
1 / 592

Query Optimization

Usually: Prof. Thomas Neumann
Today: Andrey Gubichev

2 / 592

Overview

1. Introduction

2. Textbook Query Optimization

3. Join Ordering

4. Accessing the Data

5. Physical Properties

6. Query Rewriting

7. Self Tuning

3 / 592

Disclaimer

• This course is about how query optimizers work and what are they
good for

• That is, about general principles and specific algorithms that are
employed by real database systems

• (With lots of algorithms)

• Sometimes, we will talk about optimization of some general classes of
SQL queries

• However, we will not study system-specific settings (how to tune
Oracle/MS SQL/MySQL). Read manuals!

4 / 592

Introduction

1. Introduction

• Overview Query Processing

• Overview Query Optimization

• Overview Query Execution

5 / 592

Introduction Query Processing

Reason for Query Optimization

• query languages like SQL are declarative

• query specifies the result, not the exact computation

• multiple alternatives are common

• often vastly different runtime characteristics

• alternatives are the basis of query optimization

Note: Deciding which alternative to choose is not trivial

6 / 592

Introduction Query Processing

Overview Query Processing

result

plan

query

runtime system

compile time system

• input: query as text

• compile time system compiles and optimizes
the query

• intermediate: query as exact execution plan

• runtime system executes the query

• output: query result

separation can be very strong (embedded SQL/prepared queries etc.)

7 / 592

Introduction Query Processing

Overview Compile Time System

execution plan

query

code generation

rewrite II

plan generation

rewrite I

factorization

normalization

semantic analysis

parsing 1. parsing, AST production

2. schema lookup, variable binding, type
inference

3. normalization, factorization, constant folding
etc.

4. view resolution, unnesting, deriving
predicates etc.

5. constructing the execution plan

6. refining the plan, pushing group by etc.

7. producing the imperative plan

rewrite I, plan generation, and rewrite II form the query optimizer

8 / 592

Introduction Query Processing

Processing Example - Input

select name, salary
from employee, department
where dep=did
and location=”München”
and area=”Research”

Note: example is so simple that it can be presented completely, but does not allow

for many optimizations. More interesting (but more abstract) examples later on.

9 / 592

Introduction Query Processing

Processing Example - Parsing

Constructs an AST from the input

SelectFromWhere

Projection From Where

Identifier name

Identifier salary

Identifier employee

Identifier department

BinaryExpression eq

Identifier area

String "Research"

BinaryExpression eq

Identifier location

String "München"

BinaryExpression eq

Identifier dep

Identifier did

BinaryExpression and

BinaryExpression and

10 / 592

Introduction Query Processing

Processing Example - Semantic Analysis

Resolves all variable binding, infers the types and checks semantics

SFW

Projection From Where

Attrib. e.name

Attrib. e.salary

Rel. e:employee

Rel. d:department

Expression eq

Attrib. e.area

Const "Research"

Expression eq

Attrib. d.location

Const "München"

Expression eq

Attrib. e.dep

Attrib. d.did

Expression and

Expression and

Types omitted here, result is bag < string , number >

11 / 592

Introduction Query Processing

Processing Example - Normalization

Normalizes the representation, factorizes common expressions, folds
constant expressions

SFW

Projection From Where

Attrib. e.name

Attrib. e.salary

Rel. e:employee

Rel. d:department

Expression eq

Attrib. e.area

Const "Research"

Expression eq

Attrib. d.location

Const "München"

Expression eq

Attrib. e.dep

Attrib. d.did

Expression and

12 / 592

Introduction Query Processing

Processing Example - Rewrite I

resolves views, unnests nested expressions, expensive optimizations

SFW

Projection From Where

Attrib. e.name

Attrib. e.salary

Rel. e:person

Rel. d:department

Expression eq

Attrib. e.area

Const "Research"

Expression eq

Attrib. d.location

Const "München"

Expression eq

Attrib. e.dep

Attrib. d.did

Expression and

Expression eq Attrib. e.kind Const "emp"

13 / 592

Introduction Query Processing

Processing Example - Plan Generation

Finds the best execution strategy, constructs a physical plan

σlocation=′′München′′

✶dep=did

departmentperson

σkind=′′emp′′

σarea=′′Research′′

14 / 592

Introduction Query Processing

Processing Example - Rewrite II

Polishes the plan

σarea=′′Research′′∧

department

✶dep=did

σlocation=′′München′′

person

kind=′′Emp′′

15 / 592

Introduction Query Processing

Processing Example - Code Generation
Produces the executable plan

<

@c1 string 0

@c2 string 0

@c3 string 0

@kind string 0

@name string 0

@salary float64

@dep int32

@area string 0

@did int32

@location string 0

@t1 uint32 local

@t2 string 0 local

@t3 bool local

>

[main

load_string "emp" @c1

load_string "M\u00fcnchen" @c2

load_string "Research" @c3

first_notnull_bool

<#1 BlockwiseNestedLoopJoin

memSize 1048576

[combiner

unpack_int32 @dep

eq_int32 @dep @did @t3

return_if_ne_bool @t3

unpack_string @name

unpack_float64 @salary

]

[storer

check_pack 4

pack_int32 @dep

pack_string @name

check_pack 8

pack_float64 @salary

load_uint32 0 @t1

hash_int32 @dep @t1 @t1

return_uint32 @t1

]

[hasher

load_uint32 0 @t1

hash_int32 @did @t1 @t1

return_uint32 @t1

]

<#2 Tablescan

segment 1 0 4

[loader

unpack_string @kind

unpack_string @name

unpack_float64 @salary

unpack_int32 @dep

unpack_string @area

eq_string @kind @c1 @t3

return_if_ne_bool @t3

eq_string @area @c3 @t3

return_if_ne_bool @t3

]

>

<#3 Tablescan

segment 1 0 5

[loader

unpack_int32 @did

unpack_string @location

eq_string @location @c2 @t3

return_if_ne_bool @t3

]

>

> @t3

jf_bool 6 @t3

print_string 0 @name

cast_float64_string @salary @t2

print_string 10 @t2

println

next_notnull_bool #1 @t3

jt_bool -6 @t3

]

16 / 592

Introduction Optimization Overview

What to Optimize?

Different optimization goals reasonable:

• minimize response time

• minimize resource consumption

• minimize time to first tuple

• maximize throughput

Expressed during optimization as cost function. Common choice: Minimize
response time within given resource limitations.

17 / 592

Introduction Optimization Overview

Basic Goal of Algebraic Optimization

When given an algebraic expression:

• find a cheaper/the cheapest expression that is equivalent to the first
one

Problems:

• the set of possible expressions is huge

• testing for equivalence is difficult/impossible in general

• the query is given in a calculus and not an algebra (this is also an
advantage, though)

• even ”simpler” optimization problems (e.g. join ordering) are typically
NP hard in general

18 / 592

Introduction Optimization Overview

Search Space

equivalent plans

potential

search space

actual

search

space

Query optimizers only search the ”opti-
mal” solution within the limited space cre-
ated by known optimization rules

19 / 592

Introduction Optimization Overview

Optimization Approaches

constructive transformative
transformative is simpler, but finding the optimal solution is hard

20 / 592

Introduction Query Execution

Query Execution

Understanding query execution is important to understand query
optimization

• queries executed using a physical algebra

• operators perform certain specialized operations

• generic, flexible components

• simple base: relational algebra (set oriented)

• in reality: bags, or rather data streams

• each operator produces a tuple stream, consumes streams

• tuple stream model works well, also for OODBMS, XML etc.

21 / 592

Introduction Query Execution

Relational Algebra
Notation:

• A(e) attributes of the tuples produces by e

• F(e) free variables of the expression e

• binary operators e1θe2 usually require A(e1) = A(e2)

e1 ∪ e2 union, {x |x ∈ e1 ∨ x ∈ e2}
e1 ∩ e2 intersection, {x |x ∈ e1 ∧ x ∈ e2}
e1 \ e2 difference, {x |x ∈ e1 ∧ x 6∈ e2}
ρa→b(e) rename, {x ◦ (b : x .a) \ (a : x .a)|x ∈ e}
ΠA(e) projection, {◦a∈A(a : x .a)|x ∈ e}
e1 × e2 product, {x ◦ y |x ∈ e1 ∧ y ∈ e2}
σp(e) selection, {x |x ∈ e ∧ p(x)}
e1 pe2 join, {x ◦ y |x ∈ e1 ∧ y ∈ e2 ∧ p(x ◦ y)}

per definition set oriented. Similar operators also used bag oriented (no
implicit duplicate removal).

22 / 592

Introduction Query Execution

Relational Algebra - Derived Operators

Additional (derived) operators are often useful:
e1 e2 natural join, {x ◦ y|A(e2)\A(e1)|x ∈ e1 ∧ y ∈ e2 ∧ x =|A(e1)∩A(e2) y}
e1 ÷ e2 division, {x|A(e1)\A(e2)|x ∈ e1 ∧ ∀y ∈ e2∃z ∈ e1 :

y =|A(e2) z ∧ x =|A(e1)\A(e2) z}
e1 pe2 semi-join, {x |x ∈ e1 ∧ ∃y ∈ e2 : p(x ◦ y)}
e1 pe2 anti-join, {x |x ∈ e1∧ 6 ∃y ∈ e2 : p(x ◦ y)}
e1 pe2 outer-join, (e1 pe2) ∪ {x ◦ ◦a∈A(e2)(a : null)|x ∈ (e1 pe2)}
e1 pe2 full outer-join, (e1 pe2) ∪ (e2 pe1)

23 / 592

Introduction Query Execution

Relational Algebra - Extensions

The algebra needs some extensions for real queries:

• map/function evaluation
χa:f (e) = {x ◦ (a : f (x))|x ∈ e}

• group by/aggregation
ΓA;a:f (e) = {x ◦ (a : f (y))|x ∈ ΠA(e) ∧ y = {z |z ∈ e ∧ ∀a ∈ A : x .a =
z .a}}

• dependent join (djoin). Requires F(e2) ⊆ A(e1)
e1 pe2 = {x ◦ y |x ∈ e1 ∧ y ∈ e2(x) ∧ p(x ◦ y)}

24 / 592

Introduction Query Execution

Physical Algebra

• relational algebra does not imply an implementation

• the implementation can have a great impact

• therefore more detailed operators (next slides)

• additional operators needed due to stream nature

25 / 592

Introduction Query Execution

Physical Algebra - Enforcer

Some operators do not effect the (logical) result but guarantee desired
properties:

• sort
Sorts the input stream according to a sort criteria

• temp
Materializes the input stream, makes further reads cheap

• ship
Sends the input stream to a different host (distributed databases)

26 / 592

Introduction Query Execution

Physical Algebra - Joins

Different join implementations have different characteristics:

• e1
NLe2 Nested Loop Join

Reads all of e2 for every tuple of e1. Very slow, but supports all kinds
of predicates

• e1
BNLe2 Blockwise Nested Loop Join

Reads chunks of e1 into memory and reads e2 once for each chunk.
Much faster, but requires memory. Further improvement: Use hashing
for equi-joins.

• e1
SMe2 Sort Merge Join

Scans e1 and e2 only once, but requires suitable sorted input.
Equi-joins only.

• e1
HHe2 Hybrid-Hash Join

Partitions e1 and e2 into partitions that can be joined in memory.
Equi-joins only.

27 / 592

Introduction Query Execution

Physical Algebra - Aggregation

Other operators also have different implementations:

• ΓSI Aggregation Sorted Input
Aggregates the input directly. Trivial and fast, but requires sorted
input

• ΓQS Aggregation Quick Sort
Sorts chunks of input with quick sort, merges sorts

• ΓHS Aggregation Heap Sort
Like ΓQS . Slower sort, but longer runs

• ΓHH Aggregation Hybrid Hash
Partitions like a hybrid hash join.

Even more variants with early aggregation etc. Similar for other operators.

28 / 592

Introduction Query Execution

Physical Algebra - Summary

• logical algebras describe only the general approach

• physical algebra fixes the exact execution including runtime
characteristics

• multiple physical operators possible for a single logical operator

• query optimizer must produce physical algebra

• operator selection is a crucial step during optimization

29 / 592

Textbook Query Optimization

2. Textbook Query Optimization

• Algebra Revisited

• Canonical Query Translation

• Logical Query Optimization

• Physical Query Optimization

30 / 592

Textbook Query Optimization Algebra Revisited

Algebra Revisited

The algebra needs some more thought:

• correctness is critical for query optimization

• can only be guaranteed by a formal model

• the algebra description in the introduction was too cursory

What we ultimately want to do with an algebraic model:

• decide if two algebraic expressions are equivalent (produce the same
result)

This is too difficult in practice (not computable in general), so we at least
want to:

• guarantee that two algebraic expressions are equivalent (for some
classes of expressions)

This still requires a strong formal model. We accept false negatives, but
not false positives.

31 / 592

Textbook Query Optimization Algebra Revisited

Tuples

Tuple:

• a (unordered) mapping from attribute names to values of a domain

• sample: [name: ”Sokrates”, age: 69]

Schema:

• a set of attributes with domain, written A(t)

• sample: {(name,string),(age, number)}

Note:

• simplified notation on the slides, but has to be kept in mind

• domain usually omitted when not relevant

• attribute names omitted when schema known

32 / 592

Textbook Query Optimization Algebra Revisited

Tuple Concatenation

• notation: t1 ◦ t2

• sample: [name: ”Sokrates”, age: 69]◦[country: ”Greece”]
= [name: ”Sokrates”, age: 69, country: ”Greece”]

• note: t1 ◦ t2 = t2 ◦ t1, tuples are unordered

Requirements/Effects:

• A(t1) ∩ A(t2) = ∅
• A(t1 ◦ t2) = A(t1) ∪ A(t2)

33 / 592

Textbook Query Optimization Algebra Revisited

Tuple Projection

Consider t = [name: ”Sokrates”, age: 69, country: ”Greece”]

Single Attribute:

• notation t.a

• sample: t.name = ”Sokrates”

Multiple Attributes:

• notation t|A

• sample: t|{name,age} = [name: ”Sokrates”, age: 69]

Requirements/Effects:

• a ∈ A(t), A ⊆ A(t)

• A(t|A) = A

• notice: t.a produces a value, t|A produces a tuple

34 / 592

Textbook Query Optimization Algebra Revisited

Relations

Relation:

• a set of tuples with the same schema

• sample: {[name: ”Sokrates”, age: 69], [name: ”Platon”, age: 45]}
Schema:

• schema of the contained tuples, written A(R)

• sample: {(name,string),(age, number)}

35 / 592

Textbook Query Optimization Algebra Revisited

Sets vs. Bags

• relations are sets of tuples

• real data is usually a multi set (bag)

Example: select age
from student

age

23
24
24
. . .

• we concentrate on sets first for simplicity

• many (but not all) set equivalences valid for bags

The optimizer must consider three different semantics:

• logical algebra operates on bags

• physical algebra operates on streams (order matters)

• explicit duplicate elimination ⇒ sets

36 / 592

Textbook Query Optimization Algebra Revisited

Set Operations

Set operations are part of the algebra:

• union (L ∪ R), intersection (L ∩ R), difference (L \ R)

• normal set semantic

• but: schema constraints

• for bags defined via frequencies (union → +, intersection → min,
difference → −)

Requirements/Effects:

• A(L) = A(R)

• A(L ∪ R) = A(L) = A(R), A(L ∩ R) = A(L) = A(R),
A(L \ R) = A(L) = A(R)

37 / 592

Textbook Query Optimization Algebra Revisited

Free Variables

Consider the predicate age = 62

• can only be evaluated when age has a meaning

• age behaves a free variable

• must be bound before the predicate can be evaluated

• notation: F(e) are the free variables of e

Note:

• free variables are essential for predicates

• free variables are also important for algebra expressions

• dependent join etc.

38 / 592

Textbook Query Optimization Algebra Revisited

Selection

Selection:

• notation: σp(R)

• sample: σa≥2({[a : 1], [a : 2], [a : 3]}) = {[a : 2], [a : 3]}
• predicates can be arbitrarily complex

• optimizer especially interested in predicates of the form
attrib = attrib or attrib = const

Requirements/Effects:

• F(p) ⊆ A(R)

• A(σp(R)) = A(R)

39 / 592

Textbook Query Optimization Algebra Revisited

Projection

Projection:

• notation: ΠA(R)

• sample: Π{a}({[a : 1, b : 1], [a : 2, b : 1]}) = {[a : 1], [a : 2]}
• eliminates duplicates for set semantic, keeps them for bag semantic

• note: usually written as Πa,b instead of the correct Π{a,b}

Requirements/Effects:

• A ⊆ A(R)

• A(ΠA(R)) = A

40 / 592

Textbook Query Optimization Algebra Revisited

Rename

Rename:

• notation: ρa→b(R)

• sample:
ρa→c({[a : 1, b : 1], [a : 2, b : 1]}) = {[c : 1, b : 1], [c : 2, b : 2]}?

• often a pure logical operator, no code generation

• important for the data flow

Requirements/Effects:

• a ∈ A(R), b 6∈ A(R)

• A(ρa→b(R)) = A(R) \ {a} ∪ {b}

41 / 592

Textbook Query Optimization Algebra Revisited

Join

Consider L = {[a : 1], [a : 2]},R = {[b : 1], [b : 3]}

Cross Product:

• notation: L× R

• sample: L× R = {[a : 1, b : 1], [a : 1, b : 3], [a : 2, b : 1], [a : 2, b : 3]}
Join:

• notation: L pR

• sample: L a=bR = {[a : 1, b : 1]}
• defined as σp(L× R)

Requirements/Effects:

• A(L) ∩ A(R) = ∅,F(p) ∈ (A(L) ∪ A(R))

• A(L× R) = A(L) ∪ AR

42 / 592

Textbook Query Optimization Algebra Revisited

Equivalences

Equivalences for selection and projection:

σp1∧p2(e) ≡ σp1(σp2(e)) (1)

σp1(σp2(e)) ≡ σp2(σp1(e)) (2)

ΠA1(ΠA2(e)) ≡ ΠA1(e) (3)

if A1 ⊆ A2

σp(ΠA(e)) ≡ ΠA(σp(e)) (4)

if F(p) ⊆ A

σp(e1 ∪ e2) ≡ σp(e1) ∪ σp(e2) (5)

σp(e1 ∩ e2) ≡ σp(e1) ∩ σp(e2) (6)

σp(e1 \ e2) ≡ σp(e1) \ σp(e2) (7)

ΠA(e1 ∪ e2) ≡ ΠA(e1) ∪ ΠA(e2) (8)

43 / 592

Textbook Query Optimization Algebra Revisited

Equivalences
Equivalences for joins:

e1 × e2 ≡ e2 × e1 (9)

e1 pe2 ≡ e2 pe1 (10)

(e1 × e2)× e3 ≡ e1 × (e2 × e3) (11)

(e1 p1e2) p2e3 ≡ e1 p1(e2 p2e3) (12)

σp(e1 × e2) ≡ e1 pe2 (13)

σp(e1 × e2) ≡ σp(e1)× e2 (14)

if F(p) ⊆ A(e1)

σp1(e1 p2e2) ≡ σp1(e1) p2e2 (15)

if F(p1) ⊆ A(e1)

ΠA(e1 × e2) ≡ ΠA1(e1)× ΠA2(e2) (16)

if A = A1 ∪ A2,A1 ⊆ A(e1),A2 ⊆ A(e2)

