Query Optimization

Exercise Session 3

Andrey Gubichev

May 5, 2014

Homework: Task 1

```
select *
    from lineitem l, orders o, customers c
    where l.l_orderkey=o.o_orderkey
    and o.o_custkey=c.c_custkey
    and c.c_name='Customer#000014993'.
```


Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$,

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ can be estimated as...

- if x is the key:

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ can be estimated as...

- if x is the key: $\frac{1}{|R 1|}$

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ can be estimated as...

- if x is the key: $\frac{1}{|R 1|}$
- if x is not the key:

Homework: Task 2

We know $|R 1|,|R 2|$, domains of $R 1 . x, R 2 . y$, (that is, $|R 1 . x|$, $|R 2 . y|)$, and whether x and y are keys or not.
The selectivity of $\sigma_{R 1 . x=c}$ can be estimated as...

- if x is the key: $\frac{1}{|R 1|}$
- if x is not the key: $\frac{1}{|R 1 . x|}$

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ can be estimated as...

- if both x and y are the keys:

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ can be estimated as...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ can be estimated as...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key:

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ can be estimated as...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key: $\frac{1}{|R 1|}$

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ can be estimated as...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key: $\frac{1}{|R 1|}$
- if both x and y are not the keys:

Homework: Task 2

We know $|R 1|,|R 2|,|R 1 . x|,|R 2 . y|$, and whether x and y are keys or not.
First, the size of $R 1 \times R 2$ is $|R 1||R 2|$
The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ can be estimated as...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key: $\frac{1}{|R 1|}$
- if both x and y are not the keys: $\frac{1}{\max (|R 1 . x|,|R 2 . y|)}$

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is $\frac{\max (R 1 . x)-c}{\max (R 1 . x)-\min (R 1 . x)}$

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is $\frac{\max (R 1 . x)-c}{\max (R 1 . x)-\min (R 1 . x)}$

The selectivity of $\sigma_{c 1<R 1 . x<c 2}$ is

Selectivity estimation

We know $|R 1|, \max (R 1 . x), \min (R 1 . x), R 1 . x$ is arithmetic.

The selectivity of $\sigma_{R 1 . x>c}$ is $\frac{\max (R 1 . x)-c}{\max (R 1 . x)-\min (R 1 . x)}$

The selectivity of $\sigma_{c 1<R 1 . x<c 2}$ is $\frac{c 2-c 1}{\max -\min }$

Homework: Task 3

- $|R|=1,000$ pages, $|S|=100,000$ pages
- 1 page - 50 tuples, 1 block - 100 pages
- avg. access $=10 \mathrm{~ms}$, transfer speed $=10,000$ pages $/ \mathrm{sec}$
- Time for block-nested loops join $=$?

Homework: Task 3

- $|R|=1,000$ pages, $|S|=100,000$ pages
- 1 page - 50 tuples, 1 block - 100 pages
- avg. access $=10 \mathrm{~ms}$, transfer speed $=10,000$ pages $/ \mathrm{sec}$
- Time for block-nested loops join $=$?
- choose left argument: R vs. $S, \frac{1,000}{100}$ vs. $\frac{100,000}{100} \Rightarrow R$

Homework: Task 3

- Time to read one block:

$$
T_{b}=\text { avg.seek }+\left(100 \frac{1}{\text { transfer speed }}\right)=0.02 s
$$

Homework: Task 3

- Time to read one block:
$T_{b}=$ avg.seek $+\left(100 \frac{1}{\text { transfer speed }}\right)=0.02 \mathrm{~s}$
- Read 1 block from R, join it with S :

$$
T_{b}+\text { time to read } S \approx 10 s
$$

Homework: Task 3

- Time to read one block:

$$
T_{b}=\text { avg.seek }+\left(100 \frac{1}{\text { transfer speed }}\right)=0.02 \mathrm{~s}
$$

- Read 1 block from R, join it with S :

$$
T_{b}+\text { time to read } S \approx 10 s
$$

- Repeat it for every block in R :

$$
T_{B N L J}=\frac{\text { \#pages in } \mathrm{R}}{\text { block size }}(10 s) \approx 100 s
$$

Query Graphs

```
select v.titel
    from Vorlesungen v, Professoren p
    where v.gelesenvon = p.persnr
        and p.name = 'Kant'
        and v.sws = 2;
```


Query Graphs

```
select r.a, s.c
    from R r, S s, T t, U u
    where r.a = s.a
        and r.b = t.b
        and r.b = u.b;
```


Query Graphs

select r.a, s.c
from R r, S
where r.a $+\mathrm{s} . \mathrm{a}=7$;

Query Graphs

```
select r.a, s.c
    from R r, S s, T t, U u
    where (r.a + s.b) = (t.b + u.a);
```


Search space

Search space is defined by:

- Query graph type

Search space

Search space is defined by:

- Query graph type (chain, star, tree, clique,cycle, grid)
- Join tree class

Search space

Search space is defined by:

- Query graph type (chain, star, tree, clique,cycle, grid)
- Join tree class (left-deep, zig-zag, bushy)
- Cost function class

Search space

```
select *
from R1, R2, R3, R4
where R1.a = R2.b
    and R2.c = R3.d
    and R3.e = R4.f
```

- What kind of query graph is it?

Search space

```
select *
from R1, R2, R3, R4
where R1.a = R2.b
    and R2.c = R3.d
    and R3.e = R4.f
```

- What kind of query graph is it?
- Let's allow cross-products \Rightarrow the shape of the query graph does not matter

Search space

```
select *
from R1, R2, R3, R4
where R1.a = R2.b
    and R2.c = R3.d
    and R3.e = R4.f
```

- What kind of query graph is it?
- Let's allow cross-products \Rightarrow the shape of the query graph does not matter
- Count left-deep trees
- Count zig-zag trees
- Count bushy trees

Roadmap

Good optimizer deals with the following issues:

- Cost Model
- Cost Function
- Selectivity estimation, statistics
- Logical Optimization
- Search Space
- Algorithms for Optimal Plan finding
- Physical Optimization
- Enhancing the logical plan with physical operators

DB design

- RTS (Runtime System) - TinyDB
- how the database is organized on disk? (buffer manager, segments, etc)
- access methods, operators (scans, joins)
- CTS (Compile-time System) - Goal of the programming exercises
- Parser (SQLLexer, SQLParser)
- Semantic Analysis - construct the Query graph, also other transformations
- Plan generator - logical optimization (join ordering algorithms)
- Code generator - generates the plan that can be executed by RTS

Homework: Task 1 (10 points)

Selectivity estimation continues...

- Our estimations (prev.homework) are far from perfect
- Construct specific examples (database schema, concrete instances of relations and selections/joins), where our estimations are very "bad"
- "Bad" - means that for some queries (give examples of SQL queries) the logical plan will be suboptimal (w.r.t $C_{\text {out }}$), if we use these estimations
- In other words, bad estimations mislead the optimizer and it outputs a clearly suboptimal plan
- Two examples (one for selections, one for joins)

Homework: Task 2 (5 points)

- Give an example query instance where the optimal join tree (using $C_{\text {out }}$) is bushy and includes a cross product.
- Note: the query graph should be connected!

Homework: Task 3 (15 points)

- Using the program from the first exercise as a basis, implement a program that
- parses SQL queries
- translates them into tinydb execution plans
- and executes the query.
- Note: a canonical translation of the joins is fine, but push all predicates of the form attr = const down to the base relations
- Don't do semantic analysis
- Logical optimizer: just takes canonical translation and push down selections, no join ordering

Info

- Slides and exercises: www3.in.tum.de/teaching/ss14/queryopt
- Send any comments, questions, solutions for the exercises etc. to Andrey.Gubichev@in.tum.de
- Exercises due: 9 AM, May 12, 2014

