The VLDB Journal (2000) 8: 156-177 The VLDB Journal
© Springer-Verlag 2000

Functional-join processing**

R. Braumand|, J. Claussen, A. Kemper, D. Kossmann

Universitat Passau, Lehrstuhlif Informatik, 94030 Passau, Germany; e-m@iiraumandl,claussen,kemper,kossnja@ub.fmi.uni-passau.de

Edited by O. Shmueli. Received February 28, 1999 / Accepted September 27, 1999

Abstract. Inter-object references are one of the key con- Inter-object references are implemented by storing the
cepts of object-relational and object-oriented database syseferenced object’'s object identifier in the referencing ob-
tems. In this work, we investigate alternative techniques tgect. Object identifiers can be implemented in different ways
implement inter-object references and make the best usand they come in different flavors: references can, for ex-
of them in query processing, i.e., in evaluating functionalample, be generated externally (e.g., within a legacy order-
joins. We will give a comprehensive overview and perfor- processing system), or they can be generated internally by
mance evaluation of all known techniques for simple (single-the database system. As a consequence, different techniques
valued) as well as multi-valued functional joins. Further- that depend on the kind of references used are applicable
more, we will describe speci@rder-preservingfunctional- in order to implement functional joins. Furthermore, our ex-
join techniques that are particularly attractive for decisionample from above shows that inter-object references can oc-
support queries that require ordered results. While most otur as part of single-valued and multi-valued attributes, and
the presentation of this paper is focused on object-relationahgain special functional-join techniques are required to deal
and object-oriented database systems, some of the resulgth both cases. Finally, the choice of the right functional-
can also be applied to plain relational databases bedause join method can be impacted by other operations that must
dex nested-loop joinalong key/foreign-key relationships, as be carried out in a query (e.g., sorting, other joins, or aggre-
they are frequently found in relational databases, are just ongation).
particular way to execute a functional join. We point out that the presented techniques are applicable

to object-relational systems in the same way as they are to
Key words: Object identifier — Logical OID — Physical OID object-oriented systems.
— Query processing — Pointer join — Functional join — Order-
preserving join

1.2 Related work

The purpose of this paper is to give a comprehensive
overview and thorough performance analysis of all known

1 Introduction functional-join techniques. The first (classic) work on func-
o tional joins was carried out by Shekita and Carey [SC90].
1.1 Background and motivation This work was partially incorporated into Starburst

[CSL+90], and it was later extended by [DLM93] to deal

Inter-object references are one of the key concepts of objeciwith parallel database systems. In our own previous work,
relational and object-oriented database systems. In an objegfe studied alternative ways to implement inter-object refer-
model, it is, for instance, natural to represent@umler ob- ences [EGK95], developed special techniques for functional
ject as an object with a reference taCaistomerobject and joins in the presence of multi-valued attributes [BCK98],
a set of references taneitemobjects. In such a database, it and special techniques that can be used for decision support
is just as natural that users initiate queries that involve funcqueries [CKK98]. All these papers, however, are each fo-
tional joins (also called pointer-based joins). A user could,cused on one particular aspect of functional-join processing,
for example, request the names of@ilstomershat ordered and in this paper, we will give a complete overview and fill
goods in the last two weeks, or a user could be interested iih all the open holes which were not addressed in previous
the prices of theLineitemsof this month’sOrders work.

* Some excerpts of this work appeared in the conference publication§ T.hrOUQhQUt this pgper, We. will concentrate ad hoc
[EGK5] and [BCK98]. unctional joins. That is, we will assume that there are no
** This work was partially supported by the German Research CouncilSPecialized join or path indices available. Join indices have
(DFG) under contract Ke 401/7-1. been proposed in [&78] and [Val87], and work on path

R. Braumandl et al.: Functional-join processing 157

OIDs
page counter] [, T2 counter] ; |] I __
slot
segment forward
unique [76 Jold]
[75 [t]iwo] 2 | 75 [1H0[2 75 1210 3
l 75 |2 IlO' 3 I object object
L 4 i ! |
I 1 T T
4 2 2 4
typical size in bytes page 75 page 76
Fig. 1. Physical OIDs
(9.5.1) a
(e,3.1) b
(5,1.2) .
(f,42) d
(d,4.1) e
(c,2.1) f
(a,3.2) g
(a,3.2) (b,1.2) (¢,2.1) (d,4.1) - - - (g, 5.1) (h, 2.2) (i, 1.1) ((hff)) h
(a) BT -tree (b) Hash Table (c) Direct Mapping

Fig. 2. Mapping techniques

indices is reported in [BK89, KM90, XH94]. A recent pa- the results of a comprehensive performance analysis com-

per describes two new join algorithms that are based on joirparing all alternative techniques with the help of a detailed

indices [LR99]. Both algorithms store the join result in two cost model. Section 7 concludes this paper.

files on disk, which need to be merged to obtain the actual

join result. Therefore, their algorithms achieve their perfor-

mance gains mostly in situations where the join needs to b Implementation of object identifiers

materialized and less in situations where the join result is

further processed (then the tuples have to be re-read frorBefore embarking on the details of alternative functional-

disk because their algorithm does not pipeline tuples to thgoin techniques, we would like to present different ways to

next operator). represent and implement object identifiers (OIDs for short)
Another line of work which we will not cover in detail in a database system. Two different kinds of OIDs can be

is so-calledobject assemblfKGM91, MGS+94]. Object as- found in databases today: (1) physical OIDs and (2) logical

sembly influences the order in which objects are read fronOIDs.

disk or retrieved from remote servers in a distributed system Physical OIDs encode the storage location, whereas log-

in order to reduce (disk or network) I/O cost. Object as-ical OIDs are storage location independent [KC86]. Logical

sembly is specifically designed &ssembleeomplex objects OIDs can, furthermore, be implemented in three different

that are hierarchically composed of sub-objects, and objectvays. In this section, we will describe physical OIDs and

assembly does not work well for general-purpose functionalogical OIDs and the three different ways to implement log-

joins which have been the focus of our work. Also, we ical OIDs, and we will discuss the trade-offs of all the al-

will concentrate on the execution of functional joins and ternative approaches.

ignore query optimization issues. Query optimization tech-

nigues which aim at finding the best evaluation order for

chains of functional joins are presented in, e.g., [GGT96]2.1 Physical OIDs

and [CD92].
A physical OID contains the (disk) storage location of an

object at the time the object was created. In a centralized
1.3 Overview of this paper database system, the storage location is typically defined as
a segment numbewhich identifies a file on a disk, page
The remainder of this paper is organized as follows. Innumber which identifies a block within a segment, and a
Sect. 2, we investigate alternative ways to implement ob-slot numbey which is the position used to find the object
ject identifiers. Section 3 describes different algorithms forwithin a page [GR93]. In a distributed system, a physical
performing functional joins along single-valued reference at-OID also contains the (IP) address of the server at which
tributes. Section 4 describes analogously different algorithmshe object was created [EKK97]. In addition to the storage
for performing functional joins along multi-valued reference location, a physical OID also containsiaique field so that
attributes. Section 5 presents a new class of functional-joirthe database system works correctly if objects are deleted.
techniques which are particularly attractive for decision sup-Suppose, for example, that objettreferences objecB us-
port queries that require ordered results. Section 6 preseniag a physical OID. Now objecB is deleted and a new

158 R. Braumandl et al.: Functional-join processing

Insertion

2.2.1 Mapping logical OIDs with a B-tree

i’ B-trees or B-trees [BM72, Com79] can naturally be used
L e to map logical OIDs to object addresses-tBees are im-
- -~ plemented in probably every commercial database system,
1]]] 0] so that no significant additional implementation effort is re-
(a) Split of a General- (b) Tuned Split for quired to effect logical OIDs with Btrees. For the purpose
Purpose B-Tree OID Mapping of OID mapping, however, it is advisable to use a specif-

ically tuned implementation of a Btree, because logical
OIDs are usually generated and inserted into tHetrBe
in ascending order. This insertion pattern is the worst case

objectC is created at the storage location at which objgct for standard textbook Btrees, because many (unnecessary)
was originally stored. To be able to trap that the object ref-SPIitS occur and 50% of the storage space is wasted, as shown
erenced by4 no longer exists, the physical OIDs of objects N Fig. 3a. For .th|s.reason, splits should pe implemented as
B and C must differ in the value of theitnique fields In d_emonstrated in Fig. 3b: rather than moving half of the en-
Exodus [CDRS86], for example, this is achieved by main-tries of an over-full node into the new node, only the last
taining a counter for every data page, which is increased@ntry is moved. Similar optimizations for insertions in as-

whenever a new object is created on that page. The curreff€nding order were incorporated in the AP-tree [SG89] in
counter value becomes part of the OID. the context of temporal databases. Examples of systems that

Working with physical OIDs is very simple: to derefer- SUPPOIt logical OIDs and use B-trees are Gemstone [MS87],
ence a physical OID (e.g., traverse the inter-object referenc€ 1ORE [CDF+94], and Oracle8 [LMB97].
from A to B), the database system simply decodes the stor-
age location of the referenced object which is part of the)))
physical OID. Special precautions must only be taken if ob-2-2-2 Mapping logical OIDs with hash tables
jects migrate to different pages. Migrations are, for instance, ,
necessary if objects grow as a result of update operations. S an alternative to a Btree, a hash table can be used to
an object migrates, torward which contains the new stor- Map logical OIDs. A variety of different hashing techniques
age location of the object is established at the place at whicat can be used for this purpose have been described in the
the object was originally stored. If an object migrates sev-literature; see, e.g., [ED88] for an overview. An important
eral times, this forward is updated so that it always containguning factor for any kind of hash table is thash function

the right storage location and an object can be read with al® map OIDs, a good hash function can easily be found be-
most two “hops.” cause OIDs are usually generated in ascending order, so that

Two example physical OIDs are shown in Fig. 1. The Simplemodhash functions work well. Examples of database
figure also shows that the object referenced by the first OIDFYStems that use hash tables to map logical OIDs are Versant
is still stored at its original location, whereas the object ref-[Ver97] and Iltasca [Ita93].
erenced by the second OID was migrated to another page,
so that aforward for that object had to be established. Ex-))
amples of commercial systems that make use of physica#-2-3 Direct mapping

OIDs are Q [02T94], ObjectStore [LLOW91], Objectivity) .
[Obj96], and (presumably) lllustra [Sto96, p. 57]. B*-trees and hash tables find the addresses of objects by

comparingOIDs. The third approach we describe is called
direct mappingand it works byencodingan address of a
so-calledhandleinto an OID.Handleslook and work like
forwards used if physical OIDs are employed:handle of

an object contains the address of the object, and if an object
Logical OIDs do not contain the storage locations (or ad-is migrated, thehandleis updated. The difference between
dresses) of objects; i.e., logical OIDs doeation indepen- systems that employ logical OIDs with direct mapping and
dent To find an object using its logical OID, a mapping systems that rely on physical OIDs is that systems that use
structure is required, whicmapsthe logical OID to the ob- direct mapping allocate laandlefor every object at the time
ject’'s address. If an object is migrated, the object’s entry inthe object is created, whereas systems that use physical OIDs
the mapping structure is updated in a similar wayfas allocate aforward only when an object is migrated.
wardsare updated when objects migrate and physical OIDs Going into more detailhandlesare organized in exten-
are used. Three different kinds of mapping structures areible disk-resident arrays, so-calledndle segment# han-
used in practice: (1) B-trees, (2) hash tables, and (3) directlle segmentontains any number dfandle pagesand every
mapping tables. These three mapping structures are shown lrandle pagecontains a fixed amount aflots with handles

Fig. 2 (letters denote logical OIDs and number pairs denotéA handle contains the address of an object andiraque
addresses of objects composed of the objgmige number field which is used to detect dangling references that refer to
andslot numberThe segment number is ignored in the illus- deleted objects in the same way as in systems that employ
trations of this paper). We will describe these three mappingphysical OIDs. A logical OID is composed of the address of
structures in the following. Furthermore, we will describe ahandle(i.e., handle segment numhérandle page number
how these mapping structures can be partitioned. andslot numbey and aunique field

Fig. 3. Splitting of a leaf page in a B-tree

2.2 Logical OIDs

R. Braumandl et al.: Functional-join processing 159

— creation site Table 1. Number of disk 1/O requests to read an object

Free S Bit page number Linear Direct
1o ppace PImap slot number Physical OIDs B*-trees Hashing | Mapping
__1()11()01011 X
unique lor2 . 1...(1+logn) . 2 . 1o0r2

logical OID [42] 1] 3
Table 2. Size of mapping structures

Hondle Page 0 Page 1 # of objects ‘ B*-trees ‘ Linear Hashing‘ Direct Mapping
Segment LT 1118C) CIPTT8IY [200,000 9 MB 13 MB Y 5 MB
5,000,000| 204 MB 252 MB 118 MB
Seament 01 [02] [08]01] [05] 0]
Page0 Pagel Page?2 2.3 Logical OIDs with probable position pointers

Fig. 4. OIDs, handles, handl , and hand| t " . :
9 S handies, handle pages, and handle segments Probable position pointers (PPP) have been proposed in the

late 1970s [GR93]. The idea is to generate logical OIDs
. . . which contain a PPP, which is an address at which the object
Figure 4 shows an example logical OID and h.OW it ref- can most likely be found. When such a PPP-enhanced OID is
erences dhandlewhich, in turn, .referen'ces'an opjecﬁ. The dereferenced, the PPP is traversed first, and only if the object
figure also shows dree space bitmapvhich is maintained is not found at that address thegical part of the OID is
for everyhandle segmenthis bitmap is used o fmc_i eMPY sed to find the object (using, e.g., direct mapping) and the
SlOIS in the'har'ldle segmentlwhen a new object IS createtypp jg updated. Because this' appr’oachhybiid of logical
In Fig. 4, this bitmap has a bit set for evesiptused in the and physical OIDs and, thus, inherits most of the advantages
%nd disadvantages of physical and logical OIDs, we will not
discuss this approach further but, rather, concentrate on the
two underlying mechanisms, i.e., physical and logical OIDs.
One particular disadvantage of PPPs is that PPPs require the

Curre_ntly, we knovy of no commerc_ial system that SUP” se of very large OIDs and, thus, databases tend to become
ports logical OIDs using direct mapping. Direct mapping very large if PPPs are used
has, however, been used in a couple of research prototypes; '

e.g., [HZ87, BR90, WW90, BP95]. Also, variants of direct
mapping have been used in CODASYL database systems., 4 piscussion

nized in the granularity ohandle pagesand, of course, it
is also possible to compress tfree-space bitmapecause
most of its bits will be set if objects are only rarely deleted.

In this section, we would like to briefly summarize the trade-

2.2.4 Partitioning of mapping structures offs of physical OIDs and the three approaches to effect
logical OIDs.

In very large databases with many objects, it is usually not
a good idea to keep the whole mapping information in aRetrieval performanceUsing physical OIDs, an object can
single mapping structure. For direct mapping, we alreadybe read from disk with a single I/O request if the object
showed in the previous subsection how the mapping inforwas not migrated and with at most two requests if the object
mation can be partitioned into multipleandle segments was migrated. Using logical OIDs and direct mapping, an
Fortunately, partitioning is also possible if Brees or hash object can be read from disk with at most two 1/0 requests.
tables are used. One popular approach is to establish a seps shown in [EGK95], it is possible to read an object with
arate B-tree (or hash table ohandle segmeptfor every a single request for many applications because the relevant
class of objects in an object-oriented database system. (lhandle pagesan effectively be cached in main memory. Us-
an object-relational system, one mapping structure would béng a B'-tree, 1 +log: pages, the height of the*Bree plus
established for every type/table of objects — same conceptne, must be read from disk in the worst case. As shown
just different terminology.) This approach is, for example, again in [EGK95], however, one or two requests are usually
used by Itasca [I1ta93]. In Itasca, OID mapping is, thus, carsufficient if the cache is large enough to keep the relevant
ried out in two steps. First, the class name which must beparts of the B-tree main-memory resident. Using hash ta-
encoded in the OID, is hashed to get the right per-class hasbles and linear hashing [Lit80], our experiments showed that
table. Then, that per-class hash table is probed to get the olabjects can be retrieved from disk with two requests (one
ject’s address. Since the number of classes is typically relarequest for the hash table lookup and one for accessing the
tively small, the whole class-name hash table can be kept imbject), almost independent of the size of the cache. Table 1
memory, while the whole per-class hash tables can usuallgummarizes these results.
not be kept in main memory. Note that this kind of partition-
ing of the mapping information is carried out implicitly by
relational database systems: in relational databases, primafize of the mapping structurélable 2 shows the size of the
indices are naturally constructed for every table individually mapping structure if logical OIDs are used. We can see that
and there is nalobal indexthat keeps the keys of all the independent of the number of objects in the database, the
tuples of the whole database. mapping structure is the smallest if direct mapping is used

160 R. Braumandl et al.: Functional-join processing

and the largest if hash tables are used (linear hashing as &1 Example schema and query
[Lit80]); B*-trees (with prefix compression) lie somewhere

in between. _ Throughout this section, we will describe algorithms using
Obviously, it is not always possible to exactly deter- the following example schema. The schema consists of two

mine the space overhead of systems that employ physicghples R and S, and the objects stored in tabl refer to
OIDs. If no objects are migrated, the space overhead is Oobjects stored in tabls.

and if objects are migrated, the overhead corresponds to the " create typeR t as (create typeS.t as (
space occupied bforwards Note, however, thatorwards R_Data char(200), S_Attr number,

fragment data pages and cannot be stored without off-cuts, Sref ref(S.t), S.Data char(200),
whereashandlescan nicely be packed intbandle pagesf) .
direct mapping is used.

create tableR of R_.t; create tableS of S(t;

The example query we wish to discuss traversesSadif
Size of OIDs.Since OIDs are used to represent inter-objectreferences of the objects stored in taBlén order to retrieve
references in the whole database, the size of an OID stronglhe S Attr attributes of the matching objects stored in table
impacts the size of the entire database. Physical OIDs arg. That is, this query involves a functional join betweBn

usually 12 bytes long: 4 bytes each for fhegge numbeand and $ and it can be defined as follows:
the unique field and 2 bytes each for theegment number

and theslot number Likewise, logical OIDs are 12 bytes selectr.*, r.Sref.SAttr
long if direct mapping is used. If Btrees or hash tables from R 7;

are used, 8 bytes are usually enough to implement logic

OIDs. (With 8 bytes, the database system can generate up

254 objects, which is more than enough.) Most systems tha;
use logical OIDs with B-trees or hash tables, nevertheless
have OIDs which are 12 bytes long; e.g., in order to encod
the class name of an object into an OID.

the following, we will simply ignore the handling of the
Data (and S Data) attributes—they are just included in
he schema because our performance analysis includes these
’é)ulky attributes to model realistically sized objects.

3.2 The n#ave approach

Other considerationsAs noted in [EGK95], concurrency
control and recovery of the mapping structure are easielThe ndve approach to execute our example query is to scan
to implement and faster if direct mapping rather thait B through tableR and follow everySrefreference individually.
trees or hash tables are used. Another observation made iThis approach corresponds (conceptually) to a traditional
[EGK95] is that hash tables require tuning: hashing worksnested-loop join, and this approach can be applied indepen-
best if the size of the hash table is known in advance, andient of the kind of OID (physical or logical) and mapping
hashing shows very poor (insertion) performance if the sizeechnique (B-tree, hashing, or direct mapping) used. Fig-
of the hash table exceeds the anticipated size. Even if thare 5 illustrates this rige approach for a system that uses
size is known in advance, it is more expensive to bulkloadlogical OIDs and direct mapping.
a hash table than to bulkload &-&ee or ahandle segment

From all this discussion, we might conclude that either
physical OIDs or logical OIDs with direct mapping are the
way to go. However, throughout this section, we implic-
ity made the assumption that all OIDs are generated by . .
the database system. But some applications require extef'® Seécond way to execute our example query is o ig-
nally defined OIDs. Externally defined OIDs are, for exam- N°re the fact.that thSreff_|e.Ids contain OIDs and carry out
ple, necessary to integrate legacy systems. Neither physicdi€ duery using regular join methods such as nested-loops,
OIDs nor logical OIDs with direct mapping can be used to SOT/merge joins, or hash joins. This approach can be ef-
support externally defined OIDs. In this casé;tBees and fected by re-writing the query as follows (of course, a good
hash tables are the only viable options, so that we will con-dU€ry optimizer performs the re-writing).
tinue to cpnsider these two pptions to implement _O!Ds .When selectr.*, s.SAttr
we describe techniques to implement functional joins in the
following sections.

3.3 Value-based functional joins

from Rr,Ss
where r.Sref =5.0ID;

Obviously, this approach works again for any kind of OIDs
3 Functional joins along single-valued references and independent of the mapping technique used. One restric-
tion, however, is that all objects stored in talflemust be
We now turn to a description of alternative ways to imple- self-identifiable i.e., theOID can be considered as a (pos-
ment functional joins (also callggbinter-based joinsalong sibly not fully materialized) field of an object. The second
single-valued reference attributes. We first present an exanrestriction is that th&refreferences must b&copedi.e., all
ple that involves a query with such a functional join and the objects referenced bf objects must be stored in table
then present alternative technigues, some of which depend. The approach is shown in Fig. 6 using a (traditional) hash
on the way OIDs are implemented. join method to execute the join.

R. Braumandl et al.: Functional-join processing 161

R e S RS
oo e a|32 OIDs _ S_Attr OIDr _ S_Attr
s ’ 12| 11 & 17 ™ 11
o e bl 1.2 Lo) I " s
T3 c c| 21 21 . 19 rs 19
" g) T4 15

; d| 41 22| h 13
5 1 [g A~ 5 rs 17
6 d el 31 3.1 e 18 e 10
7 a - 3.2 a 12 - b
rs c f|42 41 d 10 " o
ro h g | 5.1 4.2 f 14 ro 13
e ! h| 22 5.1 g 15 7'%0 1'7
i | 1.1

Fig. 5. Naive functional join with direct mapping

R,
n. Sl
R T2 e —MNSref-0IDs 1T S
OIDg Sref st (3 e 18 OIDs S_Attr
T b r7 a RS a 12 1.1 i 17
ro e ot OIDr S Attr . . 1.2 b 11
:3 (L T2 18 < 2.1 c 19
N 9 e rs 17 S: | nloms) 22| h 13
5 ¢ h(Sref) R : : b 11 :
. d : : e 3.1 e 18
T6 N | T b - 19 ‘
7 a rs ¢ 1 11 ; 13 3.2 a 12
: ‘ s
rg c ra g r3 19 4 10 4.1 d 10
- h e d : : P 4.2 f 14
710 7 :‘8 }LL T g 15 5.1 g 15
. o
) N Sref-0IDs ¥ :

Fig. 6. Value-based functional join (hash join)

3.4 Special functional-join techniques for physical OIDs R objects of a single partition fit into main memory. The
query result is then obtained by joining (with the help of an
As we will see in Sect. 6, both the ive approach and value- in-memory hash table) the first partition & objects with
based functional joins show poor performance in many sitthe first chunk ofS objects, then joining the second parti-
uations: the niaee approach can be the cause of excessivaion of R objects with the second chunk &f objects, and
random disk 1/0 and value-based joins do not exploit theso on. Figure 8 illustrates this process. As an alternative to
address information contained in OIDs and/or the mappingange partitioning, it is also possible to partition tReob-
structures. In this sub-section, we will describe approachesects using hashing. In this particular case, however, range
that often do better and can be used by systems that enpartitioning is more attractive because it guarantees that all
ploy physical OIDs. We will first describe techniques which the S objects referenced by the objects in a single partition
were pioneered by Shekita and Carey [SC90]. Their work,of R objects fit into main memory. Choosing the partition

however, ignored the presencefofwards so that we will size for range partitioning should be supported by database
describe how their techniques can be extended to deal witBtatistics. If some partitions do not fit into memory, they
forwardsat the end of this sub-section. have to be re-partitioned.

3.4.1 Sort-based functional-join evaluation

3.4.3 Dealing with forwards
The idea of this technique is tsort the objects of table
R in ascending order of thpage numberof the physical)
OIDs stored in theSreffields. After this sorting step, the There are two different ways to handle the occurrence of
matching$ objects can be read from disk sequentially. Theforwards while evaluating functional joins based on sorting
whole process is shown in Fig.7. (The bold typg@d and ~ Or partitioning. The first appro_ach is to immediately qhase
6.2 in the figure represent forwards. Note that we only sortevery forward, thereby accepting the penalty that additional

by the page numbersor; andrs need not be swapped in Page faults may cause page thrashing. This approach is only
table R,;.) efficient if there are very few forwards. Alternatively, in-

stead of immediately chasing the forwards, all forwards can

be collected during the initial algorithm evaluation and pro-
3.4.2 Partition-based functional-join evaluation cessed in a separate pass afterwards. This way we avoid

random 1/O because we can sort or partition the forwards at
The idea of this technique is to range-partition tReob- the end. On the negative side, collecting forwards requires
jects in such a way that all th€ objects referenced by the additional disk I/O and/or additional main-memory buffers.

162

S
R R OlDs S Atir RS
OIDgr Sref - 13 11711 6.2 OIDr S_Attr
1 1? rs 11 12| 1.2 11 1 }1
v ‘;'1 o 11 21 | 21 19 o 1;
3 : rs 21 22|22 - 6.1 1o
Ta 5.1 r 2.1 T3 19
e 1.1 8 : 3.1 | 3.1 18 r 19
5 —sort— o . — 8
re 41 :9 g? 3.2 | 3.2 12 o 13
rr 3.2 T"’ 39 41 | 41 10 2 18
s 2.1 T 42 | 42 14 7 12
T6 4.1 .
T 2.2 ra 5.1 51 | 5.1 15 T 10
T10 1.1 T4 15
6.1 | 2.2 13
6.2 | 1.1 17
Fig. 7. Functional join with physical OIDs based on sorting
R, 5 RS
R neo OIDs SAur OlDr _ S.Attr
OIDr__ Sref T . 11 [11 = 6.2 1 11
o L2 st 1212 11 T3 19
T2 3.1 T8 2.1 rs 17
2.9 21| 2.1 19
T3 2.1 79 ‘ 5« T8 19
11 22|22 —6.1
T4 5.1 Va 710 T9 13
e 11| 31 | 3.1 B | 7
re 41 \ : 3.2 | 3.2 12
o 3.2 R, 41| 41 10 :
rs 2.1 T2 21 42 | 42 14 72 18
ro 22 e 51| 5.1 15 "4 15
710 1.1 Te g; ~oT ’ T6 10
T .
! 6122 13 r 12
6.2 | 1.1 17
Fig. 8. Functinal join with physical OIDs based on partitioning
Ry RM, S
R 1 b Map 1 1.2 OIDs S _Attr
OIDgr Sref r3 c a | 3.2 T3 2.1 5,
1 b T6 d|., by | 12 T8 2.1 1.1 i 17
T2 e r7 a . 5 1.1 |~ 19 b 11
T3 c T8 c c| 21| M 17’9 ?? 21 ¢ 19
ra 9 e d a1 | o : 22| h 13
75 ? hM — hs N
T6 d \ R e | 3.1 N : Sa
T7 a T2 e RM-> 3.1 e 18
rs ¢ 4 g fl42 re A1 32| a 12
ro h 5 [NN g1 51| M 7 3.2 4.1 d 10
10 i o h b (22 "2 31~ 42 ! 14
10 K T4 5.1 5.1 g 15
il 1.1
Fig. 9. Functional join with logical OIDs based on partitioning
R Map g RS
OIDg SrefSet al 3.2 OIDs S.Attr OIDgr {S_Attr}
1 {0, b 12 11 3 7 1 {11,
e, 1.2 b 11 187
() c| 21 2.1 ¢ 19 127
9» d| 41 22| h 13 -
i} ~> ~r — }
r2 {a, e | 31 3.1 e 18 e (12,
d, 3.2 a 12 10,
h, [z 41| d 10 13,
c, g | 5.1 4.2 f 14 19,
i 17
} w22 51| g 15 }
: il 11

Fig. 10. Naive pointer chasing

R. Braumandl et al.: Functional-join processing

RS
OIDr S_Attr
1 11
T3 19
T8 19
5 17
T9 13
T10 17
T6 10
r7 12
T2 18
T4 15

R. Braumandl et al.: Functional-join processing 163

3.5 Functional-join techniques for logical OIDs vorpy, (nest/group)

In this sub-section, we will show how sort-based and parti- |
tion-based functional-join-processing work in the presence M,

of logical OIDs. The key observation is that we must carry V4 .
out two functional joins in the presence of logical OIDs.
That is, we can represent our example query as follows: ‘Partiﬁon/ Sort/HOHe‘ s

(R x Map) x S. |

The second join (i.e., the join witH) can be executed using P
exactly the same sort-based and partition-based techniques e NS
as with physical OIDs (see the previous sub-section). To
implement the first join with the mapping structukéap
(i.e., R x Map), we can also apply sorting and partitioning, ‘
but we must respect the following restrictions which depend
on the mapping technique.

Hashing. SortingR directly by Srefand then probing the
hash table in ascendin§ref order does not make
sense, because probing a hash table with ordéref$ Fig. 11. Evaluation based on flattening/grouping
is just as expensive as with unorder8ckfs To take
advantage of sorting and (hash or range) partitioning,)
we must first apply the hash function of the mapping 4-1 Example schema and queries

structure to theSrefvalues in order to find the page)))
numbers of the corresponding buckets of the hash taFOr the subsequent discussion of the algorithms, we change
ble, and then sort or partition these page numbers. the example schema of Sect. 3 to include a set-valued refer-

B*-trees. Here, directly sorting by Srefis useful because ©nce attributeSrefSet
sorting allows to read the leaves of th&-Bee sequen- create typeR -t as (create typeSct as(
tially. Range partitioning is also viable, but it is less R Data char(200), S.Attr number,
effective than sorting for physical OIDs because of the SrefSetse(ref(S,t)), S.Data char(200),
complex internal structure of a*Bree which makes
it difficult to predict the right range predicates. Hash
partitioning does not make sense fof-Bee mapping.

Direct mapping. Sorting, range, and hash partitioning ca

‘ partition/sort/none ‘ Map

L SrefSet— sref (flatten)

R

create tableR of R_t; create tableS of S_t;
The example queries we wish to discuss are the following —
Pne with an aggregation, the other withdut:

: ; ; ; ; lectr.R_Data selectr.R_Data
naturally be applied. With direct mapping, a logical ~ S€ : ’
OID can be interpreted as a physical OID ofiandle (select sunfs.S.Attr) (selects.S.Attr
of an object. from r.SrefSets) from r.SrefSets)
from R r; from R r;

Figure 9 illustrates how a functional join with directly
mapped logical OIDs can be carried out. In this particular
scenario, direct mapping is used, the first jaih Map, is
implemented using range partitioning &f and the second
join, the join with S, is also carried out using range parti-
tioning. Comparing physical and logical OIDs, the price for
logical OIDs is an additional join with the mapping table.
On the positive side, systems with logical OIDs need not
worry aboutforwardsduring functional-join processing. We
will study this trade-off in more detail in Sect. 6.

In both queries, the grouping that is given by the nested ref-
erence seERefSehas to be maintained during (or restored
after) the functional-join evaluation. In the query on the left-
hand side, the elements of the nested sets are aggregated. In
the query on the right-hand side, all elements of the nested
sets are output. Asking for the sum of the price&iokitems

of every Order, one of the queries mentioned in the intro-
duction, is a more intuitive example that follows the pattern

of the left query.

4 Functional joins along nested reference sets 4.2 The néve pointer-chasing algorithm

We now turn to a discussion of functional-join-processing The nave, pointer-chasing algorithm scafsand traverses
techniques in the presence of multi-valued reference atevery reference stored in the nested Se¢fSetindividu-
tributes. Multi-valued references are either present in thedlly. For logical OIDs, again, the mapping structure must
tables of the database — as assumed here — or created Ba probed to obtain the address of the referenteabject.
the fly by special operators like nestjoin [SABdB94] or the If the combined size of thélap and S exceeds the mem-
binary grouping operataf’ [CM95]. We will extend our ex- ~ Ory capacity, this algorithm performs very poorly because
ample from the previous section and then describe alternats execution involves a great deal of random disk 1/O.

tive funCtlonal-Jom technlques that expl0|t the pre-grouping = Note that the query on the right-hand side is not standard SQL because

given by the nested reference sets, assuming that the neStﬁQ nested query returns a set of tuples. However, some ORDBMS products
reference sets are clustered as done by all database systegaSarready support this query, and in OQL this query is also expressible

we are aware of. (in a slightly different syntax, though).

164

4.3 The flatten algorithms

R. Braumandl et al.: Functional-join processing

That is, the partition/merge algorithm first flattens tRe

objects and partitions them, then applies the mapping from

Flatten algorithms work in three steps. First, they flatten!
(unnest) the set-value&refSetattribute to obtain single-

ogical to physical OIDs, partitions the resultifM, then

re-merges the initial partitioning and performs the join with

valued reference attributes. Second, a single-valued funcS, and finally merges the partitions to restore the over-all
tional join is performed, using one of the special-purposegrouping of the fla?z tuples belonging to the sanieobject.

algorithms based on sorting or partitioning (Sects. 3.4 and
3.5) or a value-based functional-join method (Sect. 3.3). In
the third step, the initial grouping is re-established by means
of an (expensive) sorting or hashing operation. This three-
step process is shown for logical OIDs in Fig. 11 for a sort-
ing, partitioning, or do-nothing approach to implement the
single-valued functional joins. If a value-based functional-
join method is used, the join with thiglap is not needed.

Figure 12 shows an example evaluation using partitioningThat is,Map is partitioned into partitiong/y, ..
Sinto Sy, ..

for both theMap and S.

We need two partitioning functions,; andhg:

has partitions theMap into N memory-sized chunks by
mapping logical OIDs of5 to the partition numbers 1 to
N and

— hg partitions S into K memory-sized chunks by map-
ping addresses of objects to the partition numbers 1
to K.

., My and
., Sk . Actually, these partitioning functions are

not applied onMap and S but on the logical OIDs stored

i
4.4 The partition/merge algorithr®(PM)* M
for logical OIDs

n the nested sets d? and on their physical counterparts in

RM after applying the mapping.

In more detail, the algorithm performs the following four

steps.

The nave algorithm obviously suffers from a lack of lo-
cality, resulting in random 1/O. The flatten algorithms incur

high costs for restoring the grouping at the end. The question

arises whether an algorithm can be designed that achieve
locality and maintains the grouping. For this purpose, we
proposed the partition/merge algorithm in [BCK98]. This al-
gorithm retains the grouping of the flattenBduples across
an arbitrary number of functional joins. This is achieved by
interleaving partitioning and merging in order to retain (very
cheaply) the grouping after every intermediate partitioning
step. This is captured in the notatid(PM)*M. We will
first describe the basi®(PM)'M algorithm which is ap-
plied when evaluating a unary functional join under logical
OIDs. More intermediat®M-steps are needed when longer
functional-join chains are evaluated (cf. Sect. 4.5).

In the P(PM)*M algorithm two joins are performed: (1)
R is joined with theMap to replace the logical OIDs by their
physical counterparts and (2) the result is joined vithFor
evaluating the joins we will adapt the hash join algorithm.
The probe inputis R for the first join andR with the logical
OIDs replaced by their physical counterparts — then called
RM — in the second phase. Unlike the original hash join
algorithm, only the probe input is explicitly partitionéd.he
build input i.e., theMap and S, are either faulted into the
buffer or — if range partitioning is applied — loaded explicitly
(i.e., pre-fetched) into the buffer. In both cases, however, a
partitioning step for thdlap and.S involving additional disk
I/O is not required.

The successive steps of the partition/merge algorithm can

be visualized as follows:

flatten andpartition join with Map to obtainRM

and partition RM —
ft N-way (V * K)-way
reimergeRM to K partitionsH merge

and join with S

2 For simplifying the presentation, we assume that the partitioning can be
done in one recursion level — however, this is not required for the algorithm
to work.

1. Flatten the neste8refSet and partition the flaiz ob-
jects/replicas intoN partitions, denoted?;, ..., Ry.
That is, for every object{{Sref,...,Sref}] € R gener-

s ate thd flat tuples f,Sref], . . ., [r,Sref] and insert these
tuples into their corresponding partitiohg,(Sref), ...,
har(Sref), respectively. Of course, thér attributes
(R.Datain our example query) need not be replicated. It
is sufficient to include them in one of the flat tuples or,
often even better, to leave them out and re-merge them
at the end (cf. Sect.4.6). The partitions are written to
disk.

2. Forall 1< < N do:

— For (every) partitionR;, the K initially empty parti-
tions denotedRM;4, ..., RM,x are generated.
— ScanR; and, for every element-[Srel € R;, do:

— Replace the logical OIDSref by its physical
counterpartSaddrobtained (probed) from the
th partition M; of the Map.

— Insert the tuplesf,Saddf into the partitionR M,
wherej = hg(Sadd)).

Note that all OID mapping performed in this step
concerns only partitiord/; of the Map, which is ei-
ther prefetched or faulted into the buffer.
Having completed step 2, all thé&v « K partitions
R]V[]_]_, . ,R]\/[;LK, Rle, ceey RMyg are on disk.

3. Forall 1< j < K, do:

— Scan theN partitions RMy;, ..., RMy; simultane-
ously and merge them into a single tuple stream.
The merging is done to restore the grouping of the
flat R tuples according td2 OIDs; that is, the merg-

ing generates the tuple stream.,[...], ..., [r1,.-.],
[7’2,...],
— For every tuple #,Saddi, the functional join with

S is performed by looking up thé& object at loca-
tion Saddrand the relevant information, hegeAttr,

is retrieved. Insert the tuple-S.Attr] into partition
RMS,;.

All S objects referenced in this step belong to the
j-th partition.S; of S which is pre-fetched or faulted

R. Braumandl et al.: Functional-join processing 165

(R RM, 5

] M
R 710 @ r11.2 OIDgS_Attr RMS RS
OIDk SrefSet 1 C| al 3.2 r12.1 S T OIDg {S_Attr}
1 {b, roal ., ro2.1 11 4 17 ! 1 {11,
b 1.2 ~> 1 19
¢, r2d [r11.1 12 b 11 s 10 19,
© r2¢ 2.1 M ”f'f 21 ¢ 19 17 1;
9 a d 4.1 et 2.2l h 13 o 13| o, 15"
2 T hs |1 3 =y 172 5}
2 Aa Ro| el31] N L= 2 1l | {19
d, e — RM,| 3.1 e 18 2 10 13,
h, gl f]142] =32 32 a 12 r2 17,
. 4.1 r1 18 12
¢ T g5 My [r2d 41 d 10 15 ,
i} r2h) rou ri3.1™ 42 f 14 ! 10}
il D22 n5l sl g 15 Do .)
s 11 _
Fig. 12. Flattening, partitioning and (re-)grouping
RMi:
T1 1.2
M, T1 2.1
7 R w» re 2.1 g RMS; T
OIDy SrefSet b al32| 5 | OIDs S_Attr r 11 OIDr {S_Attr}
r1 {b roel A o Sy r1 19 - i
e ? T2 a bl 1.2 s RM, - 1.1 i 17 ry 17 19 ’
c’ re d o1 pY re 320 N\ 19| b 11 R re 19 17’
) cl 2. ;
g, "2 e ra 41 21| ¢ 19 r2 }i 18,
i} A d| 4.1 Do 22| h 13 T2 N 15}
h
M\‘ R- el 3.1 RM->1 Sa Dol %°—>
T2 {a, e . 1 L1 31| e 18 RMS.| = T2 {19,
d, L g fl 4.2 re 2.2 3.2 a 12 r. 18 ii,
Z’ i Aol 11\ a1l 4 10 || 15 Lo
z}’ ro h| ~ g| 5.1 |hg .. 42| f 14 ry 12 10i
. T2t hl 2.2 hY —— 5.1 g 15 r2 10 .
. : RM>> A
T1 3.1
i 1.1 1 5.1

Fig. 13. Partition/merge-join

into the buffer — again, the partitioning ensures that In comparison, the partition/merge algorithm induces

the entireS; fits into memory. the same 1/O-overhead as the basic flatten algorithms of
After completion of step 3, th& partitionsRMS,, .. ., Sect. 4.3. However, the CPU cost of the partition/ merge
RMS; are on disk. algorithm is far lower than for the basic flatten algorithms
4. Scan all partitionRMS;, . . . , RMSg simultaneously and because there is no in-memory re-grouping involved. The flat
re-assemble the flat tuples into the nested representatiotiples of the same? object are always in sequential order
i.e., group the tuples according #-OIDs. in all the partitions. Furthermore, the(PM)* M algorithm

gives room for optimizations based on the retained grouping

For N = K = 2, the partition/merge algorithm is exem- that are not applicable to other algorithms (cf. Sect. 4.6).
plified in Fig. 13, using range-partitioning functions fos,
andhg. As emphasized in Fig. 14, the partition/merge algo-)))
rithm writes the (augmentedy to disk three times: (1) to 4.5 P(PM)*M for physical OIDs and multi-way functional
generate theV partitions of the probe input for the applica- 10NS
tion of the Map, (2) to generate thév « K partitions after . , , i
applying theMap, and (3) theKX partitions obtained after The_partltlon_/merge algonthm is applicable for systems em-
joining with S. The intermediateV « K-way partitioning ploying physmal OIDs in the same way as for I.oglcal OIDs..
and subsequen¥-fold merging of theN « K partitions into N the S|m%le case of a one-step functional join the vari-
K partitions is the key idea of this algorithm. This way the ant P(PM)"M is applied, i.e., the plan then consists of
grouping of the flattened? tuples is preserved across the @ Single partition and a single merge step, and no inter-
two partitioning steps with different partitioning functions '€aved partition/merge operation is applied. However, the
har andhs. Please observe that immediately distributing the full-fledged P(PM)* M algorithm is necessary if the query
objects into thek partitions after applying thap would ~ traverses a longer pa}th expression. Consujer, for example,
have destroyed the grouping dd that we want to retain an additional typd” (with attributeT_Attr) that is referenced

in every partition. It is essential that the fine-grained parti-oY SS-;gr?f TThefn, a query may traverse the path expression
tions are generated first and that the re-merge is performeg 2% s ™ 7 as follows:

afterwards, as highlighted in Fig. 15.

166

?

partition

] o
£ Map,
R_E
:s\
& g
- =
o — o — %
\ a
Map,

merge

Fig. 14. Disk writes of the partition/merge algorithm

s

Fig. 15. The partition/merge-pattern of the(PM)* M algorithm

M (group)

/N
P Maps
I
I‘L SrefSet:s

R

(a) Logical OIDs

M (group)

7\

\
l“ SrefSet:s
R

(b) Physical OIDs

Fig. 16a,b.Plans for a query with a path expression

selectr.x, (select sunfs.Tref. T_Attr)
from r.SrefSets)

from R r

Such a query may, for example, sum up the base prices oﬁ

the Productsof the Lineitemsof all Orders

The P(PM)*M evaluation plans for logical OIDs and
physical OIDs are outlined in Fig.16a and b, respectively.
Both plans unnest th8refSet- but in intermediate stages
they retain the grouping of the sanReobjects by interleaved
fine-grained partition/merge operations. When comparing th
two plans, they differ mainly in the higher number of func-
tional joins needed for mapping logical OIDs. We assume
separate mapping structurbtaps and Mapy for Sand T,
respectively. The plan based on physical OIDs draws profi
from the interleaved partition/merg@ M) steps in the same
way as the one based on logical OIDs, i.e., the grouping b
R and S objects is retained across the successive function
joins. Therefore, the final grouping operation is carried out

as a (very cheap) merge, in both plans.

R. Braumandl et al.: Functional-join processing

B
ﬁ S1
-—
(buf])
_— L — X e merge
Gt =X
S2
-
Guf) o
2
& f
\.

4.6 Fine points of the?(PM)* M algorithm

There are still some fine points in the design of the
P(PM)*M algorithm that we would like to address in the
following.

Obtaining an order onk. The algorithm requires an order
on the R objects for the merge iterators. When comparing
objects from different partitions — e.g., tuple,[3.2] from
RM;, and fr1,3.1] from RMy; in Fig. 13 — it has to be de-
termined in what order; andr, were stored in the original

R. If there is no such order given by the key Bf an addi-
tional sequence number is inserted during the first “flatten-
and-partition” step and used for the succeeding merge steps.
Note that all flattened tuples of one object are assigned
the same sequence number.

Projecting R attributes. If “bulky” attributes of R are re-
guested in the result, they may severely inflate the amount
of data that is written three times to patrtition files. To reduce
this effect, several measures can be taken: First, the repli-
cation of attributes during flattening is unnecessary. Instead,
for everyr; € R, the attributes are written only once. Sec-
ond, since the algorithm retains the orderifthe attributes
could be projected out and merged in later for the final re-
ult. In contrast to the value-based join and the standard
atten algorithm, the re-insertion a® attributes is in fact
very cheap, since botR and the result have the same order
and theR attributes are simply handled as an additional —
(K + 1)-st — input stream of the last merge operator. If the
second scan o would be expensive (e.g., because of high
selectivity on R), the bulky attributes of the qualifying
%bjects might be saved in a temporary segment during the
initial scan for re-use in the final merge.

This procedure is illustrated in Fig.17. Bypassing the
bulky R attributes around the functional joins saves consid-
terably in terms of 1/0 volume of the intermediate results
Q.e., the writing of thebuf operator — denoted as disk icons

and the subsequent reading from disk by rtergeoper-
tor).

Early aggregation. If aggregation is requested on the result
sets in addition to grouping, the aggregation can be folded
such that it is already applied to the subgroups belonging to
the sameR object before they are written ®MS;. This may

R. Braumandl et al.: Functional-join processing 167

bulky R attributes

parltition

merge merge
l I
b4 g

N
s
5/
el

artition

/
7

R — @O =

merge

partition

@/ﬂi €l

merge

Fig. 17. Bypassing bulkyR attributes around functional join processing

result in storage savings f&MS;. During the final merge, partition/merge operations constitute valid runs with respect
the intermediate aggregation results are then combined. Thi® the original sorting ofR. In [CKK98], we exploited this
is easily achieved for the aggregatiansm min, max count idea in the context of the pure (flat) relational model to de-
which constitute commutative monoids [GKG+97] —i.e., op- sign the order-preserving hash join (OHJ) algorithm in order
erations that satisfy associativity and have an identity. Forto optimize decision support queries that require sorting or
e.g.,avg more information has to be maintained to enableflexible grouping (e.g.cubeandroll-up aggregation). Here,
early aggregation. we concentrate on this run-preserving invariant of the parti-
tion/merge algorithm for order-preserving functional joins.
In order to simplify this presentation we switch back to
Buffer allocation. The algorithm consists of several consec- the example schema with single-valued references, as pre-
utive phases, each of which stores its intermediate resultsented in Sect. 3. However, the order-preserving functional-
entirely on disk. This simplifies database buffer allocation,join algorithm is equally applicable to queries traversing
since the memory available to the query can be allocatethested reference sets. Consider the example query of Sect. 3
exclusively to the current phase. The four phases may be&vith an additionalorder by clause:
easily derived from Fig. 14: They are delimited by the three .
sets of partitionsR;, RM;;, and RMS; that are stored on ?r%lriag , 7. Sref.SAr
disk. Consequently, the four phases are: (1) initial process- d br
ing of R ending with the first set of partitiong;, (2) Map order by r.---
lookup, (3) dereferencing, and (4) final merge. For phases First, we assume that the order required in the query
(2) and (3), the major amount of memory is allocated tois “physically” given by, e.g., a cluster index oR. The
cache theMap and.S, respectively, and only a small amount partition/merge algorithm, as illustrated in Fig. 19, evaluates
is allocated to input and output buffers for the partitions. the query and retains the initial order (indicated by ascend-
Summarizing, theP(PM)*M algorithm is very modest in ing OIDg values) onR. All intermediate partitionsR;, R»,
memory requirements; that is, because of its phased “stop-..; RM1;, RM12, ...; RMS;, RMS;, ...constitute runs
and-go” approach, and since it does not require a costlwith respect to the sort criterion @@. Then, the overall or-
grouping, it tolerates small main-memory sizes very well,der is (cheaply) restored via a final merge operation. Note
whereas other algorithms easily degrade if main memory ighat, except for the rfiee functional-join evaluation algo-
scarce in comparison to the database size. rithm (cf. Fig.5), all other functional-join evaluation algo-
rithms (cf. Figs. 6-9) “lose” the original order at. They
all require a final costly sort operation on the reski.
5 Order-preserving functional joins Assuming that there is a physical ordering (i.e., by a
cluster index) onR, the partition/merge evaluation of this
In this section, we apply the partition/merge algorithm to aquery is shown in Fig. 18a for logical OIDs and in Fig. 18b
wider range of queries that do not necessarily traverse alongpr physical OIDs. Of course, the order-preserving functional
nested reference sets. The queries we optimize are those thain is applicable to arbitrarily long functional-join chains
require ordered results — as they occur very often in decisioffpath expressions) which may also contain nested reference
support systems. sets.

5.1 Exploiting a physical order 5.2 Sorting ahead

The key idea in optimizing queries with ordered results fol- One might argue that our order-preserving functional-join
lows from the observation that the partition/merge algorithm,technique is only efficient if there is a clustered index on
when applied to an ordered (source) object extendigpn R. Fortunately, however, we can generate the desired or-
will always preserve this order in the intermediate parti- der on the fly during the initial partitioning step. This way
tions. That is, the partitions generated by the interleavedve entirely avoid any additional 1/0 cost for sorting, and

168 R. Braumandl et al.: Functional-join processing

mergex —1 mergex 1

| | Figure 21 illustrates the combined sorting/partitioning phase
— - of the algorithm. A memory-sized chunk of the relation is
loaded. Sorting is done via a vector that maintains pointers

Mo M to the objects being sorted; that is, only this vector is sorted,
N \ whereas the individual objects need not be moved. Once the
ICTEeN K — K S S sorting is complete, we linearly scan this vector and deter-
partiti‘on . mine the pa_rtition to which every object belon.g.s. Hereby,
‘ L we chain objects that belong to the same partition together
partitiony_, . idxscan(R) (i.e., we keep the index of the next object of the same par-
\ tition in an additional field within the vector) and we keep
M a separate vector, called tlpartition anchors in order to
-/ \ keep the heads and the tails of every of fiiesorted “par-
Maps tition lists” (in the example of Fig.21)N = 2). Once this

partiti‘onw partitioning is complete (i.e., the chaining is done and the

| heads and tails of the partition anchors are set), the objects
idxscan(R) can be written sequentially to disk: partition by partition fol-
lowing the heads of the partition anchors one at a time and
in the right sort order. All partitions could, for example, be

Fig. 18a,b.Order-preserving functional-join evaluation written into a single temporary file by inserting markers at

partition boundaries, thereby avoiding overhead for allocat-
ing multiple temporary files. Note that Fig. 21 shows, in fact,
therefore, as we will show in the performance section, wethe generation of the partition8;; and R;, for run R; of

get (almost) the same performance in the presence as in tHeg. 20.

absence of a clustered index; that is, we get sorting (almost) With respect to run-time complexity, it would be cheaper

for free [CKK98]. to first partition each complete memory chunk and then sort
The trick is to combine the initial partitioning step of the individual partitions. Assuming: = |R|/M records fit

the order-preserving functional-join plan with sorting runs. into one memory chunk, first sorting and then partition-

That is, we sort memory-sized runs of the probe input andng a memory chunk takes:logm + m abstract “opera-

partition each run individually. The partitions of every run tions.” The opposite order, i.e., first partitioning a memory

are then re-merged during the processing of the first joinchunk and then sorting each of thepartitions requires only

Assume thatR is M times bigger than the available main m + N - m/N -log(m/N) = m +m - log(m/N) operations.

memory and, to perform the functional join with tivap, However, memory management for the partition/sort vari-

R has to be partitioned-way using the hash functiof,,. ant is more complex than for the sort/partition algorithm,

Then, for each K i < M, do: because several sort vectors of unknown size have to be

]) allocated. We have implemented both variants and our per-

1. Load the (next) memory-sized churk; into memory formance experiments have shown that the difference in run
and sort it according to attributé. . time is only marginal for the investigated configurations.

2. PartitionR; into N partitions Ria, ... Riy by applying Sorting ahead of the functional join is especially benefi-
ha on the reference attribute. Each partition constitutes &g if in the course of evaluating the join the result size is
valid run according to the sort attribute. The partitioning increasing. This happens it contains a nested set of refer-
can be done_ in a single linear iteration through the main-gnces (i.e.SrefSet A concrete example is a query that com-
me_mory-reS|d_e_nt ruk; — see below.) _ putes theOrder values sorted by order date and summing

3. Write the partitionsR;1, ... R;x sequentially to disk. up the product prices. Under the assumption that no physical

order can be exploited, the evaluation plan of Fig. 22a shows

the early sort plan for logical OIDs and Fig. 22b shows the
analogous plan for physical OIDs.

(a) Logical OIDs (b) Physical OIDs

Having finished this combined sort/partitioning step,
there areM x N partitions Ri1, ..., Rin, ..., Ruyn —
each constituting a valid sort run — stored on disk. Then,
while evaluating the functional join with théth partition
of the Map, the M runsRy;, ..., Rys; are merged to obtain
the i-th partition of R. From there on, the algorithm works 6 Performance analysis
just like the order-preserving partition/merge join algorithm.

The algorithm is illustrated forM =2 and N =2 in . . .
Fig. 20. Of course, these early sort plans can, therefore, alsih this section, we will present the results of performance ex-

be applied to longer functional-join chain queries in the same?€/iments that study the trade-offs of the alternative
way as described in the previous sub-section, and they cafiictional-join-processing techniques. We will first describe
i ur experimental environment, including a prototype imple-

also be applied in the presence of nested reference sets. Tra i d a detailed ¢ model that ol del
ing again the object extensiaR, the following pattern of ~Mentation and a detailed cost moadel that accurately models

operators are applied (her&8. P denotes the combined sort- the behavior of the techniques in a standgrd database system.
in i . After that, we will present results for single-valued func-
g and partitioning step): . - : . -~
tional joins, multi-valued functional joins, and results that
S&P M (P M)* M demonstrate the benefits of our order-preserving functional-
join techniques.

R. Braumandl et al.: Functional-join processing 169

RM,
1 1.2
Map rs 2.1 RMS,
R ol 32 rs 21 g OIDr S Attr

u nob FRE : OIDs S-Attr 1 11 RS

OIDyp Sref T3 C bl 12 : : 5 s 19 OIDr S Attr
1 b e d |, hs RM:> 1.1 i 17 Ts 17 1 11
T2 e o 21| N e Al N |y 11 s 19 r2 18
s ¢ rs c rr 3.2 o - r9 13 r3 19
T4 g : : d |41 : : 21 ¢ lf) T10 17 T4 15
i : E : : : 22| h 13 N " -
5 ‘ ha - | 3.1 : : merge— 5
76 d N Ry e? RM: Sz - - Vs 8 T6 10
e o e £l a2 rs 1.1 3.1 e 18 RMS- e 12
rs c - g T9 2.2 3.2 a 12 OIDr S_Attr rs 19
g h rs il 9|51 /|0 LI L\ 41 d 10 - ro 18 g 13
r10 i re h il 20 hs 4.2 f 14 T4 15 r10 17

: rio @ : h 5.1 g 15 76 10 : :
11 RM>> 7 12
CL T2 31
T4 5.1
Fig. 19. Order-preserving partition/merge-join
Map
R al 32 RM;, El RMS,

R I3 mlb b 12 7 112 UIDSS*AW OIDr A S Atir RS
OIDi A Sref mlobl T ; ¢ i T3 i; i ul s T o 1 11 OIDg A S Attr
) 9 h - r33 ¢l L c |21 T8 22 - " 3 3 19 1 1 11
. 3 ¢ —sort— i g h,M\J o g hs RM, | ™ 1.2 b 11 b 5 17 o 2 18
m1 b 7 a rad g d| 41| ™ 5 827 21 ¢ 19 s 8 19 s 319
7 a ro9 h 99 h r7 4.1 6 220 b 13 ro 9 13 \mer olre 415
i 4 g Ra Ror el 3l RMo 5 o 10 17 | 87 517
T5 5 1 T2 e ~ r6 6 d £l 42 rs 3.1 1 3.1 e 18 RMS> T6 6 10
ro 10 4 eortes |8 5 i e rg 8 ¢ A 5.1 4 32| a 12 OIDRr A S_Attr 7 712
e 6 d| " r6 6 d "\ Rz | w0 | 51 [p5 |ro61l 1) N a1| @ 10 |2 2 18 s 8 19
2 2 e T8 8 ¢ 2 e N, | RM2 42| f 14 ra 4 15 ro 9 13
s 8 ¢ r1010 i rs 5 @ h]22 r; 1.2°5 51 g 15 s 6 10 ro 10 17

71010 7 il 11 Ty 229 : 7 712
Fig. 20. Sorting on the fly
: : Table 3. Parameters describing the hardware
6.1 Experimental environment 9
Ts average seek time 10.2 ms
6.1.1 The cost model Ty, average latency time 5.54 ms
Tr transfer time for a page (4 KB)| 1.7 ms

The design of our cost model is strongly influenced by the T;o time to initiate an 1/O operatior] 1.21 ms
structure of modern query engines implementing the iterar Zhasn | time to execute a hash function 0.285 ms

tor model. This means that cost estimations are calculated;add ::mg :g f‘eds‘i ;Wr?a?r:etgii 8-8%;3 me
on a per-iterator basis. 1/0 costs are modeled according toTP’“"be fime to copy a byte 0.000115 ms
[HCLS97] and the CPU operation assumptions are mostly 7."” | time to compare two OIDs | 0.00719 ms

based on [PCV94] and [HR96]. Our cost model contains
extensions to deal with set-valued attributes and our new
P(PM)*M algorithm. Due to space limitations, we can- would like to emphasize, however, that we did use the right
not discuss individual formulae. The cost formulae modelformulae in order to obtain performance results.
disk 1/0 quite precisely by means of differentiating between The cost model parameters for modeling the CPU and
seek, latency, and transfer time. As a consequence, we alg) costs are described in Table 3. Note that the constants
able to grasp the difference between sequential and randofegarding CPU costs include all instructions related to the
I/0 and the influence of the transfer block size. In mOde"ngoperations, e.9T omp involves pointer arithmetics, etc. and
the CPU costs, we have included those operations that haugot only a single CPU instruction. The cost model variables
major influence on CPU time, e.g., sorting, hashing, bufferthat describe characteristics of the database are described in
management (page hit/page fault) and iterator calls. Table 4.

For space limitations and ease of presentation, we only
describe the cost formulae of the iterators needed for imple-
menting the partition/merge algorithm as shown in Fig. 13.6.1.2 Analysis of I/O cost
That is, we only present the formulae for direct mapping
and if range partitioning on the references to Map and The P(PM)*M algorithm with the above-mentioned
S and prefetching for reading these sets into main mem-premises has very similar 1/0 access patterns throughout
ory are used. For other strategies, other formulae apply. Wall its phases. Therefore, we describe the patterns and list

170

Table 4. Variables used in the cost model formulae

Pr number of pages in tabl& (equivalently for
RM andRMS

|R| cardinality of tableR

r average size of af® object

b read/write buffer size (in pages)

N number of partitions

|SrefSet | average number of elements in the nested
reference set

sort/partition-vector

38

)X("

OIDr A Sref Bulk
mioh
'r33c
rllb
r-,7a

N
|
[

s {
wd | !

Fig. 21. Sorting and partitioning “in one go”

partition-
anchor

R. Braumandl et al.: Functional-join processing

Reading from disk We denote the number of pages read in
one |I/O operation ak. The merge operator uses a buffehof
pages for each input partition. The cost for readitlg (and
also analogously for readir@M§ by the merge operator is
then given by the following formula:

Pras
b

For the initial reading ofR, the cost can be computed as

-‘ (Ts+Tr +Tr0)+ Pry - T

Ts+ FZR—‘ (I, +Tro)+ Pg-Tr.

For the scan operator reading the first set of partitiGhs
(1 <i< N), we get

N -Ts+ FZR-‘ Ty +Ti0)+ Pr-Tr.

Here N is the number of partitions generated by the pre-
ceding partition operator. For the join operdtothe same
formula can be used, except thRthas to be replaced by
Map or S, respectively.

the phases in the algorithm where the pattern shows up. In

the cost formulae, it is assumed that no inter-operator in-

terference occurs. The number of additional seeks cause@/riting to disk. We use the same variablefor the buffer

by interference would be calculated separately and adde8ize as before. The cost for the write operations of the par-
to the cost of the algorithm. Up to now, we are only able tition iterator for partitioning? (and also analogously for
to model interference if just one disk is used at all. In our partitioningRM) can be computed by the following formula:

benchmarks, however, we used two disks and — althoug
three disks would be necessary to avoid all interference e
fects in the investigated algorithms — we decided to neglec

f?bR-‘ -(Ts+Tr+Tro)+ Pr-Tr.

interference. Furthermore, we assume constant seek timéghe cache iterator which is applied BMSproduces smaller

here.
sort:mergex 1 sort:mergex 1
\ \
(e (e
\ \
X, M,
e N e N
MErge N,k —K S mergey, gk S
\ \
(G (b
\ \
partitiony_, yy i partition,, i
[[
X M SrefSet:s

e N [

merge ,;, N, N Maps sort:make_runs_, ar
\ \

tbscan(R)
\
partition,, , . v

\
HSrefSet:s
\
sort:make_runs_; s
\

tbscan(R)
(a) Logical OIDs

(b) Physical OIDs

Fig. 22a,b.Sorting on the fly during functional-join processing

cost with its writing operations:

Prus

Ts + { —‘ -(Ty +T10) + Prus - Tt .

6.1.3 Analysis of CPU cost

Again the actions consuming CPU time are listed together
with their cost formulae and the iterators performing those
actions.

Copying of elementsThe cost formula for copying all ele-
ments of a sefX in main memory:

| X[+ @ Teopy -

The smallz denotes the size of an element in a 3éte
{R,RM,RMS}. This action is performed by all the itera-
tors writing temporary sets to disk, especially the partition
and the cache iterator, and by operators using in-memory
working areas like sort and hash.

Comparing elementsThe merge iterator has to compare se-
quence numbers attached to each element for detecting those
stemming from the same element of an initial input set. The
cost for such an operation is

3 The join operators reallap and S.

R. Braumandl et al.: Functional-join processing 171

Table 5. Database cardinalities

|R| - |SrefSet- 109, (N) - Teomp -

Here, th_e varlabIeN_qunotes the number of partitions object | cardinality data Map object
merged into one partition by the merge iterator. Since the e pages pages size
ordering of elements is done by a tournament tree, we only
have to perform log(N) comparisons for each element in | |£| 100,000 9933 - 228 {SrefSefx 12
R. S| 100,000 6667 591 228

‘act‘:es‘s ty‘pe:‘ naive rﬁap/‘na'l"ve bbjéct i

Computing hash functiong-or each join attribute in its in-
put set, the partition iterator has to call a hash function:

|R| . \SrefSe|t- Thash -

Performing aggregation.For each element iR, we have

to add an integer value for every element in the nested set:

|R| - |SrefSet- Tyhaq -

Testing the buffer.Each join iterator in a partition/ merge
algorithm uses a buffer for reading§ and Map. For each

naive map/sorted object ---->---

sorted map/naive object -
sorted map/sorted object -3

naive map/part object

part map/naive object --

part map/part object -
Sk sorted map/part object -
part map/sorted object &

2000 r

1500

Cost (sec)

1000

X

500

e SRR TR E R
123456 7 8 91011121314151617 1819 2C
Memory (MBytes)

0

join attribute in the sefR, the join iterator has to look up
the buffer for the appropriate page. We assume that thigig. 23. Pointer-based joins with direct mapping
lookup is done by accessing a hash table. Then the cost can

be computed by

|R| - |SrefSet- T)rope -

contain references to objects # The cardinalities of the
two tables are shown in Table 5. In the first set of analyses,
we investigated functional joins along single-valued refer-
ence attributes; in this cas§refSdtwas fixed at 1. (In fact,

R objects only had a single-valued attribute cal®efin
these experiments; see Sect. 3.1.) In the second and third set
Most of our performance experiments were carried out usingf analyses, we investigated functional joins along nested
the cost model. To validate the cost model and get a feelreference sets; in those experiments, we vaitefSet

ing for the trade-offs of the algorithms in a real system, we(In these experiments? objects had a nested reference set
also carried out certain experiments using an experimentatalled SrefSetsee Sect. 4.1.)

object-relational database system. (Since we carried out a The benchmark queries we used are, also, those that we
great deal of experiments with many different database conhave been using in the examples throughout this paper. For
figurations, we were not able to carry out all experimentsthe first set of analyses, the one that studies the trade-offs
with this prototype.) The prototype database system we usedf the single-valued functional-join techniques, we used the
for these experiments is very much a textbook database sysjuery of Sect.3.1. For the second set of analyses, the one
tem in which we integrated all the different functional-join that studies the trade-offs of the functional-join techniques
algorithms (e.g., P(PMM). The experiments with this ex- along nested reference sets, we used the “aggregation” query
perimental database system were carried out on a Sun Sparef Sect. 4.1. For the third set of analyses, the one that demon-
Station 20 running under Solaris 2.6. There was one disktrates the benefits of order-preserving functional-join tech-
that stored the database and all the software needed, amiques, we used the query of Sect. 5.1, with the only differ-
there was another disk which was used for temporary filesence that the functional join was carried out along a nested
In order to avoid side effects due to file system caching,reference set (i.es.SrefSet.SAttr was retrieved and or-

we made use of Solaris’ direct I/O option, so that all disk dered).

I/O was carried out bypassing the cache of the file system.

Displaying the result tuples was suppressed for all queries

in order to study the sheer performance of the functional-6.2 Functional joins along single-valued reference
join-processing algorithms. The database buffer cache waattributes

segmented and configured individually for every query plan
according to the estimates of our detailed cost model.

6.1.4 Prototype implementation

Figures 23-25 show the running times of the different
functional-join-processing strategies for single-valued at-
tributes with logical OIDs and direct mapping, &-Bee,

and a hash table, respectively. The size of the available main
memory is varied from 1 MB to 20 MB. For each curve, the
Unless stated otherwise, the analyses are based on a sim@t&ategy to evaluate the functional joins is given. For exam-
database with tableB and.S, which we have been using in ple, “part map/sorted object” in Fig. 23 means that fhex

our examples throughout this paper; that is, the objecf? in Map join is carried out using (range-) partitioning and that

6.1.5 Test database and test queries

172

. naive map/naive object —+—
access type: naive map/sorted object ---->---
3000 |- sorted map/naive object -
sorted map/sorted object -3

naive map/part object ---#--

2500 [sorted map/part object A 7
o 2000 -
[}
K2
3 1500 |
o
1000 %
500 | % Koy

\‘t
PRl i e e e

123456 7 8 91011121314151617 181920
Memory (MBytes)

Fig. 24. Pointer-based joins with a*Btree mapping

. naive map/naive object —+—
access ype: haive map/sorted object ---->---
3000 - naive map/part object -~

part map/naive object --O--
part map/part object ---@--

2500 part map/sorted object &~
o 2000 -
[}
@2
Q
8 1500

C]
18]
1000 C-g
O
ACH
G-
500 | L} "0

0 A s e
123456 7 8 91011121314151617 1819 2C
Memory (MBytes)

Fig. 25. Pointer-based joins with hash table mapping

sorting is employed for the join witly. We use short forms
like “part/sort” in the following. What we can see, in all,

R. Braumandl et al.: Functional-join processing

300 — T T
part map, part object access, direct mapping —+—
part object access, phys. OID, 0% forwards &
part object access, phys. OID, 3% forwards - --&---
250 v part object access, phys. OID, 6% forwards ——]
¥y Part object access, phys. OID, 9% forwards ----w----
200
)
@
2
— 150 -
%]
o
O
100
50 E
0 P L

123 456 7 8 910111213141516 17 1819 20
Memory (MBytes)

Fig. 27. Logical OIDs versus physical OIDs

[=2)
—
[
20000 — 2%
17500 - g? - Prototype
15000 = [] Cost Model
= 12500
[} -
E 10000 s
£ 7500 =32
oo S
5000 — oN -
0O 03X
2500 il ﬂ == 22
0 |l | ik

naive flatten/flatten/ value P
part. sort

—~

PM)*M

Fig. 28. Running times in seconds (2MB memory, ay§refSet = 10,
direct mapping)

is that sorting and/or partitioning are crucial techniques toried out in memory if more than 2 MB are available. With

carry out functional joins with logical OIDs efficiently, re-
gardless of whether direct mapping’-Bees, or hash tables

a B'-tree and a hash table, thiz x Map join can be carried
out in memory at 4 MB and 5 MB, respectively, because in

are used. The “do-nothing” reference traversal approach ishese cases the mapping structures are larger.

only viable if the functional join can be carried out in main
memory. With direct mapping, th8 x Mapjoin can be car-

2000 " naive objeét access —r— |
sorted object access -
partitioned object access @
1500 r
I
Q
&
@ 1000 -
o
o
500 r
I i

123456 7 8 91011121314151617 1819 2C
Memory (MBytes)

Fig. 26. Pointer-based joins with physical OIDs

Figure 26 shows the functional-join performance with
physical OIDs in the absence of forwards. Again, we observe
the same effect: partitioning and/or sorting are crucial in
order to achieve acceptable response times. In this particular
case, partitioning is slightly better than sorting.

Figure 27 shows the response time of the partition-based
functional-join evaluation with physical OIDs in the pres-
ence of forwards. We observe that with an increasing degree
of forwards, the performance of physical OIDs gets worse,
in particular for small memory sizes. As a baseline, the fig-
ure also shows the running times of the query for a double
partitioning strategy with logical OIDs and direct mapping,
the best strategy for logical OIDs. Obviously, physical OIDs
outperform logical OIDs in the absence of forwards (the 0%
curve). However, the performance of logical OIDs is not far
behind if more than 2 MB of memory are available (i.e.,
if the R x Map join can be carried out in memory), and
the performance of logical OIDs is better even if as few as
3% of the S objects have been migrated (the 3% forwards
curve).

R. Braumandl et al.: Functional-join processing 173

6.3 Joins along nested reference sets 6000 | B access type: naive map/naive object —— 1
! A najve map/sorted object <
We now turn our attention to evaluating functional joins 5o00 |- , softed map/sorted object K-~ |
. X] naive map/PM object -{-]
along nested reference sets. First, we describe some cost X\ part map/part object -~}
measures we obtained from our prototype system. There- 4o - PPMM -~ |
after, we investigate a broader range of database configurag v e feshion @
tions using our cost model. g 2000 | ’ i
! SN
6.3.1 Results with the prototype implementation 2000 :. i :
The benchmarks were performed with the prototype system *°° \ ¢ e o
described above. The database buffer cache was segmented 9‘ B S S S
and configured according to the optimizer (cost model) es- 0 1 2 3 4 5 6
timation individually for each query plan. The total amount Memory (MBytes)
of memory available to a query did not exceed 2 MB at any _. . .
time. Direct mapping was employed to resolve logical OIDs, F'9- 29- Cost model results (direct mappingrefSeft= 10)
Recall that we concentrate on the “aggregation” query of 350 - - _
Sect. 4.1 in our presentation. For the other example query of naive map/naive object —+— i
Sect. 4.1, we observed similar effects and trade-offs. In our 555 L » _PPMM -~ (- @
prototype, we restricted the size of the main-memory buffer e o &2 bl o e G
pool to 2 MB in order to run these queries using the alter- 2so0 - @ ;A
native algorithms presented in Sect. 4. Figure 28 gives an_ /®
overview of the running times for each algorithm. For com- g 200 r
parison, the predictions of our cost model are also showng i %)
(again, limiting the buffer size to 2 MB). When comparing S *°| e
the P(PM)*M running time to the riae algorithm, there 100 | A
is a performance gap of more than an order of magnitude: ‘ o
The absolute running time of the'ima algorithm amounts to) PP Q;__,Q{fi_-——@'
more than 5 h, while ouP(PM)* M algorithm requires only o
less than 5 min. Thé& (P M)* M algorithm also significantly 0 — — PE—
0.01 0.05 0.1 05 1 10 20 40 80

outperforms all the flatten algorithms, the state-of-the-art ap-
proaches for this purposes. The flatten plans all suffer from
the expensive “re-grouping”: the sort-based flatten plan sufFig. 30. Selection onk (direct mapping|SrefSet= 10,2 MB memory
fers from high CPU cost for sorting and from small run files
due to the restricted amount of memory. The partition-based) i .
flatten plan and the value-based join cannot keep its cominvolves flattening and re-grouping. Comparingveésort
plete build input in memory and, as a consequence, has t#ith sort/sort, sorting the flattenegt tuples for theMap
perform an expensive hash aggregation at the end. lookup does not pay off because tMap is smaller than
There is a small deviation between the cost model fig-2 MB. (For 1 MB, the sort-based plans are out of the range
ures and the running times observed with the prototype |m.0f the curve, because for such small memory Conflguratlons
plementation. This is mostly due to the fact that some costhey need several merge phases.) Both variants suffer from
model constants are hard to calibrate. They have been me&igh CPU costs for sorting. The part/part plan which is also
sured by profiling; profiling, however, changes the total run-
ning time of the queries. Most cost model estimations are

% of selected R objects

therefore slightly higher than the observed running time. The gog0 | W dive mapinaive objest —— |
running time of the value-based hash join implementation is X P i m:gggg:g gg}gg ;)
slightly higher than predicted by the cost model since the I/O 5000 |- / @ maivemap/PMobject (]
operations of our hash join are currently not implemented as A part map/part object ﬁﬁg
efficiently as assumed by the cost model. & 4000 ¢ hash join @~ 1
@ fs
7 a0 [/ /) 1
6.3.2 Varying the memory size S RS
. N . 20000 4 WS 1
Figure 29 shows the running times (using the cost model) Xl
of the various algorithms under varying memory sizes. The gy |- . 0
nave plan (denoted NN) does not even show up in the plot ! _
due to its running time of 6’20 h for 1 MB to 4’10 h for a 6- o —%—= . .
MB buffer. The néve/sort plan uses a ha Map lookup, but 0 5 10 15 20 25 30 3 40 45 50
sorts the physical addresses before accesSiiity therefore, # references per R object

requires flattening and grouping. The sort/sort plan uses sorkig. 31. varying the cardinality oSrefSe(2 MB memory, direct mapping)
ing for both theMap lookup and for the join withS; it also

174 R. Braumandl et al.: Functional-join processing

10000 600 T

PPMM - (-
- . hash join @~
500 |- —

naive map/PM, map size=100,000
PPMM, map size=100,000 ---
. naive map/PM, map‘size=200,000
8000 - ; PPMM, map size=200,000 ---
naive map/PM, map siz&:500,000
PPMM, map size=500,000 ---
6000 - g nafve map/PM, map size=1,000,000
. PPMM, map size=1,000,000 --
o]

o o

O0oo

- 400 f a - 1

oln

300 | 1

Cost (sec)
Cost (sec)

4000 1 ‘ ‘ 1
200 - R IO R—

2000 | ' g
_ ! 100 | 1

0 L L L L L
1 2 3 4 5 6

Memory (MBytes) Memory (MBytes)

Fig. 32. Inflating the OIDmap under varying memory sizes (direct map- Fig. 33. Value-based vsP(PM)*M pointer join: |[SrefSet = 3, direct

ping) mapping, 1,000,00@rap entries
e . 800 F"PMM, direct mapping‘ s

a flatten plan and uses partitioning for both tlap lookup o0 b &, PPMM, B*~tree mapping & |
and the join withS yields significantly better performance PPMM, hash table mapping -4
than both sort-based flatten plans for small memory sizes. 00 | ¢ o N o 1
The performance advantage of partitioning over sorting for .
small memory sizes is due to the large number of run filess % [Q e o % ,,,,,,,,,,,,,,, J

. .. . [} ~
generated for sorting. The value-based hash join plan whichZ 4 | ‘ i
also involves flattening and re-grouping performs even bet- 3 *
ter than part/part, but is still quite costly compared to the 300 O e T S a
winners PPMM (P(PM)!M) and nave/PM (=P(PM)°’M). 200 | |
The latter one omits the first partitioning step and shows
poor performance for very small memory sizes. For 2 MB 100 r 1
and larger, the two plans have the same running time, since ‘ ‘ ‘ ‘ ‘
PPMM uses only one partition for thdap access anyway 1 2 3 4 5 6
and, therefore, coincides with in@/PM. The most impres- Memory (MBytes)

sive result of this curve is tha_t thB(PM)*M algorithm Fig. 34. Comparison of different OID mapping techniques, all with
tolerates very small memory sizes under which all other al-p(pany*as algorithm
gorithms degrade.

6.3.4 Varying the set cardinality

6.3.3 Varying the selectivity oR

In the previous experiments, the number of elemen&réi-
In Fig. 30, the percentage d& objects taking part in the Setwas const_antly 10. Figure 3.1 shows .running times of the
functional joins is varied on the (logarithmically scalee) ~ a@lgorithms with different set sizes. While the(PM)*M
axis; that is, in this experiment, we studied a variant of ouralgorithm scales linearly, the running times for all others
benchmark query with here clause and a selection pred- €xplode. The flatten variants behave poorly. Thivegplan
icate filtering out tuples ofR. For a small number o Suffers from an enormous amount of random I/O (up to
ObjectS, most pages of th\dap are hit at most once and 50x% 10Q 000 refel’ences, calculated running time of roughly
some pages OS are not referenced at a”' SUCh that one 25h and therefore nO'F ShOWI‘]) and the ﬂatten p|anS Suffel’
might expect a break-even point betweBGPM)*M and from large temporary files.
the ndve algorithm. However, for a high selectivity (e.g.,
0.01% corresponding to 18 objects), they have nearly the
same running time. That is, even if there are only very few6.3.5 Inflating the OID map
references to be resolved, there is no significant overhead
induced by ourP(PM)*M algorithm. On the other hand, So far, we assumed a distinetap for the S objects which,
the nave algorithm very quickly degrades if the number of as a consequence, is perfectly clustered. In the following ex-
references to be mapped increases. Furthermore, we haperiment, we analyze the behavior®(P M)* M algorithms
plotted the value-based hash join with two configurations,for not-so-well clustered OllMaps as they may occur if
using eitherR or S as build input. Both variants are, how- there is one global OIDMap or if only a small fraction of
ever, worse thaiP(PM)* M over the full selectivity range, S is referenced, e.g., because of a selectiorRofThe OID
and for a small number oR objects, they are — due to the Map for S — previously containing 100,000 entries — has
fix cost for the hash join and hash aggregation — even worseeen inflated by inserting unused entries — uniformly dis-
than the néave plan. tributed over all pages of th®lap — to contain up to one

R. Braumandl et al.: Functional-join processing

Cost (sec)

2000

1500 +

1000 +

' naive map/PM object -]
A PPMM -~ -
hash join -~ @~
‘phys. OID naive object -~/
phys:.OID sorted object -
phys.#®ID part object —S7—
phys. OID'PMrobj_e&t R A

500(p. .

Memory (MBytes)

Fig. 35. Physical OIDs vs. logical OIDs with direct mapping

Cost (sec)

Fig.

million entries. The nae/PM and PPMM queries have been
run on the standard database (100,000 objectB aihd S
each, 10 elements BrefSetwith different amounts of mem-

4500 [log. OID PPMM O
4000 sorted object access - |
partitioned object access —<—
Yoo ey U W—— SR e R a
3000 7
2500 77
2000 7
1500%] |
ol |
500 r P I 7
N e {
0 ‘ ‘ | |
0 1 . : : :

% of forwards in S

36. Effect of forwards

175

higher number of I/O accesses to the laryap. However,
eachMap page is fetched from disk only once, since the
number of partitions in the first partitioning step is adapted
such that one partition of thHdap can be cached in memory.
On the other hand, m&/PM cannot cope with largeviaps
since it induces an enormous number of page faults as long
as theMap does not entirely fit into memory.

Figure 33 compares thB(PM)* M algorithm with the
value-based hash join in an extreme scenario. The set-valued
attribute SrefSetcontains only three references on average
and theMap is inflated to contain one million entries — of
which 900,000 are obsolete. The number®fand S ob-
jects remains at 100,000, respectively. This set-up favors the
value-based hash join extremely, since it does not use the
Map anyway. Furthermore, the hash join draws profit from
larger amounts of memory in a larger scale ti({® M)* M
because of the projection ¢h The (projectedy that serves
as build input for the hash join can be kept in memory
for large memory configurations (beyond 4 MB) such that
the join is an in-memory operation. On the other hand, the
P(PM)*M algorithm loads and keeps thepages in their
entirety in memory. Since the whol€ extent of approxi-
mately 26 MB still does not fit in memory, the additional
memory does not avoid a partitioning step B{PM)* M
and the flattened? must still be written to disk partitions.

6.3.6 Comparing different OID mapping techniques

Figure 34 compares the three OID mapping techniques that
we have discussed in Sect. 2.2 for our application, i.e., in
combination with theP(PM)*M algorithm. Both B-tree

and hash table mapping show two performance steps. The
first step occurs when increasing memory from 1 MB to
2 MB. Here, the scan and merge operators reach their op-
timal amount of memory. The second step occurs when the
P(PM)*M algorithm omits the first partitioning phase since
the OID mapping structure can be completely cached in

ory available. The legend of Fig. 32 indicates the size of thememory. Since the total size of the'free is smaller than
Map (100,000, . ., 1,000,000). The smallest symbols denote that of the hash tablethis point is reached with a smaller

the configuration that was used in Fig. 29, i.e., k@ was

memory size for the Btree curve. In addition, Btrees are

optimally clustered. For largevlaps the PPMM plan shows ~generally more expensive due to higher CPU cost for the
only a slight running time increase, caused by the inevitablytree lookup. The direct mapping approach is the cheapest.

Cost (sec)

2000

1500

1000

500

‘ P‘PS,‘dir‘ect‘me{ppihg 4T
PPMM, direct mapping -3
r S&PPMM, direct mapping --©-- 7

Q

B-8-0-8-8-0-0-8-8-8- 808055580

123456 7 8 91011121314151617 1819 2C
Memory (MBytes)

Fig. 37. Order-preserving functional joins

The first partitioning step can already be omitted at a mem-
ory size of 2 MB due to the compact representation of the
Map. Furthermore, the compact storage of the (dirdtp
reduces the total number of I/O calls. In addition, the CPU
overhead for a singl®ap lookup is cheaper for direct map-
ping than for the other two mapping techniques.

6.3.7 Logical OIDs in comparison to physical OIDs

So far, we have assessed our set-aware algorithms using log-
ical OIDs only. Next, we turn to physical OIDs and see how
the performance of functional joins with physical OIDs com-
pares to that of functional joins with logical OIDs. The use
of physical OIDs simplifies all algorithms, since the extra

4 Due to prefix compression and the specialized splitting procedure de-
scribed in Sect.2.2.1 the*Bree contains more entries per page than the
hash table.

176 R. Braumandl et al.: Functional-join processing

Map lookup operation is omitted. Thus, the functional-join the conventional evaluation plan which performs the func-
algorithms for physical OIDs are no partitioning (denoted tional join first and then sorts the result takes a factor 2.5
as “phys. OID né/e object access”), sorting, partitioning, longer than the sort-ahead plan. The difference to the order-
and P(PM)°M (labelled PM). The value-based hash join preserving plan PPMM is even more pronounced — but keep
is independent of the kind of OID used. For comparison,in mind that the order-preserving plan relies on an existing
Fig. 35 additionally includes the he/PM and PPMM plans physical ordering, which the sort-ahead and the conventional
for logical OIDs realized with direct mapping. Theima plans do not require.
plan does not show up in the plot, since it ranges between
4 and 5h. The running time of the partition plan is similar
to the value-based hash join, while the sort-based query pert Summary
forms still significantly worse. Not surprisingly, the PM plan . .]
performs slightly better than thB(PM)*M plan for logi- ~ This paper gives a comprehensive overview and assess-
cal OIDs. However, the additional cost of théap lookup ~ ment of alternative query-processing techniques for func-
is kept at a low level. For example, for 3 MB of memory, tional joins. First, the implementation techniques for log-
the PM plan was only 14% cheaper thRGPM)* M. ical OIDs were contrasted with the physical OID realiza-
While physica| OIDs are def|n|te|y advantageous on at|9ns. Then,. the alternative fUnCt|Ona|T]0|n evaluation te.Ch'
“clean” database without forwards, they incur a severe perhiques for single-valued reference attributes were described.
formance penalty in the presence of forwards. Again (as il object-relational and object-oriented database systems,
the experiments shown in Fig.27), we studied database inone-to-many and many-to-many relationships are typically
stances with a varying degree $bbijects that were migrated represented as nested sets of references — instead of a sep-
in the range of 0-5%. Figure 36 shows that the sort-basedrate relation as in the pure relational model. Very often,
plans are fairly robust against forwards — although at a higtiueries along these nested reference sets require to retain
cost level — because they “hit’” the same forwarded objecthe implicit grouping given by the set of references. For
consecutively, whereas the multiple hits of the forwarded obthis purpose, a new algorithm that is based on successively
ject are non-consecutive for partition-based plans. Thereforedartitioning and merging was developed. This so-called par-
sort-based plans need to allocate only one additional pag8tion/merge algorithm retains the grouping within the parti-
for loading the currently “active” forwarded object (using a tions and restores the overall grouping by (efficient) merge
chase-forward-immediately approach, see Sect. 3.4), whereg@perations. The partition/merge algorithm could be adapted
partition-based plans need to allocate more buffer for a partif0 become an order-preserving functional-join algorithm.
tion containing forwards (using a “collect-forward” approach This new order-preserving functional-join evaluation allows
which is better in this case). Partitioning and PM behavet0 exploit an existing ordering of the object extent or to
similarly (the lines are parallel), such that partition/merge Push-down the sorting in the evaluation plan. This proves to
retains its advantage. For comparison, the PPMM plan unbe a very effective optimization if the join result's cardinal-
der logical OIDs is also shown. Evidently, even for very ity is larger than the sort relation’s cardinality — as it is the

low levels of forward references (e.g., 1%), logical OIDs case when evaluating functional joins along nested reference
are superior to physical OIDs. sets. Further enhancements of the partition/merge functional

join plans reduce the size of intermediate results. The bulk-
bypassing technique allows to bypass the large attributes of
6.4 Order-preserving functional joins the sort relation around the join processing and early ag-
gregation is applicable in group-by queries. Our quantitative

Figure 37 shows the performance of running a functional-2ssessment based on a detailed cost model and a prototype
join query which returns its results ordered by an attributeimplementation proves that the partition/merge algorithm ap-

of R. We consider three different evaluation strategies: ~ Plied to group preservation as well as to order preservation
is superior to other, traditional functional-join methods. Fur-

— PPS. This query evaluation plan flattens the neSied- thermore, our experiments demonstrate that the penalty for
Set performs the functional join with th®ap and with sing logical OIDs in an object-oriented or object-relational
S by partitioning, and then sorts the result. ~ gatabase system is very low as compared to the use of phys-

— S&PPMM. This plan combines the first partitioning with jca OIDs, and that logical OIDs are significantly better than

sorting runs, then performs the functional join using the physical OIDs, even if only a small percentage of objects
partition/merge algorithm which, in its final merge step, gre migrated.

generates the desired order of the result.
— PPMM. This query evaluation plan requires the extent
R to be pre-ordered (i.e., via a cluster index) and merely/ \cknowledgementsive thank the anonymous referees for helpful sugges-
. " . tions to improve the paper. StefardBnyi pointed out the performance
performs the order-preserving partition/merge algorithm, .- - © ¢ the partition/sort sequence.
which automatically delivers the tuples in the desired
order.

We should emphasize that the PPMM plan requires a dif-Réferences

ferelnt dat‘;‘jb‘?‘sg conflgl:]ratlon than.ghe o_ther tWO %Iansh’ I'e[BCK98] Braumandl R, Claussen J, Kemper A (1998) Evaluating func-
ac us_te,re_ Index _On the sort attribute Is require N There- tional joins along nested reference sets in object-relational and object-
fore, it is IMPressive, that the sort-ahead evaluation plan oriented databases. In: Proc. of the Conf. on Very Large Data Bases
(S&PPMM) is only about 20% slower. On the other hand, (VLDB), August 1998, New York, N.Y., pp 110-121

R. Braumandl et al.: Functional-join processing 177

[BK89] Bertino E, Kim W (1989) Indexing techniques for queries on [HZ87] Hornick M, Zdonik S (1987) A shared, segmented memory system

nested objects. IEEE Trans Knowl Data Eng 1(2): 196-214 for an object-oriented database. ACM Trans Off Inf Syst 5(1): 70-95
[BM72] Bayer R, McCreight EM (1972) Organization and maintenance of [Ita93] Itasca Systems Inc (1993) Technical summary for release 2.2. Itasca
large ordered indices. Acta Informatica 1(3): 173-189 Systems Inc, 7850 Metro Drive, Mineapolis, MN 55425

[BP95] Biliris A, Panagos E (1995) A high performance configurable stor- [KC86] Khoshafian SN, Copeland GP (1986) Object identity. In: Proc.
age manager. In: Proc. IEEE Conf. on Data Engineering, March 1995, of the ACM Conf. on Object- Oriented Programming Systems and
Taipeh, Taiwan, pp 35-43 Languages (OOPSLA), November 1986, Portland, Or., pp 406-416

[BR90O] Brown A, Rosenberg J (1990) Persistent object stores: An im-[KGM91] Keller T, Graefe G, Maier D (1991) Efficient assembly of com-
plementation technique. In: Dearle A, Shaw G, Zdonik S (eds) Im- plex objects. In: Proc. of the ACM SIGMOD Conf. on Management
plementing Persistent Object Bases, Principles and Practice. Morgan of Data, May 1991, Denver, Colo., pp 148-158

Kaufmann, San Mateo, Calif., pp 199-212 [KM90] Kemper A, Moerkotte G (1990) Access support in object bases.
[CD92] Cluet S, Delobel C (1992) A general framework for the optimiza- In: Proc. of the ACM SIGMOD Conf. on Management of Data, April

tion of object-oriented queries. In: Proc. of the ACM SIGMOD Conf. 1990, Atlantic City, N.J., pp 364-374

on Management of Data, June 1992, San Diego, Calif., pp 383—-392 [Lit80] Litwin W (1980) Linear hashing: A new tool for file and table
[CDF+94] Carey M, DeWitt D, Franklin M, Hall N, McAuliffe M, addressing. In: Proc. of the Conf. on Very Large Data Bases (VLDB),

Naughton J, Schuh D, Solomon M, Tan C, Tsatalos O, White S, Zwill- October 1980, Montreal, Canada, pp 212-223

ing M (1994) Shoring up persistent applications. In: Proc. of the ACM [LLOW91] Lamb C, Landis G, Orenstein J, Weinreb D (1991) The Ob-

SIGMOD Conf. on Management of Data, May 1994, Minneapolis, jectStore database system. Commun ACM 34(10): 50-63

Mich., pp 383-394 [LMB97] Leverenz L, Mateosian R, Bobrowski S (1997) Oracle8 Server
[CDRS86] Carey M, DeWitt D, Richardson J, Shekita E (1986) Object - Concepts Manual. Oracle Corporation, Redwood Shores, Calif.

and file management in the EXODUS extensible database system. IfLR99] Li Z, Ross KA (1999) Fast joins using join indices. VLDB J 8(1):
Proc. of the Conf. on Very Large Data Bases (VLDB), August 1986, 1-24

Kyoto, Japan, pp 91-100 [MGS+94] Maier D, Graefe G, Shapiro L, Daniels S, Keller T, Vance
[CKK98] Claussen J, Kemper A, Kossmann D (1998) Order-preserving B (1994) Issues in distributed object assembly. Gzsu T, Dayal

hash joins: Sorting (almost) for free. Technical Report MIP-9810. Uni- U, Valduriez P (eds) Distributed Object Management (International

versity of Passau, 94030 Passau, Germany Workshop on Distributed Object Management), May 1994, Morgan

[CM95] Cluet S, Moerkotte G (1995) Classification and optimization of Kaufmann, San Mateo, Calif., pp 165-181
nested queries in object bases. Technical Report 95-6. RWTH AacherqMS87] Maier D, Stein J (1987) Development and implementation of an

Germany object-oriented DBMS. In: Shriver B, Wegner P (eds) Research Direc-
[Com79] Comer D (1979) The ubiquitous B-tree. ACM Comput Surv tions in Object-Oriented Programming. MIT Press, Cambridge, Mass.,
11(2): 121-137 pp 355-392

[CSL+90] Carey MJ, Shekita E, Lapis G, Lindsay B, McPherson J (1990) [02T94] O2 Technology (1994) A Technical Overview of the O2 System.
An incremental join attachment for Starburst. In: Proc. of the Conf. on 02 Technology, Versailles Cedex, France
Very Large Data Bases (VLDB), August 1990, Brisbane, Australia, pp [Obj96] Objectivity, Inc (1996) Obijectivity Technical Overview, Version
662-673 4, June 1996. Objectivity, Inc; http://www.objectivity.com/

[DLM93] DeWitt D, Lieuwen D, Mehta M (1993) Parallel pointer-based [PCV94] Patel J, Carey M, Vernon M (1994) Accurate modeling of the
join techniques for object- oriented databases. In: Proc. of the Int. IEEE hybrid hash join algorithm. Proc. of the ACM SIGMETRICS, May
Conf. on Parallel and Distributed Information Systems, January 1993, 1994, Santa Clara, Calif., pp 56—66

San Diego, Calif., pp 172-181 [SABdB94] Steenhagen HJ, Apers PMG, Blanken HM, By RA de (1994)
[ED88] Enbody RJ, Du HC (1988) Dynamic hashing schemes. ACM Com- From nested-loop to join queries in OODB. In: Proc. of the Conf. on

put Surv 20(2): 85-113 Very Large Data Bases (VLDB), September 1994, Santiago, Chile, pp
[EGK95] Eickler A, Gerlhof C, Kossmann D (1995) A performance evalu- 618-629

ation of OID mapping techniques. In: Proc. of the Conf. on Very Large [SC90] Shekita E, Carey M (1990) A performance evaluation of pointer-
Data Bases (VLDB), September 1995, Zurich, Switzerland, pp 18-29 based joins. In: Proc. of the ACM SIGMOD Conf. on Management of

[EKK97] Eickler A, Kemper A, Kossmann D (1997) Finding data in Data, May 1990, Atlantic City, N.J., pp 300-311
the neighborhood. In: Proc. of the Conf. on Very Large Data Bases[SG89] Segev A, Gunadhi H (1989) Event-join optimization in temporal
(VLDB), August 1997, Athens, Greece, pp 336-345 relational databases. In: Proc. of the Conf. on Very Large Data Bases

[GGT96] Gardarin G, Gruser J-R, Tang Z-H (1996) Cost-based selection (VLDB), 1989, Amsterdam, The Netherlands, pp 205-215
of path expression processing algorithms in object-oriented database$Sto96] Stonebraker M (1996) Object-Relational DBMSs: The Next Great
In: Proc. of the Conf. on Very Large Data Bases (VLDB), September Wave. Morgan Kaufmann, San Mateo, Calif.
1996, Bombay, India, pp 390-401 [Val87] Valduriez P (1987) Join indices. ACM Trans Database Syst 12(2):
[GKG+97] Grust T, Kbger J, Gluche D, Heuer A, Scholl MH (1997) 218-246
Query evaluation in CROQUE - calculus and algebra coincide. In: [Ver97] Versant Object Technology (1997) Versant release 5, October
Proc. British National Conference on Databases (BNCOD), July 1997, 1997; http://www.versant.com/

London, UK, pp 84-100 [WW90] Williams |, Wolczko M (1990) An object-based memory archi-
[GR93] Gray J, Reuter A (1993) Transaction Processing: Concepts and tecture. In: Dearle A, Shaw G, Zdonik S (eds) Implementing Persistent
Techniques. Morgan Kaufmann, San Mateo, Calif. Object Bases, Principles and Practice. Morgan Kaufmann, San Mateo,

[Har78] Harder T (1978) Implementing a generalized access path structure Calif., pp 114-130
for a relational database system. ACM Trans Database Syst 3(3): 285pXH94] Xie Z, Han J (1994) Join index hierarchies for supporting efficient

298 navigations in object- oriented databases. In: Proc. of the Conf. on Very
[HCLS97] Haas L, Carey M, Livny M, Shukla A (1997) Seeking the truth Large Data Bases (VLDB), September 1994, Santiago, Chile, pp 522—
about ad hoc join costs. VLDB J 6(3): 241-256 533

[HR96] Harris E, Ramamohanarao K (1996) Join algorithm costs revisited.
VLDB J 5(1): 64-84

