
The VLDB Journal (2000) 8: 156–177 The VLDB Journal
c© Springer-Verlag 2000

Functional-join processing∗,∗∗

R. Braumandl, J. Claussen, A. Kemper, D. Kossmann

Universiẗat Passau, Lehrstuhl für Informatik, 94030 Passau, Germany; e-mail:{braumandl,claussen,kemper,kossmann}@db.fmi.uni-passau.de

Edited by O. Shmueli. Received February 28, 1999 / Accepted September 27, 1999

Abstract. Inter-object references are one of the key con-
cepts of object-relational and object-oriented database sys-
tems. In this work, we investigate alternative techniques to
implement inter-object references and make the best use
of them in query processing, i.e., in evaluating functional
joins. We will give a comprehensive overview and perfor-
mance evaluation of all known techniques for simple (single-
valued) as well as multi-valued functional joins. Further-
more, we will describe specialorder-preservingfunctional-
join techniques that are particularly attractive for decision
support queries that require ordered results. While most of
the presentation of this paper is focused on object-relational
and object-oriented database systems, some of the results
can also be applied to plain relational databases becausein-
dex nested-loop joinsalong key/foreign-key relationships, as
they are frequently found in relational databases, are just one
particular way to execute a functional join.

Key words: Object identifier – Logical OID – Physical OID
– Query processing – Pointer join – Functional join – Order-
preserving join

1 Introduction

1.1 Background and motivation

Inter-object references are one of the key concepts of object-
relational and object-oriented database systems. In an object
model, it is, for instance, natural to represent anOrder ob-
ject as an object with a reference to aCustomerobject and
a set of references toLineitemobjects. In such a database, it
is just as natural that users initiate queries that involve func-
tional joins (also called pointer-based joins). A user could,
for example, request the names of allCustomersthat ordered
goods in the last two weeks, or a user could be interested in
the prices of theLineitemsof this month’sOrders.

∗ Some excerpts of this work appeared in the conference publications
[EGK95] and [BCK98].
∗∗ This work was partially supported by the German Research Council
(DFG) under contract Ke 401/7-1.

Inter-object references are implemented by storing the
referenced object’s object identifier in the referencing ob-
ject. Object identifiers can be implemented in different ways
and they come in different flavors: references can, for ex-
ample, be generated externally (e.g., within a legacy order-
processing system), or they can be generated internally by
the database system. As a consequence, different techniques
that depend on the kind of references used are applicable
in order to implement functional joins. Furthermore, our ex-
ample from above shows that inter-object references can oc-
cur as part of single-valued and multi-valued attributes, and
again special functional-join techniques are required to deal
with both cases. Finally, the choice of the right functional-
join method can be impacted by other operations that must
be carried out in a query (e.g., sorting, other joins, or aggre-
gation).

We point out that the presented techniques are applicable
to object-relational systems in the same way as they are to
object-oriented systems.

1.2 Related work

The purpose of this paper is to give a comprehensive
overview and thorough performance analysis of all known
functional-join techniques. The first (classic) work on func-
tional joins was carried out by Shekita and Carey [SC90].
This work was partially incorporated into Starburst
[CSL+90], and it was later extended by [DLM93] to deal
with parallel database systems. In our own previous work,
we studied alternative ways to implement inter-object refer-
ences [EGK95], developed special techniques for functional
joins in the presence of multi-valued attributes [BCK98],
and special techniques that can be used for decision support
queries [CKK98]. All these papers, however, are each fo-
cused on one particular aspect of functional-join processing,
and in this paper, we will give a complete overview and fill
in all the open holes which were not addressed in previous
work.

Throughout this paper, we will concentrate onad hoc
functional joins. That is, we will assume that there are no
specialized join or path indices available. Join indices have
been proposed in [Ḧar78] and [Val87], and work on path

R. Braumandl et al.: Functional-join processing 157

Fig. 1. Physical OIDs

(a, 3.2) (b, 1.2) (c, 2.1) (d, 4.1) · · · (g, 5.1) (h, 2.2) (i, 1.1)

(g, 5.1)
(e, 3.1)
(b, 1.2)
(f, 4.2)
(d, 4.1)
(c, 2.1)
(a, 3.2)
(h, 2.2)
(i, 1.1)

a 3.2
b 1.2
c 2.1
d 4.1
e 3.1
f 4.2
g 5.1
h 2.2
i 1.1

(a) B+-tree (b) Hash Table (c) Direct Mapping

Fig. 2. Mapping techniques

indices is reported in [BK89, KM90, XH94]. A recent pa-
per describes two new join algorithms that are based on join
indices [LR99]. Both algorithms store the join result in two
files on disk, which need to be merged to obtain the actual
join result. Therefore, their algorithms achieve their perfor-
mance gains mostly in situations where the join needs to be
materialized and less in situations where the join result is
further processed (then the tuples have to be re-read from
disk because their algorithm does not pipeline tuples to the
next operator).

Another line of work which we will not cover in detail
is so-calledobject assembly[KGM91, MGS+94]. Object as-
sembly influences the order in which objects are read from
disk or retrieved from remote servers in a distributed system
in order to reduce (disk or network) I/O cost. Object as-
sembly is specifically designed toassemblecomplex objects
that are hierarchically composed of sub-objects, and object
assembly does not work well for general-purpose functional
joins which have been the focus of our work. Also, we
will concentrate on the execution of functional joins and
ignore query optimization issues. Query optimization tech-
niques which aim at finding the best evaluation order for
chains of functional joins are presented in, e.g., [GGT96]
and [CD92].

1.3 Overview of this paper

The remainder of this paper is organized as follows. In
Sect. 2, we investigate alternative ways to implement ob-
ject identifiers. Section 3 describes different algorithms for
performing functional joins along single-valued reference at-
tributes. Section 4 describes analogously different algorithms
for performing functional joins along multi-valued reference
attributes. Section 5 presents a new class of functional-join
techniques which are particularly attractive for decision sup-
port queries that require ordered results. Section 6 presents

the results of a comprehensive performance analysis com-
paring all alternative techniques with the help of a detailed
cost model. Section 7 concludes this paper.

2 Implementation of object identifiers

Before embarking on the details of alternative functional-
join techniques, we would like to present different ways to
represent and implement object identifiers (OIDs for short)
in a database system. Two different kinds of OIDs can be
found in databases today: (1) physical OIDs and (2) logical
OIDs.

Physical OIDs encode the storage location, whereas log-
ical OIDs are storage location independent [KC86]. Logical
OIDs can, furthermore, be implemented in three different
ways. In this section, we will describe physical OIDs and
logical OIDs and the three different ways to implement log-
ical OIDs, and we will discuss the trade-offs of all the al-
ternative approaches.

2.1 Physical OIDs

A physical OID contains the (disk) storage location of an
object at the time the object was created. In a centralized
database system, the storage location is typically defined as
a segment number, which identifies a file on a disk, apage
number, which identifies a block within a segment, and a
slot number, which is the position used to find the object
within a page [GR93]. In a distributed system, a physical
OID also contains the (IP) address of the server at which
the object was created [EKK97]. In addition to the storage
location, a physical OID also contains aunique field, so that
the database system works correctly if objects are deleted.
Suppose, for example, that objectA references objectB us-
ing a physical OID. Now objectB is deleted and a new

158 R. Braumandl et al.: Functional-join processing

Insertion

Tuned Split for
OID Mapping

(a)Split of a General-
Purpose B-Tree

(b)

Fig. 3. Splitting of a leaf page in a B-tree

objectC is created at the storage location at which objectB
was originally stored. To be able to trap that the object ref-
erenced byA no longer exists, the physical OIDs of objects
B and C must differ in the value of theirunique fields. In
Exodus [CDRS86], for example, this is achieved by main-
taining a counter for every data page, which is increased
whenever a new object is created on that page. The current
counter value becomes part of the OID.

Working with physical OIDs is very simple: to derefer-
ence a physical OID (e.g., traverse the inter-object reference
from A to B), the database system simply decodes the stor-
age location of the referenced object which is part of the
physical OID. Special precautions must only be taken if ob-
jects migrate to different pages. Migrations are, for instance,
necessary if objects grow as a result of update operations. If
an object migrates, aforward which contains the new stor-
age location of the object is established at the place at which
the object was originally stored. If an object migrates sev-
eral times, this forward is updated so that it always contains
the right storage location and an object can be read with at
most two “hops.”

Two example physical OIDs are shown in Fig. 1. The
figure also shows that the object referenced by the first OID
is still stored at its original location, whereas the object ref-
erenced by the second OID was migrated to another page,
so that aforward for that object had to be established. Ex-
amples of commercial systems that make use of physical
OIDs are O2 [O2T94], ObjectStore [LLOW91], Objectivity
[Obj96], and (presumably) Illustra [Sto96, p. 57].

2.2 Logical OIDs

Logical OIDs do not contain the storage locations (or ad-
dresses) of objects; i.e., logical OIDs arelocation indepen-
dent. To find an object using its logical OID, a mapping
structure is required, whichmapsthe logical OID to the ob-
ject’s address. If an object is migrated, the object’s entry in
the mapping structure is updated in a similar way asfor-
wardsare updated when objects migrate and physical OIDs
are used. Three different kinds of mapping structures are
used in practice: (1) B-trees, (2) hash tables, and (3) direct
mapping tables. These three mapping structures are shown in
Fig. 2 (letters denote logical OIDs and number pairs denote
addresses of objects composed of the object’spage number,
andslot number. The segment number is ignored in the illus-
trations of this paper). We will describe these three mapping
structures in the following. Furthermore, we will describe
how these mapping structures can be partitioned.

2.2.1 Mapping logical OIDs with a B-tree

B-trees or B+-trees [BM72, Com79] can naturally be used
to map logical OIDs to object addresses. B+-trees are im-
plemented in probably every commercial database system,
so that no significant additional implementation effort is re-
quired to effect logical OIDs with B+-trees. For the purpose
of OID mapping, however, it is advisable to use a specif-
ically tuned implementation of a B+-tree, because logical
OIDs are usually generated and inserted into the B+-tree
in ascending order. This insertion pattern is the worst case
for standard textbook B+-trees, because many (unnecessary)
splits occur and 50% of the storage space is wasted, as shown
in Fig. 3a. For this reason, splits should be implemented as
demonstrated in Fig. 3b: rather than moving half of the en-
tries of an over-full node into the new node, only the last
entry is moved. Similar optimizations for insertions in as-
cending order were incorporated in the AP-tree [SG89] in
the context of temporal databases. Examples of systems that
support logical OIDs and use B-trees are Gemstone [MS87],
SHORE [CDF+94], and Oracle8 [LMB97].

2.2.2 Mapping logical OIDs with hash tables

As an alternative to a B+-tree, a hash table can be used to
map logical OIDs. A variety of different hashing techniques
that can be used for this purpose have been described in the
literature; see, e.g., [ED88] for an overview. An important
tuning factor for any kind of hash table is thehash function.
To map OIDs, a good hash function can easily be found be-
cause OIDs are usually generated in ascending order, so that
simplemodhash functions work well. Examples of database
systems that use hash tables to map logical OIDs are Versant
[Ver97] and Itasca [Ita93].

2.2.3 Direct mapping

B+-trees and hash tables find the addresses of objects by
comparingOIDs. The third approach we describe is called
direct mappingand it works byencodingan address of a
so-calledhandle into an OID. Handleslook and work like
forwards used if physical OIDs are employed: ahandleof
an object contains the address of the object, and if an object
is migrated, thehandle is updated. The difference between
systems that employ logical OIDs with direct mapping and
systems that rely on physical OIDs is that systems that use
direct mapping allocate ahandlefor every object at the time
the object is created, whereas systems that use physical OIDs
allocate aforward only when an object is migrated.

Going into more detail,handlesare organized in exten-
sible disk-resident arrays, so-calledhandle segments. A han-
dle segmentcontains any number ofhandle pages, and every
handle pagecontains a fixed amount ofslots with handles.
A handle contains the address of an object and aunique
field which is used to detect dangling references that refer to
deleted objects in the same way as in systems that employ
physical OIDs. A logical OID is composed of the address of
a handle(i.e., handle segment number, handle page number,
andslot number) and aunique field.

R. Braumandl et al.: Functional-join processing 159

O1 O2 O3 O4 O5 O6

- -

Page 0 Page 1 Page 2

- -

logical OID 42 1 2

...

1011001011 ...

Free Space Bitmap

creation site

page number

unique

slot number

Segment
Object

Segment
Handle

Page 1Page 0

3

Fig. 4. OIDs, handles, handle pages, and handle segments

Figure 4 shows an example logical OID and how it ref-
erences ahandlewhich, in turn, references an object. The
figure also shows afree space bitmapwhich is maintained
for everyhandle segment. This bitmap is used to find empty
slots in the handle segment when a new object is created.
In Fig. 4, this bitmap has a bit set for everyslot used in the
handle segment. The bitmap could, however, also be orga-
nized in the granularity ofhandle pages, and, of course, it
is also possible to compress thefree-space bitmapbecause
most of its bits will be set if objects are only rarely deleted.

Currently, we know of no commercial system that sup-
ports logical OIDs using direct mapping. Direct mapping
has, however, been used in a couple of research prototypes;
e.g., [HZ87, BR90, WW90, BP95]. Also, variants of direct
mapping have been used in CODASYL database systems.

2.2.4 Partitioning of mapping structures

In very large databases with many objects, it is usually not
a good idea to keep the whole mapping information in a
single mapping structure. For direct mapping, we already
showed in the previous subsection how the mapping infor-
mation can be partitioned into multiplehandle segments.
Fortunately, partitioning is also possible if B+-trees or hash
tables are used. One popular approach is to establish a sep-
arate B+-tree (or hash table orhandle segment) for every
class of objects in an object-oriented database system. (In
an object-relational system, one mapping structure would be
established for every type/table of objects – same concept,
just different terminology.) This approach is, for example,
used by Itasca [Ita93]. In Itasca, OID mapping is, thus, car-
ried out in two steps. First, the class name which must be
encoded in the OID, is hashed to get the right per-class hash
table. Then, that per-class hash table is probed to get the ob-
ject’s address. Since the number of classes is typically rela-
tively small, the whole class-name hash table can be kept in
memory, while the whole per-class hash tables can usually
not be kept in main memory. Note that this kind of partition-
ing of the mapping information is carried out implicitly by
relational database systems: in relational databases, primary
indices are naturally constructed for every table individually
and there is noglobal indexthat keeps the keys of all the
tuples of the whole database.

Table 1. Number of disk I/O requests to read an object

Linear Direct
Physical OIDs B+-trees Hashing Mapping

1 or 2 1 . . . (1 + logn) 2 1 or 2

Table 2. Size of mapping structures

of objects B+-trees Linear Hashing Direct Mapping

200,000 9 MB 13 MB 5 MB
5,000,000 204 MB 252 MB 118 MB

2.3 Logical OIDs with probable position pointers

Probable position pointers (PPP) have been proposed in the
late 1970s [GR93]. The idea is to generate logical OIDs
which contain a PPP, which is an address at which the object
can most likely be found. When such a PPP-enhanced OID is
dereferenced, the PPP is traversed first, and only if the object
is not found at that address thelogical part of the OID is
used to find the object (using, e.g., direct mapping) and the
PPP is updated. Because this approach is ahybrid of logical
and physical OIDs and, thus, inherits most of the advantages
and disadvantages of physical and logical OIDs, we will not
discuss this approach further but, rather, concentrate on the
two underlying mechanisms, i.e., physical and logical OIDs.
One particular disadvantage of PPPs is that PPPs require the
use of very large OIDs and, thus, databases tend to become
very large if PPPs are used.

2.4 Discussion

In this section, we would like to briefly summarize the trade-
offs of physical OIDs and the three approaches to effect
logical OIDs.

Retrieval performance.Using physical OIDs, an object can
be read from disk with a single I/O request if the object
was not migrated and with at most two requests if the object
was migrated. Using logical OIDs and direct mapping, an
object can be read from disk with at most two I/O requests.
As shown in [EGK95], it is possible to read an object with
a single request for many applications because the relevant
handle pagescan effectively be cached in main memory. Us-
ing a B+-tree, 1 + logn pages, the height of the B+-tree plus
one, must be read from disk in the worst case. As shown
again in [EGK95], however, one or two requests are usually
sufficient if the cache is large enough to keep the relevant
parts of the B+-tree main-memory resident. Using hash ta-
bles and linear hashing [Lit80], our experiments showed that
objects can be retrieved from disk with two requests (one
request for the hash table lookup and one for accessing the
object), almost independent of the size of the cache. Table 1
summarizes these results.

Size of the mapping structure.Table 2 shows the size of the
mapping structure if logical OIDs are used. We can see that
independent of the number of objects in the database, the
mapping structure is the smallest if direct mapping is used

160 R. Braumandl et al.: Functional-join processing

and the largest if hash tables are used (linear hashing as of
[Lit80]); B +-trees (with prefix compression) lie somewhere
in between.

Obviously, it is not always possible to exactly deter-
mine the space overhead of systems that employ physical
OIDs. If no objects are migrated, the space overhead is 0,
and if objects are migrated, the overhead corresponds to the
space occupied byforwards. Note, however, thatforwards
fragment data pages and cannot be stored without off-cuts,
whereashandlescan nicely be packed intohandle pagesif
direct mapping is used.

Size of OIDs.Since OIDs are used to represent inter-object
references in the whole database, the size of an OID strongly
impacts the size of the entire database. Physical OIDs are
usually 12 bytes long: 4 bytes each for thepage numberand
the unique field, and 2 bytes each for thesegment number
and theslot number. Likewise, logical OIDs are 12 bytes
long if direct mapping is used. If B+-trees or hash tables
are used, 8 bytes are usually enough to implement logical
OIDs. (With 8 bytes, the database system can generate up to
264 objects, which is more than enough.) Most systems that
use logical OIDs with B+-trees or hash tables, nevertheless,
have OIDs which are 12 bytes long; e.g., in order to encode
the class name of an object into an OID.

Other considerations.As noted in [EGK95], concurrency
control and recovery of the mapping structure are easier
to implement and faster if direct mapping rather than B+-
trees or hash tables are used. Another observation made in
[EGK95] is that hash tables require tuning: hashing works
best if the size of the hash table is known in advance, and
hashing shows very poor (insertion) performance if the size
of the hash table exceeds the anticipated size. Even if the
size is known in advance, it is more expensive to bulkload
a hash table than to bulkload a B+-tree or ahandle segment.

From all this discussion, we might conclude that either
physical OIDs or logical OIDs with direct mapping are the
way to go. However, throughout this section, we implic-
itly made the assumption that all OIDs are generated by
the database system. But some applications require exter-
nally defined OIDs. Externally defined OIDs are, for exam-
ple, necessary to integrate legacy systems. Neither physical
OIDs nor logical OIDs with direct mapping can be used to
support externally defined OIDs. In this case, B+-trees and
hash tables are the only viable options, so that we will con-
tinue to consider these two options to implement OIDs when
we describe techniques to implement functional joins in the
following sections.

3 Functional joins along single-valued references

We now turn to a description of alternative ways to imple-
ment functional joins (also calledpointer-based joins) along
single-valued reference attributes. We first present an exam-
ple that involves a query with such a functional join and
then present alternative techniques, some of which depend
on the way OIDs are implemented.

3.1 Example schema and query

Throughout this section, we will describe algorithms using
the following example schema. The schema consists of two
tablesR and S, and the objects stored in tableR refer to
objects stored in tableS.

create typeR t as (
R Data char(200),
Sref ref(S t),
. . .);

create tableR of R t;

create typeS t as (
S Attr number,
S Data char(200),
. . .);

create tableS of S t;

The example query we wish to discuss traverses allSref
references of the objects stored in tableR in order to retrieve
the S Attr attributes of the matching objects stored in table
S. That is, this query involves a functional join betweenR
andS and it can be defined as follows:

selectr.*, r.Sref.SAttr
from R r;

In the following, we will simply ignore the handling of the
R Data (and S Data) attributes—they are just included in
the schema because our performance analysis includes these
bulky attributes to model realistically sized objects.

3.2 The näıve approach

The näıve approach to execute our example query is to scan
through tableR and follow everySrefreference individually.
This approach corresponds (conceptually) to a traditional
nested-loop join, and this approach can be applied indepen-
dent of the kind of OID (physical or logical) and mapping
technique (B+-tree, hashing, or direct mapping) used. Fig-
ure 5 illustrates this naı̈ve approach for a system that uses
logical OIDs and direct mapping.

3.3 Value-based functional joins

The second way to execute our example query is to ig-
nore the fact that theSreffields contain OIDs and carry out
the query using regular join methods such as nested-loops,
sort/merge joins, or hash joins. This approach can be ef-
fected by re-writing the query as follows (of course, a good
query optimizer performs the re-writing).

selectr.*, s.S Attr
from R r, S s
where r.Sref =s.OID;

Obviously, this approach works again for any kind of OIDs
and independent of the mapping technique used. One restric-
tion, however, is that all objects stored in tableS must be
self-identifiable, i.e., theOID can be considered as a (pos-
sibly not fully materialized) field of an object. The second
restriction is that theSrefreferences must bescoped; i.e., all
the objects referenced byR objects must be stored in table
S. The approach is shown in Fig. 6 using a (traditional) hash
join method to execute the join.

R. Braumandl et al.: Functional-join processing 161

R

OIDR Sref
r1 b
r2 e
r3 c
r4 g
r5 i
r6 d
r7 a
r8 c
r9 h
r10 i
...

...

;

Map

a 3.2

b 1.2

c 2.1

d 4.1

e 3.1

f 4.2

g 5.1

h 2.2

i 1.1

;

S
OIDS S Attr

1.1 i 17
1.2 b 11

2.1 c 19
2.2 h 13

3.1 e 18
3.2 a 12

4.1 d 10
4.2 f 14

5.1 g 15

→

RS

OIDR S Attr
r1 11
r2 18
r3 19
r4 15
r5 17
r6 10
r7 12
r8 19
r9 13
r10 17
...

...

Fig. 5. Näıve functional join with direct mapping

R

OIDR Sref
r1 b
r2 e
r3 c
r4 g
r5 i
r6 d
r7 a
r8 c
r9 h
r10 i
...

...

↗
h(Sref)

↘

R1

r2 e
r5 i
r7 a
r10 i
...

...

R2

r1 b
r3 c
r4 g
r6 d
r8 c
r9 h
...

...

−→1Sref=OIDS
←−

⇓
RS

OIDR S Attr
r2 18
r5 17
...

...
r1 11
r3 19
...

...
⇑

−→1Sref=OIDS
←−

S1

i 17
e 18
a 12
...

...

S2

b 11
c 19
h 13
d 10
f 14
g 15
...

...

↖
h(OIDS)
↙

S
OIDS S Attr

1.1 i 17
1.2 b 11

2.1 c 19
2.2 h 13

3.1 e 18
3.2 a 12

4.1 d 10
4.2 f 14

5.1 g 15

Fig. 6. Value-based functional join (hash join)

3.4 Special functional-join techniques for physical OIDs

As we will see in Sect. 6, both the naı̈ve approach and value-
based functional joins show poor performance in many sit-
uations: the näıve approach can be the cause of excessive
random disk I/O and value-based joins do not exploit the
address information contained in OIDs and/or the mapping
structures. In this sub-section, we will describe approaches
that often do better and can be used by systems that em-
ploy physical OIDs. We will first describe techniques which
were pioneered by Shekita and Carey [SC90]. Their work,
however, ignored the presence offorwards, so that we will
describe how their techniques can be extended to deal with
forwardsat the end of this sub-section.

3.4.1 Sort-based functional-join evaluation

The idea of this technique is tosort the objects of table
R in ascending order of thepage numberof the physical
OIDs stored in theSref fields. After this sorting step, the
matchingS objects can be read from disk sequentially. The
whole process is shown in Fig. 7. (The bold typed6.1 and
6.2 in the figure represent forwards. Note that we only sort
by the page number, so r1 and r5 need not be swapped in
tableRsrt.)

3.4.2 Partition-based functional-join evaluation

The idea of this technique is to range-partition theR ob-
jects in such a way that all theS objects referenced by the

R objects of a single partition fit into main memory. The
query result is then obtained by joining (with the help of an
in-memory hash table) the first partition ofR objects with
the first chunk ofS objects, then joining the second parti-
tion of R objects with the second chunk ofS objects, and
so on. Figure 8 illustrates this process. As an alternative to
range partitioning, it is also possible to partition theR ob-
jects using hashing. In this particular case, however, range
partitioning is more attractive because it guarantees that all
the S objects referenced by the objects in a single partition
of R objects fit into main memory. Choosing the partition
size for range partitioning should be supported by database
statistics. If some partitions do not fit into memory, they
have to be re-partitioned.

3.4.3 Dealing with forwards

There are two different ways to handle the occurrence of
forwards while evaluating functional joins based on sorting
or partitioning. The first approach is to immediately chase
every forward, thereby accepting the penalty that additional
page faults may cause page thrashing. This approach is only
efficient if there are very few forwards. Alternatively, in-
stead of immediately chasing the forwards, all forwards can
be collected during the initial algorithm evaluation and pro-
cessed in a separate pass afterwards. This way we avoid
random I/O because we can sort or partition the forwards at
the end. On the negative side, collecting forwards requires
additional disk I/O and/or additional main-memory buffers.

162 R. Braumandl et al.: Functional-join processing

R

OIDR Sref
r1 1.2
r2 3.1
r3 2.1
r4 5.1
r5 1.1
r6 4.1
r7 3.2
r8 2.1
r9 2.2
r10 1.1
...

...

→sort→

Rsrt

r1 1.2
r5 1.1
r10 1.1
r3 2.1
r8 2.1
r9 2.2
r2 3.1
r7 3.2
r6 4.1
r4 5.1
...

...

;

S
OIDS S Attr

1.1 1.1 → 6.2
1.2 1.2 11

2.1 2.1 19
2.2 2.2 → 6.1

3.1 3.1 18
3.2 3.2 12

4.1 4.1 10
4.2 4.2 14

5.1 5.1 15

6.1 2.2 13
6.2 1.1 17

→

RS

OIDR S Attr
r1 11
r5 17
r10 17
r3 19
r8 19
r9 13
r2 18
r7 12
r6 10
r4 15
...

...

Fig. 7. Functional join with physical OIDs based on sorting

R

OIDR Sref

r1 1:2

r2 3:1

r3 2:1

r4 5:1

r5 1:1

r6 4:1

r7 3:2

r8 2:1

r9 2:2

r10 1:1

.

.

.
.
.
.

%

hM

&

R1

r1 1.2

r3 2.1

r5 1.1

r8 2.1

r9 2.2

r10 1.1

.

.

.
.
.
.

;

R2

r2 3.1

r4 5.1

r6 4.1

r7 3.2

.

.

.
.
.
.

;

S

OIDS S Attr

1.1 1.1 ! 6.2

1.2 1:2 11

2.1 2:1 19

2.2 2.2 ! 6.1

3.1 3:1 18

3.2 3:2 12

4.1 4:1 10

4.2 4:2 14

5.1 5:1 15

6.1 2:2 13

6.2 1:1 17

!

RS

OIDR S Attr

r1 11

r3 19

r5 17

r8 19

r9 13

r10 17

.

.

.
.
.
.

r2 18

r4 15

r6 10

r7 12

.

.

.
.
.
.

Fig. 8. Functinal join with physical OIDs based on partitioning

R

OIDR Sref
r1 b
r2 e
r3 c
r4 g
r5 i
r6 d
r7 a
r8 c
r9 h
r10 i
...

...

↗
hM

↘

R1

r1 b
r3 c
r6 d
r7 a
r8 c
...

...

;

R2

r2 e
r4 g
r5 i
r9 h
r10 i
...

...

;

Map

a 3.2

b 1.2

c 2.1 M1

d 4.1

e 3.1

f 4.2

g 5.1 M2

h 2.2

i 1.1

↗
→ hS

↘

RM1

r1 1.2
r3 2.1
r8 2.1
r5 1.1
r9 2.2
r10 1.1
...

...

;

RM2

r6 4.1
r7 3.2
r2 3.1
r4 5.1
...

...

;

S
OIDS S Attr

S1

1.1 i 17
1.2 b 11

2.1 c 19
2.2 h 13

S2

3.1 e 18
3.2 a 12

4.1 d 10
4.2 f 14

5.1 g 15

→

RS

OIDR S Attr
r1 11
r3 19
r8 19
r5 17
r9 13
r10 17
...

...
r6 10
r7 12
r2 18
r4 15
...

...

Fig. 9. Functional join with logical OIDs based on partitioning

R

OIDR SrefSet
r1 {b,

e,
c,
g,
i}

r2 {a,
d,
h,
c,
i}

...
...

;

Map

a 3.2

b 1.2

c 2.1

d 4.1

e 3.1

f 4.2

g 5.1

h 2.2

i 1.1

;

S
OIDS S Attr

1.1 i 17
1.2 b 11

2.1 c 19
2.2 h 13

3.1 e 18
3.2 a 12

4.1 d 10
4.2 f 14

5.1 g 15

→

RS
OIDR {S Attr}

r1 {11,
18,
19,
15,
17}

r2 {12,
10,
13,
19,
17}

...
...

Fig. 10. Näıve pointer chasing

R. Braumandl et al.: Functional-join processing 163

3.5 Functional-join techniques for logical OIDs

In this sub-section, we will show how sort-based and parti-
tion-based functional-join-processing work in the presence
of logical OIDs. The key observation is that we must carry
out two functional joins in the presence of logical OIDs.
That is, we can represent our example query as follows:

(R on Map) on S .

The second join (i.e., the join withS) can be executed using
exactly the same sort-based and partition-based techniques
as with physical OIDs (see the previous sub-section). To
implement the first join with the mapping structureMap
(i.e., R on Map), we can also apply sorting and partitioning,
but we must respect the following restrictions which depend
on the mapping technique.

Hashing. SortingR directly by Sref and then probing the
hash table in ascendingSref order does not make
sense, because probing a hash table with orderedSrefs
is just as expensive as with unorderedSrefs. To take
advantage of sorting and (hash or range) partitioning,
we must first apply the hash function of the mapping
structure to theSref values in order to find the page
numbers of the corresponding buckets of the hash ta-
ble, and then sort or partition these page numbers.

B+-trees. Here, directly sortingR by Sref is useful because
sorting allows to read the leaves of the B+-tree sequen-
tially. Range partitioning is also viable, but it is less
effective than sorting for physical OIDs because of the
complex internal structure of a B+-tree which makes
it difficult to predict the right range predicates. Hash
partitioning does not make sense for B+-tree mapping.

Direct mapping. Sorting, range, and hash partitioning can
naturally be applied. With direct mapping, a logical
OID can be interpreted as a physical OID of ahandle
of an object.

Figure 9 illustrates how a functional join with directly
mapped logical OIDs can be carried out. In this particular
scenario, direct mapping is used, the first join,R on Map, is
implemented using range partitioning ofR, and the second
join, the join with S, is also carried out using range parti-
tioning. Comparing physical and logical OIDs, the price for
logical OIDs is an additional join with the mapping table.
On the positive side, systems with logical OIDs need not
worry aboutforwardsduring functional-join processing. We
will study this trade-off in more detail in Sect. 6.

4 Functional joins along nested reference sets

We now turn to a discussion of functional-join-processing
techniques in the presence of multi-valued reference at-
tributes. Multi-valued references are either present in the
tables of the database – as assumed here – or created on
the fly by special operators like nestjoin [SABdB94] or the
binary grouping operatorΓ [CM95]. We will extend our ex-
ample from the previous section and then describe alterna-
tive functional-join techniques that exploit the pre-grouping
given by the nested reference sets, assuming that the nested
reference sets are clustered as done by all database systems
we are aware of.

νOIDR (nest/group)

1;

partition/sort/none

1;

partition/sort/none

µSrefSet→Sref (flatten)

R

Map

S

Fig. 11. Evaluation based on flattening/grouping

4.1 Example schema and queries

For the subsequent discussion of the algorithms, we change
the example schema of Sect. 3 to include a set-valued refer-
ence attributeSrefSet:

create typeR t as (
R Data char(200),
SrefSetset(ref(S t)),
. . .);

create tableR of R t;

create typeS t as (
S Attr number,
S Data char(200),
. . .);

create tableS of S t;
The example queries we wish to discuss are the following –
one with an aggregation, the other without:1

selectr.R Data,
(select sum(s.S Attr)
from r.SrefSets)

from R r;

selectr.R Data,
(selects.S Attr
from r.SrefSets)

from R r;

In both queries, the grouping that is given by the nested ref-
erence setSRefSethas to be maintained during (or restored
after) the functional-join evaluation. In the query on the left-
hand side, the elements of the nested sets are aggregated. In
the query on the right-hand side, all elements of the nested
sets are output. Asking for the sum of the prices ofLineitems
of every Order, one of the queries mentioned in the intro-
duction, is a more intuitive example that follows the pattern
of the left query.

4.2 The näıve pointer-chasing algorithm

The näıve, pointer-chasing algorithm scansR and traverses
every reference stored in the nested setSrefSetindividu-
ally. For logical OIDs, again, the mapping structure must
be probed to obtain the address of the referencedS object.
If the combined size of theMap and S exceeds the mem-
ory capacity, this algorithm performs very poorly because
its execution involves a great deal of random disk I/O.

1 Note that the query on the right-hand side is not standard SQL because
the nested query returns a set of tuples. However, some ORDBMS products
do already support this query, and in OQL this query is also expressible
(in a slightly different syntax, though).

164 R. Braumandl et al.: Functional-join processing

4.3 The flatten algorithms

Flatten algorithms work in three steps. First, they flatten
(unnest) the set-valuedSrefSetattribute to obtain single-
valued reference attributes. Second, a single-valued func-
tional join is performed, using one of the special-purpose
algorithms based on sorting or partitioning (Sects. 3.4 and
3.5) or a value-based functional-join method (Sect. 3.3). In
the third step, the initial grouping is re-established by means
of an (expensive) sorting or hashing operation. This three-
step process is shown for logical OIDs in Fig. 11 for a sort-
ing, partitioning, or do-nothing approach to implement the
single-valued functional joins. If a value-based functional-
join method is used, the join with theMap is not needed.
Figure 12 shows an example evaluation using partitioning
for both theMap andS.

4.4 The partition/merge algorithmP (PM)∗M
for logical OIDs

The näıve algorithm obviously suffers from a lack of lo-
cality, resulting in random I/O. The flatten algorithms incur
high costs for restoring the grouping at the end. The question
arises whether an algorithm can be designed that achieves
locality and maintains the grouping. For this purpose, we
proposed the partition/merge algorithm in [BCK98]. This al-
gorithm retains the grouping of the flattenedR tuples across
an arbitrary number of functional joins. This is achieved by
interleaving partitioning and merging in order to retain (very
cheaply) the grouping after every intermediate partitioning
step. This is captured in the notationP (PM)∗M . We will
first describe the basicP (PM)1M algorithm which is ap-
plied when evaluating a unary functional join under logical
OIDs. More intermediatePM-steps are needed when longer
functional-join chains are evaluated (cf. Sect. 4.5).

In theP (PM)1M algorithm two joins are performed: (1)
R is joined with theMap to replace the logical OIDs by their
physical counterparts and (2) the result is joined withS. For
evaluating the joins we will adapt the hash join algorithm.
Theprobe inputis R for the first join andR with the logical
OIDs replaced by their physical counterparts – then called
RM – in the second phase. Unlike the original hash join
algorithm, only the probe input is explicitly partitioned.2 The
build input, i.e., theMap and S, are either faulted into the
buffer or – if range partitioning is applied – loaded explicitly
(i.e., pre-fetched) into the buffer. In both cases, however, a
partitioning step for theMap andS involving additional disk
I/O is not required.

The successive steps of the partition/merge algorithm can
be visualized as follows:

flatten andpartition
R N -way →

join with Map to obtainRM
andpartition RM

(N ∗ K)-way
→ · · ·

· · · → re-mergeRM to K partitions
and join withS

→ merge

2 For simplifying the presentation, we assume that the partitioning can be
done in one recursion level – however, this is not required for the algorithm
to work.

That is, the partition/merge algorithm first flattens theR
objects and partitions them, then applies the mapping from
logical to physical OIDs, partitions the resultingRM, then
re-merges the initial partitioning and performs the join with
S, and finally merges the partitions to restore the over-all
grouping of the flatR tuples belonging to the sameR object.

We need two partitioning functionshM andhS :

– hM partitions theMap into N memory-sized chunks by
mapping logical OIDs ofS to the partition numbers 1 to
N and

– hS partitionsS into K memory-sized chunks by map-
ping addresses ofS objects to the partition numbers 1
to K.

That is,Map is partitioned into partitionsM1, . . . , MN and
S into S1, . . . , SK . Actually, these partitioning functions are
not applied onMap and S but on the logical OIDs stored
in the nested sets ofR and on their physical counterparts in
RM after applying the mapping.

In more detail, the algorithm performs the following four
steps.

1. Flatten the nestedSrefSets and partition the flatR ob-
jects/replicas intoN partitions, denotedR1, . . . , RN .
That is, for every object [r,{Sref1,. . . ,Srefl}] ∈ R gener-
ate thel flat tuples [r,Sref1], . . . , [r,Srefl] and insert these
tuples into their corresponding partitionshM (Sref1), . . . ,
hM (Srefl), respectively. Of course, theR attributes
(R Data in our example query) need not be replicated. It
is sufficient to include them in one of the flat tuples or,
often even better, to leave them out and re-merge them
at the end (cf. Sect. 4.6). The partitions are written to
disk.

2. For all 1≤ i ≤ N do:
– For (every) partitionRi, theK initially empty parti-

tions denotedRMi1, . . . , RMiK are generated.
– ScanRi and, for every element [r,Sref] ∈ Ri, do:

– Replace the logical OIDSref by its physical
counterpartSaddrobtained (probed) from thei-
th partitionMi of the Map.

– Insert the tuple [r,Saddr] into the partitionRMij ,
wherej = hS(Saddr).

Note that all OID mapping performed in this step
concerns only partitionMi of the Map, which is ei-
ther prefetched or faulted into the buffer.

Having completed step 2, all theN ∗ K partitions
RM11, . . . , RM1K , RM21, . . . , RMNK are on disk.

3. For all 1≤ j ≤ K, do:
– Scan theN partitionsRM1j , . . . , RMNj simultane-

ously and merge them into a single tuple stream.
The merging is done to restore the grouping of the
flat R tuples according toR OIDs; that is, the merg-
ing generates the tuple stream [r1, . . .], . . . , [r1, . . .],
[r2, . . .],

– For every tuple [r,Saddr], the functional join with
S is performed by looking up theS object at loca-
tion Saddrand the relevant information, hereS Attr,
is retrieved. Insert the tuple [r,S Attr] into partition
RMSj .
All S objects referenced in this step belong to the
j-th partitionSj of S which is pre-fetched or faulted

R. Braumandl et al.: Functional-join processing 165

R

OIDR SrefSet
r1 {b,

e,
c,
g,
i}

r2 {a,
d,
h,
c,
i}

...
...

µ →
↗

hM

↘

R1

r1 b
r1 c
r2 a
r2 d
r2 c
...

...

;

R2

r1 e
r1 g
r1 i
r2 h
r2 i
...

...

;

Map

a 3.2

b 1.2

c 2.1 M1

d 4.1

e 3.1

f 4.2

g 5.1 M2

h 2.2

i 1.1

↗
⇒ hS

↘

RM1

r1 1.2
r1 2.1
r2 2.1
r1 1.1
r2 2.2
r2 1.1
...

...

;

RM2

r2 3.2
r2 4.1
r1 3.1
r1 5.1
...

...

;

S
OIDS S Attr

S1

1.1 i 17
1.2 b 11

2.1 c 19
2.2 h 13

S2

3.1 e 18
3.2 a 12

4.1 d 10
4.2 f 14

5.1 g 15

→

RMS
r1 11
r1 19
r2 19
r1 17
r2 13
r2 17
r2 12
r2 10
r1 18
r1 15
...

...

gr
ou

p →

RS
OIDR {S Attr}

r1 {11,
19,
17,
18,
15}

r2 {19,
13,
17,
12,
10}

...
...

Fig. 12. Flattening, partitioning and (re-)grouping

R

OIDR SrefSet

r1 fb,
e,

c,

g,

ig

r2 fa,
d,

c,

h,

ig
...

...

%
hM
&

R1

r1 b

r1 c

r2 a

r2 d

r2 c
...

...

R2

r1 e

r1 g

r1 i

r2 h

r2 i
...

...

Map

a 3.2

b 1.2

c 2.1

d 4.1

e 3.1

f 4.2

g 5.1

h 2.2

i 1.1

%
; hS

&

%
; hS

&

RM11

r1 1:2

r1 2:1

r2 2:1
...

...

RM12

r2 3:2

r2 4:1
...

...

RM21

r1 1:1

r2 2:2

r2 1:1
...

...

RM22

r1 3:1

r1 5:1
...

...

;

;

merge

merge

S

OIDS S Attr

S1

1.1 i 17

1.2 b 11

2.1 c 19

2.2 h 13

S2

3.1 e 18

3.2 a 12

4.1 d 10

4.2 f 14

5.1 g 15

!

!

RMS1

r1 11

r1 19

r1 17

r2 19

r2 13

r2 17
...

...

RMS2

r1 18

r1 15

r2 12

r2 10
...

...

&

m
er
g
e
!

%

RS

OIDR fS Attrg

r1 f11,
19,

17,

18,

15g

r2 f19,
13,

17,

12,

10g
...

...

Fig. 13. Partition/merge-join

into the buffer – again, the partitioning ensures that
the entireSj fits into memory.

After completion of step 3, theK partitionsRMS1, . . . ,
RMSK are on disk.

4. Scan all partitionsRMS1, . . . , RMSK simultaneously and
re-assemble the flat tuples into the nested representation,
i.e., group the tuples according toR-OIDs.

For N = K = 2, the partition/merge algorithm is exem-
plified in Fig. 13, using range-partitioning functions forhM

andhS . As emphasized in Fig. 14, the partition/merge algo-
rithm writes the (augmented)R to disk three times: (1) to
generate theN partitions of the probe input for the applica-
tion of the Map, (2) to generate theN ∗ K partitions after
applying theMap, and (3) theK partitions obtained after
joining with S. The intermediateN ∗ K-way partitioning
and subsequentN -fold merging of theN ∗K partitions into
K partitions is the key idea of this algorithm. This way the
grouping of the flattenedR tuples is preserved across the
two partitioning steps with different partitioning functions
hM andhS . Please observe that immediately distributing the
objects into theK partitions after applying theMap would
have destroyed the grouping onR that we want to retain
in every partition. It is essential that the fine-grained parti-
tions are generated first and that the re-merge is performed
afterwards, as highlighted in Fig. 15.

In comparison, the partition/merge algorithm induces
the same I/O-overhead as the basic flatten algorithms of
Sect. 4.3. However, the CPU cost of the partition/ merge
algorithm is far lower than for the basic flatten algorithms
because there is no in-memory re-grouping involved. The flat
tuples of the sameR object are always in sequential order
in all the partitions. Furthermore, theP (PM)∗M algorithm
gives room for optimizations based on the retained grouping
that are not applicable to other algorithms (cf. Sect. 4.6).

4.5 P (PM)∗M for physical OIDs and multi-way functional
joins

The partition/merge algorithm is applicable for systems em-
ploying physical OIDs in the same way as for logical OIDs.
In the simple case of a one-step functional join the vari-
ant P (PM)0M is applied, i.e., the plan then consists of
a single partition and a single merge step, and no inter-
leaved partition/merge operation is applied. However, the
full-fledgedP (PM)∗M algorithm is necessary if the query
traverses a longer path expression. Consider, for example,
an additional typeT (with attributeT Attr) that is referenced
by S.Tref. Then, a query may traverse the path expression

R
SrefSet−→−→ S

Tref−→ T as follows:

166 R. Braumandl et al.: Functional-join processing

Fig. 14. Disk writes of the partition/merge algorithm

Fig. 15. The partition/merge-pattern of theP (PM)∗M algorithm

M (group)

1;

PM

1;

PM

1;

PM

1;

P

µ SrefSet:s
R

MapS

S

MapT

T

M (group)

1;

PM

1;

P

µ SrefSet:s
R

S

T

(a) Logical OIDs (b) Physical OIDs

Fig. 16a,b.Plans for a query with a path expression

selectr.∗, (select sum(s.Tref.T Attr)
from r.SrefSets)

from R r

Such a query may, for example, sum up the base prices of
the Productsof the Lineitemsof all Orders.

The P (PM)∗M evaluation plans for logical OIDs and
physical OIDs are outlined in Fig. 16a and b, respectively.
Both plans unnest theSrefSet– but in intermediate stages
they retain the grouping of the sameR objects by interleaved
fine-grained partition/merge operations. When comparing the
two plans, they differ mainly in the higher number of func-
tional joins needed for mapping logical OIDs. We assume
separate mapping structuresMapS and MapT for S and T,
respectively. The plan based on physical OIDs draws profit
from the interleaved partition/merge (PM) steps in the same
way as the one based on logical OIDs, i.e., the grouping by
R andS objects is retained across the successive functional
joins. Therefore, the final grouping operation is carried out
as a (very cheap) merge, in both plans.

4.6 Fine points of theP (PM)∗M algorithm

There are still some fine points in the design of the
P (PM)∗M algorithm that we would like to address in the
following.

Obtaining an order onR. The algorithm requires an order
on theR objects for the merge iterators. When comparing
objects from different partitions – e.g., tuple [r2,3.2] from
RM12 and [r1,3.1] from RM22 in Fig. 13 – it has to be de-
termined in what orderr1 andr2 were stored in the original
R. If there is no such order given by the key ofR, an addi-
tional sequence number is inserted during the first “flatten-
and-partition” step and used for the succeeding merge steps.
Note that all flattened tuples of oneR object are assigned
the same sequence number.

Projecting R attributes. If “bulky” attributes of R are re-
quested in the result, they may severely inflate the amount
of data that is written three times to partition files. To reduce
this effect, several measures can be taken: First, the repli-
cation of attributes during flattening is unnecessary. Instead,
for everyri ∈ R, the attributes are written only once. Sec-
ond, since the algorithm retains the order ofR, the attributes
could be projected out and merged in later for the final re-
sult. In contrast to the value-based join and the standard
flatten algorithm, the re-insertion ofR attributes is in fact
very cheap, since bothR and the result have the same order
and theR attributes are simply handled as an additional –
(K + 1)-st – input stream of the last merge operator. If the
second scan onR would be expensive (e.g., because of high
selectivity onR), the bulky attributes of the qualifyingR
objects might be saved in a temporary segment during the
initial scan for re-use in the final merge.

This procedure is illustrated in Fig. 17. Bypassing the
bulky R attributes around the functional joins saves consid-
erably in terms of I/O volume of the intermediate results
(i.e., the writing of thebuf operator – denoted as disk icons
– and the subsequent reading from disk by themergeoper-
ator).

Early aggregation. If aggregation is requested on the result
sets in addition to grouping, the aggregation can be folded
such that it is already applied to the subgroups belonging to
the sameR object before they are written toRMSj . This may

R. Braumandl et al.: Functional-join processing 167

Fig. 17. Bypassing bulkyR attributes around functional join processing

result in storage savings forRMSj . During the final merge,
the intermediate aggregation results are then combined. This
is easily achieved for the aggregationssum, min, max, count,
which constitute commutative monoids [GKG+97] – i.e., op-
erations that satisfy associativity and have an identity. For,
e.g.,avg, more information has to be maintained to enable
early aggregation.

Buffer allocation. The algorithm consists of several consec-
utive phases, each of which stores its intermediate results
entirely on disk. This simplifies database buffer allocation,
since the memory available to the query can be allocated
exclusively to the current phase. The four phases may be
easily derived from Fig. 14: They are delimited by the three
sets of partitionsRi, RMij , and RMSj that are stored on
disk. Consequently, the four phases are: (1) initial process-
ing of R ending with the first set of partitionsRi, (2) Map
lookup, (3) dereferencingS, and (4) final merge. For phases
(2) and (3), the major amount of memory is allocated to
cache theMap andS, respectively, and only a small amount
is allocated to input and output buffers for the partitions.
Summarizing, theP (PM)∗M algorithm is very modest in
memory requirements; that is, because of its phased “stop-
and-go” approach, and since it does not require a costly
grouping, it tolerates small main-memory sizes very well,
whereas other algorithms easily degrade if main memory is
scarce in comparison to the database size.

5 Order-preserving functional joins

In this section, we apply the partition/merge algorithm to a
wider range of queries that do not necessarily traverse along
nested reference sets. The queries we optimize are those that
require ordered results – as they occur very often in decision
support systems.

5.1 Exploiting a physical order

The key idea in optimizing queries with ordered results fol-
lows from the observation that the partition/merge algorithm,
when applied to an ordered (source) object extensionR,
will always preserve this order in the intermediate parti-
tions. That is, the partitions generated by the interleaved

partition/merge operations constitute valid runs with respect
to the original sorting ofR. In [CKK98], we exploited this
idea in the context of the pure (flat) relational model to de-
sign the order-preserving hash join (OHJ) algorithm in order
to optimize decision support queries that require sorting or
flexible grouping (e.g.,cubeandroll-up aggregation). Here,
we concentrate on this run-preserving invariant of the parti-
tion/merge algorithm for order-preserving functional joins.

In order to simplify this presentation we switch back to
the example schema with single-valued references, as pre-
sented in Sect. 3. However, the order-preserving functional-
join algorithm is equally applicable to queries traversing
nested reference sets. Consider the example query of Sect. 3
with an additionalorder by clause:

selectr.*, r.Sref.SAttr
from R r
order by r. · · ·
First, we assume that the order required in the query

is “physically” given by, e.g., a cluster index onR. The
partition/merge algorithm, as illustrated in Fig. 19, evaluates
the query and retains the initial order (indicated by ascend-
ing OIDR values) onR. All intermediate partitionsR1, R2,
. . . ; RM11, RM12, . . . ; RMS1 , RMS2 , . . . constitute runs
with respect to the sort criterion ofR. Then, the overall or-
der is (cheaply) restored via a final merge operation. Note
that, except for the naı̈ve functional-join evaluation algo-
rithm (cf. Fig. 5), all other functional-join evaluation algo-
rithms (cf. Figs. 6–9) “lose” the original order ofR. They
all require a final costly sort operation on the resultRS.

Assuming that there is a physical ordering (i.e., by a
cluster index) onR, the partition/merge evaluation of this
query is shown in Fig. 18a for logical OIDs and in Fig. 18b
for physical OIDs. Of course, the order-preserving functional
join is applicable to arbitrarily long functional-join chains
(path expressions) which may also contain nested reference
sets.

5.2 Sorting ahead

One might argue that our order-preserving functional-join
technique is only efficient if there is a clustered index on
R. Fortunately, however, we can generate the desired or-
der on the fly during the initial partitioning step. This way
we entirely avoid any additional I/O cost for sorting, and

168 R. Braumandl et al.: Functional-join processing

mergeK→1

buf

1;

mergeN∗K→K

buf

partitionN→N∗K

1;

buf

partition→N

idxscan(R)

MapS

S

mergeK→1

buf

1;

buf

partition→K

idxscan(R)

S

(a) Logical OIDs (b) Physical OIDs

Fig. 18a,b.Order-preserving functional-join evaluation

therefore, as we will show in the performance section, we
get (almost) the same performance in the presence as in the
absence of a clustered index; that is, we get sorting (almost)
for free [CKK98].

The trick is to combine the initial partitioning step of
the order-preserving functional-join plan with sorting runs.
That is, we sort memory-sized runs of the probe input and
partition each run individually. The partitions of every run
are then re-merged during the processing of the first join.
Assume thatR is M times bigger than the available main
memory and, to perform the functional join with theMap,
R has to be partitionedN -way using the hash functionhM .
Then, for each 1≤ i ≤ M , do:

1. Load the (next) memory-sized chunkRi into memory
and sort it according to attributeA.

2. PartitionRi into N partitionsRi1, . . . RiN by applying
hM on the reference attribute. Each partition constitutes a
valid run according to the sort attribute. The partitioning
can be done in a single linear iteration through the main-
memory-resident runRi – see below.

3. Write the partitionsRi1, . . . RiN sequentially to disk.

Having finished this combined sort/partitioning step,
there areM ∗ N partitions R11, . . . , R1N , . . . , RMN –
each constituting a valid sort run – stored on disk. Then,
while evaluating the functional join with thei-th partition
of the Map, theM runsR1i, . . . , RMi are merged to obtain
the i-th partition ofR. From there on, the algorithm works
just like the order-preserving partition/merge join algorithm.

The algorithm is illustrated forM = 2 and N = 2 in
Fig. 20. Of course, these early sort plans can, therefore, also
be applied to longer functional-join chain queries in the same
way as described in the previous sub-section, and they can
also be applied in the presence of nested reference sets. Trac-
ing again the object extensionR, the following pattern of
operators are applied (here,S&P denotes the combined sort-
ing and partitioning step):

S&P M (P M)∗ M

Figure 21 illustrates the combined sorting/partitioning phase
of the algorithm. A memory-sized chunk of the relation is
loaded. Sorting is done via a vector that maintains pointers
to the objects being sorted; that is, only this vector is sorted,
whereas the individual objects need not be moved. Once the
sorting is complete, we linearly scan this vector and deter-
mine the partition to which every object belongs. Hereby,
we chain objects that belong to the same partition together
(i.e., we keep the index of the next object of the same par-
tition in an additional field within the vector) and we keep
a separate vector, called thepartition anchors, in order to
keep the heads and the tails of every of theN sorted “par-
tition lists” (in the example of Fig. 21,N = 2). Once this
partitioning is complete (i.e., the chaining is done and the
heads and tails of the partition anchors are set), the objects
can be written sequentially to disk: partition by partition fol-
lowing the heads of the partition anchors one at a time and
in the right sort order. All partitions could, for example, be
written into a single temporary file by inserting markers at
partition boundaries, thereby avoiding overhead for allocat-
ing multiple temporary files. Note that Fig. 21 shows, in fact,
the generation of the partitionsR11 and R12 for run R1 of
Fig. 20.

With respect to run-time complexity, it would be cheaper
to first partition each complete memory chunk and then sort
the individual partitions. Assumingm = |R|/M records fit
into one memory chunk, first sorting and then partition-
ing a memory chunk takesm logm + m abstract “opera-
tions.” The opposite order, i.e., first partitioning a memory
chunk and then sorting each of theN partitions requires only
m + N · m/N · log(m/N) = m + m · log(m/N) operations.
However, memory management for the partition/sort vari-
ant is more complex than for the sort/partition algorithm,
because several sort vectors of unknown size have to be
allocated. We have implemented both variants and our per-
formance experiments have shown that the difference in run
time is only marginal for the investigated configurations.

Sorting ahead of the functional join is especially benefi-
cial if in the course of evaluating the join the result size is
increasing. This happens ifR contains a nested set of refer-
ences (i.e.,SrefSet). A concrete example is a query that com-
putes theOrder values sorted by order date and summing
up the product prices. Under the assumption that no physical
order can be exploited, the evaluation plan of Fig. 22a shows
the early sort plan for logical OIDs and Fig. 22b shows the
analogous plan for physical OIDs.

6 Performance analysis

In this section, we will present the results of performance ex-
periments that study the trade-offs of the alternative
functional-join-processing techniques. We will first describe
our experimental environment, including a prototype imple-
mentation and a detailed cost model that accurately models
the behavior of the techniques in a standard database system.
After that, we will present results for single-valued func-
tional joins, multi-valued functional joins, and results that
demonstrate the benefits of our order-preserving functional-
join techniques.

R. Braumandl et al.: Functional-join processing 169

R

OIDR Sref
r1 b
r2 e
r3 c
r4 g
r5 i
r6 d
r7 a
r8 c
r9 h
r10 i
...

...

↗
hM

↘

R1

r1 b
r3 c
r6 d
r7 a
r8 c
...

...

;

R2

r2 e
r4 g
r5 i
r9 h
r10 i
...

...

;

Map

a 3.2

b 1.2

c 2.1

d 4.1

e 3.1

f 4.2

g 5.1

h 2.2

i 1.1

↗
hS

↘

↗
hS

↘

RM11

r1 1.2
r3 2.1
r8 2.1
...

...
RM12

r6 4.1
r7 3.2
...

...
RM21

r5 1.1
r9 2.2
r10 1.1
...

...

RM22

r2 3.1
r4 5.1
...

...

;

;

merge

merge

S
OIDS S Attr

S1

1.1 i 17
1.2 b 11

2.1 c 19
2.2 h 13

S2

3.1 e 18
3.2 a 12

4.1 d 10
4.2 f 14

5.1 g 15

→

→

RMS1

OIDR S Attr
r1 11
r3 19
r5 17
r8 19
r9 13
r10 17
...

...
RMS2

OIDR S Attr
r2 18
r4 15
r6 10
r7 12
...

...

↘
merge→

↗

RS

OIDR S Attr
r1 11
r2 18
r3 19
r4 15
r5 17
r6 10
r7 12
r8 19
r9 13
r10 17
...

...

Fig. 19. Order-preserving partition/merge-join

R

OIDR A Sref
r9 9 h
r3 3 c
r1 1 b
r7 7 a
r4 4 g

r5 5 i
r10 10 i
r6 6 d
r2 2 e
r8 8 c

→sort→

R1

r1 1 b
r3 3 c
r4 4 g
r7 7 a
r9 9 h

↗
hM

↘

→sort→

R2

r2 2 e
r5 5 i
r6 6 d
r8 8 c
r1010 i

↗
hM

↘

R11

r1 1 b
r3 3 c
r7 7 a

R12

r4 4 g
r9 9 h

R21

r6 6 d
r8 8 c

R22

r2 2 e
r5 5 i
r1010 i

;

;

mrg

mrg

Map

a 3.2

b 1.2

c 2.1

d 4.1

e 3.1

f 4.2

g 5.1

h 2.2

i 1.1

↗
hS

↘

↗
hS

↘

RM11

r1 1.1 2
r3 2.1 3
r8 4.2 3
RM12

r6 3.2 7
r7 4.1 6
RM21

r5 3.1 1
r9 5.1 4
r10 6.1 1
RM22

r2 1.2 5
r4 2.2 9

;

;

mrg

mrg

S
OIDS S Attr

S1

1.1 i 17
1.2 b 11

2.1 c 19
2.2 h 13

S2

3.1 e 18
3.2 a 12

4.1 d 10
4.2 f 14

5.1 g 15

→

→

RMS1

OIDR A S Attr
r1 1 11
r3 3 19
r5 5 17
r8 8 19
r9 9 13
r10 10 17

RMS2

OIDR A S Attr
r2 2 18
r4 4 15
r6 6 10
r7 7 12

↘
merge→

↗

RS

OIDR A S Attr
r1 1 11
r2 2 18
r3 3 19
r4 4 15
r5 5 17
r6 6 10
r7 7 12
r8 8 19
r9 9 13
r10 10 17

Fig. 20. Sorting on the fly

6.1 Experimental environment

6.1.1 The cost model

The design of our cost model is strongly influenced by the
structure of modern query engines implementing the itera-
tor model. This means that cost estimations are calculated
on a per-iterator basis. I/O costs are modeled according to
[HCLS97] and the CPU operation assumptions are mostly
based on [PCV94] and [HR96]. Our cost model contains
extensions to deal with set-valued attributes and our new
P (PM)∗M algorithm. Due to space limitations, we can-
not discuss individual formulae. The cost formulae model
disk I/O quite precisely by means of differentiating between
seek, latency, and transfer time. As a consequence, we are
able to grasp the difference between sequential and random
I/O and the influence of the transfer block size. In modeling
the CPU costs, we have included those operations that have
major influence on CPU time, e.g., sorting, hashing, buffer
management (page hit/page fault) and iterator calls.

For space limitations and ease of presentation, we only
describe the cost formulae of the iterators needed for imple-
menting the partition/merge algorithm as shown in Fig. 13.
That is, we only present the formulae for direct mapping
and if range partitioning on the references to theMap and
S and prefetching for reading these sets into main mem-
ory are used. For other strategies, other formulae apply. We

Table 3. Parameters describing the hardware

TS average seek time 10.2 ms
TL average latency time 5.54 ms
TT transfer time for a page (4 KB) 1.7 ms

TIO time to initiate an I/O operation 1.21 ms
Thash time to execute a hash function 0.285 ms
Tadd time to add two integers 0.00719 ms
Tprobe time to test a hash table 0.02339 ms
Tcopy time to copy a byte 0.000115 ms
Tcomp time to compare two OIDs 0.00719 ms

would like to emphasize, however, that we did use the right
formulae in order to obtain performance results.

The cost model parameters for modeling the CPU and
I/O costs are described in Table 3. Note that the constants
regarding CPU costs include all instructions related to the
operations, e.g.,Tcomp involves pointer arithmetics, etc. and
not only a single CPU instruction. The cost model variables
that describe characteristics of the database are described in
Table 4.

6.1.2 Analysis of I/O cost

The P (PM)∗M algorithm with the above-mentioned
premises has very similar I/O access patterns throughout
all its phases. Therefore, we describe the patterns and list

170 R. Braumandl et al.: Functional-join processing

Table 4. Variables used in the cost model formulae

PR number of pages in tableR (equivalently for
RM andRMS)

|R| cardinality of tableR
r average size of anR object
b read/write buffer size (in pages)
N number of partitions
|SrefSet| average number of elements in the nested

reference set

Fig. 21. Sorting and partitioning “in one go”

the phases in the algorithm where the pattern shows up. In
the cost formulae, it is assumed that no inter-operator in-
terference occurs. The number of additional seeks caused
by interference would be calculated separately and added
to the cost of the algorithm. Up to now, we are only able
to model interference if just one disk is used at all. In our
benchmarks, however, we used two disks and – although
three disks would be necessary to avoid all interference ef-
fects in the investigated algorithms – we decided to neglect
interference. Furthermore, we assume constant seek times
here.

sort:mergeK→1

buf

1;

mergeN∗K→K

buf

partitionN→N∗K

1;

mergeM∗N→N

buf

partitionM→M∗N

µSrefSet:s

sort:make runs→M

tbscan(R)

MapS

S

sort:mergeK→1

buf

1;

mergeM∗K→K

buf

partitionM→M∗K

µSrefSet:s

sort:make runs→M

tbscan(R)

S

(a) Logical OIDs (b) Physical OIDs

Fig. 22a,b.Sorting on the fly during functional-join processing

Reading from disk.We denote the number of pages read in
one I/O operation asb. The merge operator uses a buffer ofb
pages for each input partition. The cost for readingRM (and
also analogously for readingRMS) by the merge operator is
then given by the following formula:⌈

PRM

b

⌉
· (TS + TL + TIO) + PRM · TT .

For the initial reading ofR, the cost can be computed as

TS +

⌈
PR

b

⌉
· (TL + TIO) + PR · TT .

For the scan operator reading the first set of partitionsRi

(1 ≤ i ≤ N), we get

N · TS +

⌈
PR

b

⌉
· (TL + TIO) + PR · TT .

Here N is the number of partitions generated by the pre-
ceding partition operator. For the join operator3, the same
formula can be used, except thatR has to be replaced by
Map or S, respectively.

Writing to disk. We use the same variableb for the buffer
size as before. The cost for the write operations of the par-
tition iterator for partitioningR (and also analogously for
partitioningRM) can be computed by the following formula:⌈

PR

b

⌉
· (TS + TL + TIO) + PR · TT .

The cache iterator which is applied onRMSproduces smaller
cost with its writing operations:

TS +

⌈
PRMS

b

⌉
· (TL + TIO) + PRMS · TT .

6.1.3 Analysis of CPU cost

Again the actions consuming CPU time are listed together
with their cost formulae and the iterators performing those
actions.

Copying of elements.The cost formula for copying all ele-
ments of a setX in main memory:

|X| · x · Tcopy .

The smallx denotes the size of an element in a setX ∈
{R, RM, RMS}. This action is performed by all the itera-
tors writing temporary sets to disk, especially the partition
and the cache iterator, and by operators using in-memory
working areas like sort and hash.

Comparing elements.The merge iterator has to compare se-
quence numbers attached to each element for detecting those
stemming from the same element of an initial input set. The
cost for such an operation is

3 The join operators readMap andS.

R. Braumandl et al.: Functional-join processing 171

|R| · |SrefSet| · log2 (N) · Tcomp .

Here, the variableN denotes the number of partitions
merged into one partition by the merge iterator. Since the
ordering of elements is done by a tournament tree, we only
have to perform log2 (N) comparisons for each element in
R.

Computing hash functions.For each join attribute in its in-
put set, the partition iterator has to call a hash function:

|R| · |SrefSet| · Thash .

Performing aggregation.For each element inR, we have
to add an integer value for every element in the nested set:

|R| · |SrefSet| · Tadd .

Testing the buffer.Each join iterator in a partition/ merge
algorithm uses a buffer for readingS and Map. For each
join attribute in the setR, the join iterator has to look up
the buffer for the appropriate page. We assume that this
lookup is done by accessing a hash table. Then the cost can
be computed by

|R| · |SrefSet| · Tprobe .

6.1.4 Prototype implementation

Most of our performance experiments were carried out using
the cost model. To validate the cost model and get a feel-
ing for the trade-offs of the algorithms in a real system, we
also carried out certain experiments using an experimental
object-relational database system. (Since we carried out a
great deal of experiments with many different database con-
figurations, we were not able to carry out all experiments
with this prototype.) The prototype database system we used
for these experiments is very much a textbook database sys-
tem in which we integrated all the different functional-join
algorithms (e.g., P(PM)∗M). The experiments with this ex-
perimental database system were carried out on a Sun Sparc-
Station 20 running under Solaris 2.6. There was one disk
that stored the database and all the software needed, and
there was another disk which was used for temporary files.
In order to avoid side effects due to file system caching,
we made use of Solaris’ direct I/O option, so that all disk
I/O was carried out bypassing the cache of the file system.
Displaying the result tuples was suppressed for all queries
in order to study the sheer performance of the functional-
join-processing algorithms. The database buffer cache was
segmented and configured individually for every query plan
according to the estimates of our detailed cost model.

6.1.5 Test database and test queries

Unless stated otherwise, the analyses are based on a simple
database with tablesR andS, which we have been using in
our examples throughout this paper; that is, the objects inR

Table 5. Database cardinalities

object cardinality data Map object
type pages pages size

|R| 100,000 9933 – 228 +|SrefSet| ∗ 12
|S| 100,000 6667 591 228

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
se

c)

Memory (MBytes)

access type: naïve map/naïve object
naïve map/sorted object
sorted map/naïve object

sorted map/sorted object
naïve map/part object
part map/naïve object

part map/part object
sorted map/part object
part map/sorted object

Fig. 23. Pointer-based joins with direct mapping

contain references to objects inS. The cardinalities of the
two tables are shown in Table 5. In the first set of analyses,
we investigated functional joins along single-valued refer-
ence attributes; in this case,|SrefSet| was fixed at 1. (In fact,
R objects only had a single-valued attribute calledSref in
these experiments; see Sect. 3.1.) In the second and third set
of analyses, we investigated functional joins along nested
reference sets; in those experiments, we varied|SrefSet|.
(In these experiments,R objects had a nested reference set
calledSrefSet; see Sect. 4.1.)

The benchmark queries we used are, also, those that we
have been using in the examples throughout this paper. For
the first set of analyses, the one that studies the trade-offs
of the single-valued functional-join techniques, we used the
query of Sect. 3.1. For the second set of analyses, the one
that studies the trade-offs of the functional-join techniques
along nested reference sets, we used the “aggregation” query
of Sect. 4.1. For the third set of analyses, the one that demon-
strates the benefits of order-preserving functional-join tech-
niques, we used the query of Sect. 5.1, with the only differ-
ence that the functional join was carried out along a nested
reference set (i.e.,r.SrefSet.SAttr was retrieved and or-
dered).

6.2 Functional joins along single-valued reference
attributes

Figures 23–25 show the running times of the different
functional-join-processing strategies for single-valued at-
tributes with logical OIDs and direct mapping, a B+-tree,
and a hash table, respectively. The size of the available main
memory is varied from 1 MB to 20 MB. For each curve, the
strategy to evaluate the functional joins is given. For exam-
ple, “part map/sorted object” in Fig. 23 means that theR on

Map join is carried out using (range-) partitioning and that

172 R. Braumandl et al.: Functional-join processing

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
se

c)

Memory (MBytes)

access type: naïve map/naïve object
naïve map/sorted object
sorted map/naïve object

sorted map/sorted object
naïve map/part object

sorted map/part object

Fig. 24. Pointer-based joins with a B+-tree mapping

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
se

c)

Memory (MBytes)

access type: naïve map/naïve object
naïve map/sorted object

naïve map/part object
part map/naïve object

part map/part object
part map/sorted object

Fig. 25. Pointer-based joins with hash table mapping

sorting is employed for the join withS. We use short forms
like “part/sort” in the following. What we can see, in all,
is that sorting and/or partitioning are crucial techniques to
carry out functional joins with logical OIDs efficiently, re-
gardless of whether direct mapping, B+-trees, or hash tables
are used. The “do-nothing” reference traversal approach is
only viable if the functional join can be carried out in main
memory. With direct mapping, theR on Map join can be car-

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
se

c)

Memory (MBytes)

naïve object access
sorted object access

partitioned object access

Fig. 26. Pointer-based joins with physical OIDs

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
se

c)

Memory (MBytes)

part map, part object access, direct mapping
part object access, phys. OID, 0% forwards
part object access, phys. OID, 3% forwards
part object access, phys. OID, 6% forwards
part object access, phys. OID, 9% forwards

Fig. 27. Logical OIDs versus physical OIDs

0
2500
5000
7500

10000
12500
15000
17500
20000

T
im

e
(s

)

näıve
14

89
3

flatten/
part.

18
68

flatten/
sort

48
74

value

18
11

P(PM)∗M

28
9

18
21

9

20
29

54
32

13
89

29
5

Prototype

Cost Model

Fig. 28. Running times in seconds (2 MB memory, avg.|SrefSet| = 10,
direct mapping)

ried out in memory if more than 2 MB are available. With
a B+-tree and a hash table, theR on Map join can be carried
out in memory at 4 MB and 5 MB, respectively, because in
these cases the mapping structures are larger.

Figure 26 shows the functional-join performance with
physical OIDs in the absence of forwards. Again, we observe
the same effect: partitioning and/or sorting are crucial in
order to achieve acceptable response times. In this particular
case, partitioning is slightly better than sorting.

Figure 27 shows the response time of the partition-based
functional-join evaluation with physical OIDs in the pres-
ence of forwards. We observe that with an increasing degree
of forwards, the performance of physical OIDs gets worse,
in particular for small memory sizes. As a baseline, the fig-
ure also shows the running times of the query for a double
partitioning strategy with logical OIDs and direct mapping,
the best strategy for logical OIDs. Obviously, physical OIDs
outperform logical OIDs in the absence of forwards (the 0%
curve). However, the performance of logical OIDs is not far
behind if more than 2 MB of memory are available (i.e.,
if the R on Map join can be carried out in memory), and
the performance of logical OIDs is better even if as few as
3% of theS objects have been migrated (the 3% forwards
curve).

R. Braumandl et al.: Functional-join processing 173

6.3 Joins along nested reference sets

We now turn our attention to evaluating functional joins
along nested reference sets. First, we describe some cost
measures we obtained from our prototype system. There-
after, we investigate a broader range of database configura-
tions using our cost model.

6.3.1 Results with the prototype implementation

The benchmarks were performed with the prototype system
described above. The database buffer cache was segmented
and configured according to the optimizer (cost model) es-
timation individually for each query plan. The total amount
of memory available to a query did not exceed 2 MB at any
time. Direct mapping was employed to resolve logical OIDs.

Recall that we concentrate on the “aggregation” query of
Sect. 4.1 in our presentation. For the other example query of
Sect. 4.1, we observed similar effects and trade-offs. In our
prototype, we restricted the size of the main-memory buffer
pool to 2 MB in order to run these queries using the alter-
native algorithms presented in Sect. 4. Figure 28 gives an
overview of the running times for each algorithm. For com-
parison, the predictions of our cost model are also shown
(again, limiting the buffer size to 2 MB). When comparing
the P (PM)∗M running time to the näıve algorithm, there
is a performance gap of more than an order of magnitude:
The absolute running time of the naı̈ve algorithm amounts to
more than 5 h, while ourP (PM)∗M algorithm requires only
less than 5 min. TheP (PM)∗M algorithm also significantly
outperforms all the flatten algorithms, the state-of-the-art ap-
proaches for this purposes. The flatten plans all suffer from
the expensive “re-grouping”: the sort-based flatten plan suf-
fers from high CPU cost for sorting and from small run files
due to the restricted amount of memory. The partition-based
flatten plan and the value-based join cannot keep its com-
plete build input in memory and, as a consequence, has to
perform an expensive hash aggregation at the end.

There is a small deviation between the cost model fig-
ures and the running times observed with the prototype im-
plementation. This is mostly due to the fact that some cost
model constants are hard to calibrate. They have been mea-
sured by profiling; profiling, however, changes the total run-
ning time of the queries. Most cost model estimations are
therefore slightly higher than the observed running time. The
running time of the value-based hash join implementation is
slightly higher than predicted by the cost model since the I/O
operations of our hash join are currently not implemented as
efficiently as assumed by the cost model.

6.3.2 Varying the memory size

Figure 29 shows the running times (using the cost model)
of the various algorithms under varying memory sizes. The
näıve plan (denoted NN) does not even show up in the plot
due to its running time of 6’20 h for 1 MB to 4’10 h for a 6-
MB buffer. The näive/sort plan uses a naı̈ve Map lookup, but
sorts the physical addresses before accessingS; it, therefore,
requires flattening and grouping. The sort/sort plan uses sort-
ing for both theMap lookup and for the join withS; it also

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

access type: naïve map/naïve object
naïve map/sorted object

sorted map/sorted object
naïve map/PM object
part map/part object

PPMM
hash join

Fig. 29. Cost model results (direct mapping,|SrefSet| = 10)

0

50

100

150

200

250

300

350

0.01 0.05 0.1 0.5 1 10 20 40 80

C
os

t (
se

c)

% of selected R objects

naïve map/naïve object
PPMM

hash join (S build input)
hash join (R build input)

Fig. 30. Selection onR (direct mapping,|SrefSet| = 10, 2 MB memory

involves flattening and re-grouping. Comparing naïve/sort
with sort/sort, sorting the flattenedR tuples for theMap
lookup does not pay off because theMap is smaller than
2 MB. (For 1 MB, the sort-based plans are out of the range
of the curve, because for such small memory configurations
they need several merge phases.) Both variants suffer from
high CPU costs for sorting. The part/part plan which is also

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

C
os

t (
se

c)

references per R object

naïve map/naïve object
naïve map/sorted object

sorted map/sorted object
naïve map/PM object
part map/part object

PPMM
hash join

Fig. 31. Varying the cardinality ofSrefSet(2 MB memory, direct mapping)

174 R. Braumandl et al.: Functional-join processing

0

2000

4000

6000

8000

10000

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

naïve map/PM, map size=100,000
PPMM, map size=100,000

naïve map/PM, map size=200,000
PPMM, map size=200,000

naïve map/PM, map size=500,000
PPMM, map size=500,000

naïve map/PM, map size=1,000,000
PPMM, map size=1,000,000

Fig. 32. Inflating the OIDmap under varying memory sizes (direct map-
ping)

a flatten plan and uses partitioning for both theMap lookup
and the join withS yields significantly better performance
than both sort-based flatten plans for small memory sizes.
The performance advantage of partitioning over sorting for
small memory sizes is due to the large number of run files
generated for sorting. The value-based hash join plan which
also involves flattening and re-grouping performs even bet-
ter than part/part, but is still quite costly compared to the
winners PPMM (=P(PM)1M) and näive/PM (=P(PM)0M).
The latter one omits the first partitioning step and shows
poor performance for very small memory sizes. For 2 MB
and larger, the two plans have the same running time, since
PPMM uses only one partition for theMap access anyway
and, therefore, coincides with naïve/PM. The most impres-
sive result of this curve is that theP (PM)∗M algorithm
tolerates very small memory sizes under which all other al-
gorithms degrade.

6.3.3 Varying the selectivity onR

In Fig. 30, the percentage ofR objects taking part in the
functional joins is varied on the (logarithmically scaled)x-
axis; that is, in this experiment, we studied a variant of our
benchmark query with awhere clause and a selection pred-
icate filtering out tuples ofR. For a small number ofR
objects, most pages of theMap are hit at most once and
some pages ofS are not referenced at all, such that one
might expect a break-even point betweenP (PM)∗M and
the näıve algorithm. However, for a high selectivity (e.g.,
0.01% corresponding to 10R objects), they have nearly the
same running time. That is, even if there are only very few
references to be resolved, there is no significant overhead
induced by ourP (PM)∗M algorithm. On the other hand,
the näıve algorithm very quickly degrades if the number of
references to be mapped increases. Furthermore, we have
plotted the value-based hash join with two configurations,
using eitherR or S as build input. Both variants are, how-
ever, worse thanP (PM)∗M over the full selectivity range,
and for a small number ofR objects, they are – due to the
fix cost for the hash join and hash aggregation – even worse
than the näıve plan.

0

100

200

300

400

500

600

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

PPMM
hash join

Fig. 33. Value-based vs.P (PM)∗M pointer join: |SrefSet| = 3, direct
mapping, 1,000,000map entries

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

PPMM, direct mapping
PPMM, B+−tree mapping

PPMM, hash table mapping

Fig. 34. Comparison of different OID mapping techniques, all with
P (PM)∗M algorithm

6.3.4 Varying the set cardinality

In the previous experiments, the number of elements inSref-
Setwas constantly 10. Figure 31 shows running times of the
algorithms with different set sizes. While theP (PM)∗M
algorithm scales linearly, the running times for all others
explode. The flatten variants behave poorly. The naı̈ve plan
suffers from an enormous amount of random I/O (up to
50∗ 100, 000 references, calculated running time of roughly
25 h and therefore not shown) and the flatten plans suffer
from large temporary files.

6.3.5 Inflating the OID map

So far, we assumed a distinctMap for the S objects which,
as a consequence, is perfectly clustered. In the following ex-
periment, we analyze the behavior ofP (PM)∗M algorithms
for not-so-well clustered OIDMaps, as they may occur if
there is one global OIDMap or if only a small fraction of
S is referenced, e.g., because of a selection onR. The OID
Map for S – previously containing 100,000 entries – has
been inflated by inserting unused entries – uniformly dis-
tributed over all pages of theMap – to contain up to one

R. Braumandl et al.: Functional-join processing 175

0

500

1000

1500

2000

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

naïve map/PM object
PPMM

hash join
phys. OID naïve object

phys. OID sorted object
phys. OID part object
phys. OID PM object

Fig. 35. Physical OIDs vs. logical OIDs with direct mapping

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5

C
os

t (
se

c)

% of forwards in S

log. OID PPMM
sorted object access

partitioned object access
PM object access

Fig. 36. Effect of forwards

million entries. The näive/PM and PPMM queries have been
run on the standard database (100,000 objects ofR and S
each, 10 elements inSrefSet) with different amounts of mem-
ory available. The legend of Fig. 32 indicates the size of the
Map (100,000,. . . , 1,000,000). The smallest symbols denote
the configuration that was used in Fig. 29, i.e., theMap was
optimally clustered. For largerMaps, the PPMM plan shows
only a slight running time increase, caused by the inevitably

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t (
se

c)

Memory (MBytes)

PPS, direct mapping
PPMM, direct mapping

S&PPMM, direct mapping

Fig. 37. Order-preserving functional joins

higher number of I/O accesses to the largerMap. However,
eachMap page is fetched from disk only once, since the
number of partitions in the first partitioning step is adapted
such that one partition of theMap can be cached in memory.
On the other hand, naïve/PM cannot cope with largerMaps
since it induces an enormous number of page faults as long
as theMap does not entirely fit into memory.

Figure 33 compares theP (PM)∗M algorithm with the
value-based hash join in an extreme scenario. The set-valued
attribute SrefSetcontains only three references on average
and theMap is inflated to contain one million entries – of
which 900,000 are obsolete. The number ofR and S ob-
jects remains at 100,000, respectively. This set-up favors the
value-based hash join extremely, since it does not use the
Map anyway. Furthermore, the hash join draws profit from
larger amounts of memory in a larger scale thanP (PM)∗M
because of the projection onS. The (projected)S that serves
as build input for the hash join can be kept in memory
for large memory configurations (beyond 4 MB) such that
the join is an in-memory operation. On the other hand, the
P (PM)∗M algorithm loads and keeps theS pages in their
entirety in memory. Since the wholeS extent of approxi-
mately 26 MB still does not fit in memory, the additional
memory does not avoid a partitioning step ofP (PM)∗M
and the flattenedR must still be written to disk partitions.

6.3.6 Comparing different OID mapping techniques

Figure 34 compares the three OID mapping techniques that
we have discussed in Sect. 2.2 for our application, i.e., in
combination with theP (PM)∗M algorithm. Both B+-tree
and hash table mapping show two performance steps. The
first step occurs when increasing memory from 1 MB to
2 MB. Here, the scan and merge operators reach their op-
timal amount of memory. The second step occurs when the
P (PM)∗M algorithm omits the first partitioning phase since
the OID mapping structure can be completely cached in
memory. Since the total size of the B+-tree is smaller than
that of the hash table,4 this point is reached with a smaller
memory size for the B+-tree curve. In addition, B+-trees are
generally more expensive due to higher CPU cost for the
tree lookup. The direct mapping approach is the cheapest.
The first partitioning step can already be omitted at a mem-
ory size of 2 MB due to the compact representation of the
Map. Furthermore, the compact storage of the (direct)Map
reduces the total number of I/O calls. In addition, the CPU
overhead for a singleMap lookup is cheaper for direct map-
ping than for the other two mapping techniques.

6.3.7 Logical OIDs in comparison to physical OIDs

So far, we have assessed our set-aware algorithms using log-
ical OIDs only. Next, we turn to physical OIDs and see how
the performance of functional joins with physical OIDs com-
pares to that of functional joins with logical OIDs. The use
of physical OIDs simplifies all algorithms, since the extra

4 Due to prefix compression and the specialized splitting procedure de-
scribed in Sect. 2.2.1 the B+-tree contains more entries per page than the
hash table.

176 R. Braumandl et al.: Functional-join processing

Map lookup operation is omitted. Thus, the functional-join
algorithms for physical OIDs are no partitioning (denoted
as “phys. OID näıve object access”), sorting, partitioning,
and P (PM)0M (labelled PM). The value-based hash join
is independent of the kind of OID used. For comparison,
Fig. 35 additionally includes the naïve/PM and PPMM plans
for logical OIDs realized with direct mapping. The naı̈ve
plan does not show up in the plot, since it ranges between
4 and 5 h. The running time of the partition plan is similar
to the value-based hash join, while the sort-based query per-
forms still significantly worse. Not surprisingly, the PM plan
performs slightly better than theP (PM)∗M plan for logi-
cal OIDs. However, the additional cost of theMap lookup
is kept at a low level. For example, for 3 MB of memory,
the PM plan was only 14% cheaper thanP (PM)∗M .

While physical OIDs are definitely advantageous on a
“clean” database without forwards, they incur a severe per-
formance penalty in the presence of forwards. Again (as in
the experiments shown in Fig. 27), we studied database in-
stances with a varying degree ofS objects that were migrated
in the range of 0–5%. Figure 36 shows that the sort-based
plans are fairly robust against forwards – although at a high
cost level – because they “hit” the same forwarded object
consecutively, whereas the multiple hits of the forwarded ob-
ject are non-consecutive for partition-based plans. Therefore,
sort-based plans need to allocate only one additional page
for loading the currently “active” forwarded object (using a
chase-forward-immediately approach, see Sect. 3.4), whereas
partition-based plans need to allocate more buffer for a parti-
tion containing forwards (using a “collect-forward” approach
which is better in this case). Partitioning and PM behave
similarly (the lines are parallel), such that partition/merge
retains its advantage. For comparison, the PPMM plan un-
der logical OIDs is also shown. Evidently, even for very
low levels of forward references (e.g., 1%), logical OIDs
are superior to physical OIDs.

6.4 Order-preserving functional joins

Figure 37 shows the performance of running a functional-
join query which returns its results ordered by an attribute
of R. We consider three different evaluation strategies:

– PPS. This query evaluation plan flattens the nestedSref-
Set, performs the functional join with theMap and with
S by partitioning, and then sorts the result.

– S&PPMM. This plan combines the first partitioning with
sorting runs, then performs the functional join using the
partition/merge algorithm which, in its final merge step,
generates the desired order of the result.

– PPMM. This query evaluation plan requires the extent
R to be pre-ordered (i.e., via a cluster index) and merely
performs the order-preserving partition/merge algorithm,
which automatically delivers the tuples in the desired
order.

We should emphasize that the PPMM plan requires a dif-
ferent database configuration than the other two plans, i.e.,
a clustered index on the sort attribute is required. There-
fore, it is impressive, that the sort-ahead evaluation plan
(S&PPMM) is only about 20% slower. On the other hand,

the conventional evaluation plan which performs the func-
tional join first and then sorts the result takes a factor 2.5
longer than the sort-ahead plan. The difference to the order-
preserving plan PPMM is even more pronounced – but keep
in mind that the order-preserving plan relies on an existing
physical ordering, which the sort-ahead and the conventional
plans do not require.

7 Summary

This paper gives a comprehensive overview and assess-
ment of alternative query-processing techniques for func-
tional joins. First, the implementation techniques for log-
ical OIDs were contrasted with the physical OID realiza-
tions. Then, the alternative functional-join evaluation tech-
niques for single-valued reference attributes were described.
In object-relational and object-oriented database systems,
one-to-many and many-to-many relationships are typically
represented as nested sets of references – instead of a sep-
arate relation as in the pure relational model. Very often,
queries along these nested reference sets require to retain
the implicit grouping given by the set of references. For
this purpose, a new algorithm that is based on successively
partitioning and merging was developed. This so-called par-
tition/merge algorithm retains the grouping within the parti-
tions and restores the overall grouping by (efficient) merge
operations. The partition/merge algorithm could be adapted
to become an order-preserving functional-join algorithm.
This new order-preserving functional-join evaluation allows
to exploit an existing ordering of the object extent or to
push-down the sorting in the evaluation plan. This proves to
be a very effective optimization if the join result’s cardinal-
ity is larger than the sort relation’s cardinality – as it is the
case when evaluating functional joins along nested reference
sets. Further enhancements of the partition/merge functional
join plans reduce the size of intermediate results. The bulk-
bypassing technique allows to bypass the large attributes of
the sort relation around the join processing and early ag-
gregation is applicable in group-by queries. Our quantitative
assessment based on a detailed cost model and a prototype
implementation proves that the partition/merge algorithm ap-
plied to group preservation as well as to order preservation
is superior to other, traditional functional-join methods. Fur-
thermore, our experiments demonstrate that the penalty for
using logical OIDs in an object-oriented or object-relational
database system is very low as compared to the use of phys-
ical OIDs, and that logical OIDs are significantly better than
physical OIDs, even if only a small percentage of objects
are migrated.

Acknowledgements.We thank the anonymous referees for helpful sugges-
tions to improve the paper. Stefan Börsz̈onyi pointed out the performance
enhancement of the partition/sort sequence.

References

[BCK98] Braumandl R, Claussen J, Kemper A (1998) Evaluating func-
tional joins along nested reference sets in object-relational and object-
oriented databases. In: Proc. of the Conf. on Very Large Data Bases
(VLDB), August 1998, New York, N.Y., pp 110–121

R. Braumandl et al.: Functional-join processing 177

[BK89] Bertino E, Kim W (1989) Indexing techniques for queries on
nested objects. IEEE Trans Knowl Data Eng 1(2): 196–214

[BM72] Bayer R, McCreight EM (1972) Organization and maintenance of
large ordered indices. Acta Informatica 1(3): 173–189

[BP95] Biliris A, Panagos E (1995) A high performance configurable stor-
age manager. In: Proc. IEEE Conf. on Data Engineering, March 1995,
Taipeh, Taiwan, pp 35–43

[BR90] Brown A, Rosenberg J (1990) Persistent object stores: An im-
plementation technique. In: Dearle A, Shaw G, Zdonik S (eds) Im-
plementing Persistent Object Bases, Principles and Practice. Morgan
Kaufmann, San Mateo, Calif., pp 199–212

[CD92] Cluet S, Delobel C (1992) A general framework for the optimiza-
tion of object-oriented queries. In: Proc. of the ACM SIGMOD Conf.
on Management of Data, June 1992, San Diego, Calif., pp 383–392

[CDF+94] Carey M, DeWitt D, Franklin M, Hall N, McAuliffe M,
Naughton J, Schuh D, Solomon M, Tan C, Tsatalos O, White S, Zwill-
ing M (1994) Shoring up persistent applications. In: Proc. of the ACM
SIGMOD Conf. on Management of Data, May 1994, Minneapolis,
Mich., pp 383–394

[CDRS86] Carey M, DeWitt D, Richardson J, Shekita E (1986) Object
and file management in the EXODUS extensible database system. In:
Proc. of the Conf. on Very Large Data Bases (VLDB), August 1986,
Kyoto, Japan, pp 91–100

[CKK98] Claussen J, Kemper A, Kossmann D (1998) Order-preserving
hash joins: Sorting (almost) for free. Technical Report MIP-9810. Uni-
versity of Passau, 94030 Passau, Germany

[CM95] Cluet S, Moerkotte G (1995) Classification and optimization of
nested queries in object bases. Technical Report 95–6. RWTH Aachen,
Germany

[Com79] Comer D (1979) The ubiquitous B-tree. ACM Comput Surv
11(2): 121–137

[CSL+90] Carey MJ, Shekita E, Lapis G, Lindsay B, McPherson J (1990)
An incremental join attachment for Starburst. In: Proc. of the Conf. on
Very Large Data Bases (VLDB), August 1990, Brisbane, Australia, pp
662–673

[DLM93] DeWitt D, Lieuwen D, Mehta M (1993) Parallel pointer-based
join techniques for object- oriented databases. In: Proc. of the Int. IEEE
Conf. on Parallel and Distributed Information Systems, January 1993,
San Diego, Calif., pp 172–181

[ED88] Enbody RJ, Du HC (1988) Dynamic hashing schemes. ACM Com-
put Surv 20(2): 85-113

[EGK95] Eickler A, Gerlhof C, Kossmann D (1995) A performance evalu-
ation of OID mapping techniques. In: Proc. of the Conf. on Very Large
Data Bases (VLDB), September 1995, Zurich, Switzerland, pp 18–29

[EKK97] Eickler A, Kemper A, Kossmann D (1997) Finding data in
the neighborhood. In: Proc. of the Conf. on Very Large Data Bases
(VLDB), August 1997, Athens, Greece, pp 336–345

[GGT96] Gardarin G, Gruser J-R, Tang Z-H (1996) Cost-based selection
of path expression processing algorithms in object-oriented databases.
In: Proc. of the Conf. on Very Large Data Bases (VLDB), September
1996, Bombay, India, pp 390–401

[GKG+97] Grust T, Kr̈oger J, Gluche D, Heuer A, Scholl MH (1997)
Query evaluation in CROQUE - calculus and algebra coincide. In:
Proc. British National Conference on Databases (BNCOD), July 1997,
London, UK, pp 84–100

[GR93] Gray J, Reuter A (1993) Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, Calif.

[Här78] Ḧarder T (1978) Implementing a generalized access path structure
for a relational database system. ACM Trans Database Syst 3(3): 285–
298

[HCLS97] Haas L, Carey M, Livny M, Shukla A (1997) Seeking the truth
about ad hoc join costs. VLDB J 6(3): 241–256

[HR96] Harris E, Ramamohanarao K (1996) Join algorithm costs revisited.
VLDB J 5(1): 64–84

[HZ87] Hornick M, Zdonik S (1987) A shared, segmented memory system
for an object-oriented database. ACM Trans Off Inf Syst 5(1): 70–95

[Ita93] Itasca Systems Inc (1993) Technical summary for release 2.2. Itasca
Systems Inc, 7850 Metro Drive, Mineapolis, MN 55425

[KC86] Khoshafian SN, Copeland GP (1986) Object identity. In: Proc.
of the ACM Conf. on Object- Oriented Programming Systems and
Languages (OOPSLA), November 1986, Portland, Or., pp 406–416

[KGM91] Keller T, Graefe G, Maier D (1991) Efficient assembly of com-
plex objects. In: Proc. of the ACM SIGMOD Conf. on Management
of Data, May 1991, Denver, Colo., pp 148–158

[KM90] Kemper A, Moerkotte G (1990) Access support in object bases.
In: Proc. of the ACM SIGMOD Conf. on Management of Data, April
1990, Atlantic City, N.J., pp 364–374

[Lit80] Litwin W (1980) Linear hashing: A new tool for file and table
addressing. In: Proc. of the Conf. on Very Large Data Bases (VLDB),
October 1980, Montreal, Canada, pp 212–223

[LLOW91] Lamb C, Landis G, Orenstein J, Weinreb D (1991) The Ob-
jectStore database system. Commun ACM 34(10): 50–63

[LMB97] Leverenz L, Mateosian R, Bobrowski S (1997) Oracle8 Server
- Concepts Manual. Oracle Corporation, Redwood Shores, Calif.

[LR99] Li Z, Ross KA (1999) Fast joins using join indices. VLDB J 8(1):
1–24

[MGS+94] Maier D, Graefe G, Shapiro L, Daniels S, Keller T, Vance
B (1994) Issues in distributed object assembly. In:Özsu T, Dayal
U, Valduriez P (eds) Distributed Object Management (International
Workshop on Distributed Object Management), May 1994, Morgan
Kaufmann, San Mateo, Calif., pp 165–181

[MS87] Maier D, Stein J (1987) Development and implementation of an
object-oriented DBMS. In: Shriver B, Wegner P (eds) Research Direc-
tions in Object-Oriented Programming. MIT Press, Cambridge, Mass.,
pp 355–392

[O2T94] O2 Technology (1994) A Technical Overview of the O2 System.
O2 Technology, Versailles Cedex, France

[Obj96] Objectivity, Inc (1996) Objectivity Technical Overview, Version
4, June 1996. Objectivity, Inc; http://www.objectivity.com/

[PCV94] Patel J, Carey M, Vernon M (1994) Accurate modeling of the
hybrid hash join algorithm. Proc. of the ACM SIGMETRICS, May
1994, Santa Clara, Calif., pp 56–66

[SABdB94] Steenhagen HJ, Apers PMG, Blanken HM, By RA de (1994)
From nested-loop to join queries in OODB. In: Proc. of the Conf. on
Very Large Data Bases (VLDB), September 1994, Santiago, Chile, pp
618–629

[SC90] Shekita E, Carey M (1990) A performance evaluation of pointer-
based joins. In: Proc. of the ACM SIGMOD Conf. on Management of
Data, May 1990, Atlantic City, N.J., pp 300–311

[SG89] Segev A, Gunadhi H (1989) Event-join optimization in temporal
relational databases. In: Proc. of the Conf. on Very Large Data Bases
(VLDB), 1989, Amsterdam, The Netherlands, pp 205–215

[Sto96] Stonebraker M (1996) Object-Relational DBMSs: The Next Great
Wave. Morgan Kaufmann, San Mateo, Calif.

[Val87] Valduriez P (1987) Join indices. ACM Trans Database Syst 12(2):
218–246

[Ver97] Versant Object Technology (1997) Versant release 5, October
1997; http://www.versant.com/

[WW90] Williams I, Wolczko M (1990) An object-based memory archi-
tecture. In: Dearle A, Shaw G, Zdonik S (eds) Implementing Persistent
Object Bases, Principles and Practice. Morgan Kaufmann, San Mateo,
Calif., pp 114–130

[XH94] Xie Z, Han J (1994) Join index hierarchies for supporting efficient
navigations in object- oriented databases. In: Proc. of the Conf. on Very
Large Data Bases (VLDB), September 1994, Santiago, Chile, pp 522–
533

