
Team: CStrings

ACM SIGMOD 2015 Programming Contest - The challenge

Workflow

Concurrent processing Key data-structures Query pre-processing

Other Tricks

Lambros Petrou
lambrospetrou@gmail.com

University of Oxford

George Koumettou
gkoume01@gmail.com

Royal Holloway University of London

Marios Mintzis
mariosmintzis@hotmail.com

University College London

 All members graduated from University of Cyprus in 2014 – BSc. Computer Science

Implement a validation system that processes validation requests against a continuously modified relational database, but

only over a specific database instance (range of transactions). Each validation request contains a set of Boolean

Conjunctive Queries extended with mathematical and logical binary operators (< > =).

Simplified Example

Schema: R1(X, Y, Z), R2(K, L)

Validation Request: [Transactions: 17 – 2000] { Q1= R1: (X = 5) ^ (Y 3746), Q2= R2: (K 1000) }

This validation should only be checked against transactions 17 to 2000 and it is evaluated as CONFLICT if and only if either Q1

or Q2 is true. Q1 is true if and only if there exists a tuple in relation R1 that has X-value 5 and Y-value larger than 3746, whereas

Q2 is true if and only if there exists a tuple in relation R2 with K-value different than 1000.

Note that only tuples modified (inserted or deleted) in the specified range of transactions (17 to 2000) should be considered.

Just a brief overview of the system s work-flow throughout the whole execution.

Async Reader
(reading from STDIN

asyncrhonously)

Main-Master

: Message :
 Split the transaction by partially

parsing the message

 Distribute in each relation the

corresponding part of the

message for further processing

 Enqueue the message into the

Pending Validations queue.

 Clean-up everything

 Exit program

: Next message :

OR OR

 Initialize the specialized

structures for processing

 Start the threadpool and pause

 When the processing is finished

either Forget (delete

transactions) or Flush results

OR

Threadpool

(wake)

 Step 1 – Concurrency on Relations

process all the transactions for each relation in order

and create the inserted/deleted tuples as needed

 Step 2 – Concurrency on Relations & Columns

update our custom Column Index for each column

 Step 3 – Concurrency on Validations pending

parse the pending validation messages and

distribute each query (that contains == condition) of

each validation to the corresponding relation

(heavy query pre-processing and pruning in this

stage too to eliminate invalid queries and to sort the

predicates inside each query such that the equality

(==) conditions are first)

 Step 4 – Concurrency on Relations & Columns

evaluate all the equality queries of each column

(step 3) using the column index (step 2)

 Step 5 – Concurrency on Validations pending

evaluate the remaining queries in queue (without

equality operators) if their validation request has not

been already marked as CONFLICT

Threadpool

(sleep)

 Each worker in the thread-pool

executes what is described in

the Concurrent-processing

section in-order

 There is a barrier between steps

3 and 4 to ensure that the

necessary structures are built

before evaluating the requests

 Inverted Index for validation queries (step 3)

Each relation has an index for each of its columns to hold all the queries

among all the pending validations that have as their 1st predicate an equality

operator of that specific column. The queries are inserted in this index AFTER

being pre-processed & pruned.

This allowed us to evaluate all the queries of a specific column in sequence,

thus leading to a better cache usage (significant speedup if single-thread)

since only a single column index was used for thousands of queries.

 Column-based Index (step 2)

We designed a custom Column-based Index for the transactions and the

tuples they deleted/inserted. Each column had buckets of transactions sorted

by the transaction Ids they contained in order to allow retrieval of only the

transactions specified in each validation range.

Additionally, each bucket was filled until either:

a) the number of transactions contained exceeded our threshold

b) the number of tuples contained exceeded our threshold

As a result we always had roughly balanced buckets with just enough tuples

to make processing faster. The tuples inside each bucket were sorted by their

value in that specific column, therefore during the evaluation (step 4) with just

a single binary search we could get all the tuples that had the value we want.

 Sort and unique all the predicates

 Check validity of query

(col-X == 5 AND col-X > 5) => invalid!!!

 Make ranges stricter or remove them entirely

(col-X == 5 AND col-X >= 5) => (col-X == 5)

 Make sure that the predicates with equality

(==) operators are the first to be processed

 Custom thread-pool and concurrent

processing over a sequence of elements with

atomics instead of locks

 Auto-vectorized loops

 Branch annotations with compiler instrinsics

 Cache-line fitting of data and aligned

allocator for std::vector in some cases

	poster.vsdx
	Page-1

