
Ismail Oukid (TU Dresden), Ingo Müller (KIT), Iraklis Psaroudakis (EPFL)

ACM SIGMOD 2015 Programming Contest @ SIGMOD 2015 (June 2)

Team SimpleMind

Public

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 2 Public

Agenda

 Programming Contest Overview

 Transaction Processing

 Data Structures for Validation

 Validation Processing

 Parallelization: Bulk-Synchronous

 Implementation Details

 Runtime Break-Down

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 3 Public

Programming Contest: Task Overview + Data Loading

Context: “Optimistic Concurrency Control”

 Given a sequence of transactions,

– i.e., insert or delete statements

 A sequence of validation queries,

– i.e., select statements on data modified by a range of transaction

 Detect for each validation whether it conflicted or not,

– i.e., non-empty result set

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 4 Public

Example Sequence: Loading + Transactions
(copied from http://db.in.tum.de/sigmod15contest/task.html)

Loading:

defineschema [3 4]

transaction 0 [] [

 0 [1 1 2 2 1 2 3 4 5 7 7 7]

 1 [1 0 0 0 3 0 0 1 4 1 1 1]

]

Transactions:

transaction 1 [] [0 [6 5 4]]
transaction 2 [1 [4]]
transaction 3 [0 [3]] [0 [3 5 6]]

primary keys of

rows to delete
table id

#columns per table TX id

insertions deletions

table id

rows to insert

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 5 Public

Example Sequence (cont’d): Validations

Validation:

validation 0 1 2 [0 c0=4] [1 c1>8]

validation 1 1 2 [1 c2=1]

validation 2 1 3 [0 c0=3 c1=2] [0 c2=4]

Task:

For every validation, check for conflict, i.e., check whether a transaction from the

given range modified data that matches the predicates of the validation.

Example Output: 0 1 1

Workflow:

Validations only need to answered when a „Flush“ is triggered.

predicates

{col,pred,const}
table id

validations

validation id
TX range

[from, to]

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 6 Public

Programming Contest: Data Sets + Statistics

Data Sets:

• Three sizes: “small” (90MB), “medium” (900MB), “large” (9GB?)

• “Small” and “medium” available for testing,

• “Large” used to determine 5 finalists in online submission system

• Winner announced on SIGMOD with an “extra-large” data set

Statistics (approximate):

• 80% of the messages are validations

• <10% of the validations conflict

• 80% of the transactions go to one table

• 90% of the predicates are equality (=)

• 50% of the queries use the primary key columns

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 7 Public

Transaction Processing

Each relation consists of:

• A row-store of valid and deleted rows

• A primary key (PK) index (PK valid rows) for fast updates

• A two-level “history index” for fast validation of single rows:

Transaction ID (TX ID) list of ptrs to modified rows row

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 8 Public

Data Structures for Validation

The modified rows are converted periodically to column-wise format. Additional

metadata include:

• A single level “history index” (TX ID offset of first modified row)

• 8-bit fingerprint columns (for superfast approximate scans)

• A sample of distinct values per column (to estimate selectivity)

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 9 Public

Validation Processing (1/2)

Simple nested loops:

1. Validations in request stream

2. Queries in validation

3. Predicates in query

4. Rows in transaction range

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 10 Public

Validation Processing (2/2)

Very fast predicate evaluation:

 Everything is a scan

 Result is filter for the next scan

 Heuristic selects selective scans first

 First scan is approximate (if possible)

– 8 bit values, vectorized

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 11 Public

Parallelization: Bulk-Synchronous

• The row-store is hash-partitioned. Each thread only executes

transactions of its partition. Validations are queued.

• On flush request, the partitions are merged into the column-store.

• Afterwards, threads process validations from the queue, now accessing

all data structures in a read-only fashion.

• Additional flushes to overcome slow test driver.

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 12 Public

Implementation Details

Simple

 1268 lines of code (according to sloccount)

– vs. 165 of the reference implementation

 Simple parallel regions with OpenMP

– plus a bit of last-minute mess with boost threads

 Extensive use of STL (and c++11), a bit of boost, nothing else

 Indented 4 spaces

A few noticeable tweaks (>10% gain)

 „Infinite“ vectors thanks to Linux‘ overallocation

– malloc(system_mem_size)

 Branch-free scans

 History index is a boost::flat_map

 Recycle memory to avoid (serial!) mapping by OS

 Simple scan selection mechanism

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 13 Public

Runtime Break-Down

This is a screenshot of the execution flow from Intel VTune Amplifier.

Additional validation

threads
Transaction

processing

Transaction

processing

Build column-store

and history index
Validation

processing

Flush

received

R
e

p
e

a
t

Test driver +

reader thread

TX processing faster

than test driver

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Contact information: i.oukid@sap.com, ingo.mueller@kit.edu, iraklis.psaroudakis@epfl.ch

SAP HANA Campus: students-hana@sap.com, http://tinyurl.com/hanacampus

Thank you

mailto:i.oukid@sap.com
mailto:ingo.mueller@kit.edu
mailto:iraklis.psaroudakis@epfl.ch
mailto:students-hana@sap.com
mailto:students-hana@sap.com
mailto:students-hana@sap.com
http://tinyurl.com/hanacampus

