1. Task definition
A test driver issues a sequence of transactions (insert and delete statements), validation queries (select statements on data modified by a range of transactions), and flush requests. Upon a flush request, the system needs to output whether each validation conflicts (non-empty result set) or not.

2. Transaction processing
Each relation consists of:
- A row-store of valid and deleted rows
- A primary key (PK) index (PK → valid rows) for fast updates
- A two-level "history index" for fast validation of single rows:
 - Transaction ID (TX ID) → list of ptrs to modified rows → row

3. Data structures for validations
The modified rows are converted periodically to column-wise format (see 5). Additional metadata include:
- A single level "history index" (TX ID → offset of first modified row)
- 8-bit fingerprint columns (for superfast approximate scans)
- A sample of distinct values per column (to estimate selectivity)

4. Validation processing
We scan the parts of column-store and row-store relevant for the transaction range of the validation query to find matching rows (conflicts). Based on heuristics, fast and selective scans are executed first. Furthermore, min/max values are used to skip a few predicates.

5. Parallelization: bulk-synchronous
- The row-store is hash-partitioned. Each thread only executes transactions of its partition. Validations are queued.
- On flush request, the partitions are merged into the column-store.
- Afterwards, threads process validations from the queue, now accessing all data structures in a read-only fashion.
- Additional flushes to overcome slow test driver.

6. Runtime break-down
This is a screenshot of the execution flow from Intel VTune Amplifier.
Transaction processing (while reading requests) | Build column-store and history index | Validation processing | Transaction processing (while not reading)
---|---|---|---
TX processing faster than test driver | Test driver + reader thread | Flush received | Additional validation threads (while not reading requests)