries. The outcome of the translation is
shown in Fig. 23a. The control function of the bundle is
j ^ �x:a _ y:b�. According to the algorithm, we have to select
a subset of the applicable predicates. Let us choose j and
x:a. Since j ^ �x:a _ y:b��j=false� results in false, a regular
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join is added to the bundle (Plan B1). For x:a, we have to

add a bypass selection. This results in replacing the original

bundle by two new bundles, one with control function j and

one with control function j ^ y:b (Plan B2). The same thing

happens to Plan B1 when chosing the predicate x:a. A

bypass selection has to be added resulting in Plan B1.1. To

Plan B2, we next choose to add condition y:b, yielding

Plan B2.1. Then, we have to add join operators. Since both

bundles have j as their control function, a regular join

suffices for both bundles. Introducing the join operator

leaves the bundles with one argument only. Hence, the plan

can be simplified to the one shown in B2.1.1.

APPENDIX B

DETAILS oF OUR BENCHMARK

Here are some more details of our benchmarks in

Section 7.4. Recall that we have three abstract object

extensions E1, E2, and E3, one restriction Ci for each

extension, and one join Jij for each pair of extensions. All

conditions depend on �-operationsÐone for a restriction

and two for a join. Thus, we obtain the following

dependencies between scanning the objects of the exten-

sions, performing �-operations, and evaluating conditions:

read�Ei� ! �i ! �Ci �1 � i � 3�
read�E1� ! �4 !�J12

 �5  read�E2�
read�E2� ! �6 !�J23

 �7  read�E3�
read�E1� ! �8 !�J13

 �9  read�E3�
Nine �-operations are necessary. For defining these opera-

tions independently of each other, we need at least the

following schema:

type�E1� � �a1 : T1; a4 : T4; a8 : T8�
type�E2� � �a2 : T2; a5 : T5; a6 : T6�
type�E3� � �a3 : T3; a7 : T7; a9 : T9�;

where Ti is a sort or object type (i � 1; . . . ; 9). In order to be

able to define the conditions, we need at least one function

fi defined on each Ti. The signature of fi is as follows:

fi : Ti ! int

If Ti is a sort, the function fi may only operate in main

memory and, otherwise (Ti is an object type), an OID may

be dereferenced by fi, i.e., it is a usual dot-operation.
Summarizing, the following operations are defined:
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reade1;a1;a4;a8
�E1� � obj�E1�

reade2;a2;a5;a6
�E2� � obj�E2�

reade3;a3;a7;a9
�E3� � obj�E3�
�i � �ti:fi�ai� �i � 1; . . . ; 9�
�Ci � �ti�ici �i � 1; . . . ; 3�

�J12
��t4�4t5 �J23

��t6�6t7 �J13
��t8�8t9

with �i 2 f�; 6�; <;<�; . . .g and ci a constant of type int.
Now, we can start generating Boolean functions. We

discuss queries derived from the generic forms:

bool1 � C1 _ �C2 ^ C3 ^ J12 ^ J23�
bool2 � �C1 ^ J13 ^ C3� _ �J12 ^ C2 ^ J23�
bool3 � C1 _ �J12 ^ �C2 _ �J23 ^ C3���
bool4 � C1 _ �J13 ^ C3� _ �J12 ^ C2 ^ J23�
bool5 � C1 _ �J12 ^ �C2 _ �J23 ^ �C3 _ C13����:

All functions (queries) can be evaluated without Cartesian
products, which is an indication for realistic queries. For the
functions bool1 and bool3, we omit the join condition J13.

We carry out two kinds of benchmarks: main memory
operations and I/O operations.

1. Main memory: The function fi is a main memory
operation. The specification is as follows:

type�Ti� � int
fi�ai� � for �j � 1; j < ai; j���;

== return value is ai

�i �
0 <0 for 1 � i � 3
0 �0 for 4 � i � 9

�
ci � variable:

The for loop in fi implements a random delay by
means of ai iterations in the loop. As mentioned
before, ai is distributed uniformly in the range
0 . . . 9999.

2. Dereferencing: The function fi causes additional
page faults. The functions fi operate on different
types:

type�Ti� �
int for 1 � i � 3

�a0i : int� for 4 � i < j � 9

�
and type�Ti� 6� type�Tj� for 4 � i < j � 9

fi�ai� �
ai for 1 � i � 3

ai:a
0
i for 4 � i < j � 9

�
�i �

0 <0 for 1 � i � 3
0 �0 for 4 � i � 9

�
ci � variable:

Both variants are printed side-by-side in Figs. 18, 19, 20, 21,
and 22.
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