
Query Optimization
Exercise Session 3

Andrey Gubichev

May 5, 2014

Homework: Task 1

select *

from lineitem l, orders o, customers c

where l.l_orderkey=o.o_orderkey

and o.o_custkey=c.c_custkey

and c.c_name=’Customer#000014993’.

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y ,

(that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c can be estimated as...

I if x is the key: 1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c can be estimated as...

I if x is the key:

1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c can be estimated as...

I if x is the key: 1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c can be estimated as...

I if x is the key: 1
|R1|

I if x is not the key:

1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, domains of R1.x , R2.y , (that is, |R1.x |,
|R2.y |), and whether x and y are keys or not.
The selectivity of σR1.x=c can be estimated as...

I if x is the key: 1
|R1|

I if x is not the key: 1
|R1.x |

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is

|R1||R2|
The selectivity of onR1.x=R2.y can be estimated as...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y can be estimated as...

I if both x and y are the keys:

1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y can be estimated as...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y can be estimated as...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key:

1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y can be estimated as...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y can be estimated as...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys:

1
max(|R1.x |,|R2.y |)

Homework: Task 2

We know |R1|, |R2|, |R1.x |, |R2.y |, and whether x and y are keys
or not.
First, the size of R1× R2 is |R1||R2|
The selectivity of onR1.x=R2.y can be estimated as...

I if both x and y are the keys: 1
max(|R1|,|R2|)

I if only x is the key: 1
|R1|

I if both x and y are not the keys: 1
max(|R1.x |,|R2.y |)

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is

max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is c2−c1
max−min

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is c2−c1
max−min

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is

c2−c1
max−min

Selectivity estimation

We know |R1|, max(R1.x), min(R1.x), R1.x is arithmetic.

The selectivity of σR1.x>c is max(R1.x)−c
max(R1.x)−min(R1.x)

The selectivity of σc1<R1.x<c2 is c2−c1
max−min

Homework: Task 3

I |R| = 1, 000 pages, |S | = 100, 000 pages

I 1 page - 50 tuples, 1 block - 100 pages

I avg. access = 10 ms, transfer speed = 10,000 pages/sec

I Time for block-nested loops join = ?

I choose left argument: R vs. S , 1,000
100 vs. 100,000

100 ⇒ R

Homework: Task 3

I |R| = 1, 000 pages, |S | = 100, 000 pages

I 1 page - 50 tuples, 1 block - 100 pages

I avg. access = 10 ms, transfer speed = 10,000 pages/sec

I Time for block-nested loops join = ?

I choose left argument: R vs. S , 1,000
100 vs. 100,000

100 ⇒ R

Homework: Task 3

I Time to read one block:
Tb = avg .seek + (100 1

transfer speed) = 0.02s

I Read 1 block from R, join it with S :

Tb + time to read S ≈ 10s

I Repeat it for every block in R:

TBNLJ =
#pages in R

block size
(10s) ≈ 100s

Homework: Task 3

I Time to read one block:
Tb = avg .seek + (100 1

transfer speed) = 0.02s

I Read 1 block from R, join it with S :

Tb + time to read S ≈ 10s

I Repeat it for every block in R:

TBNLJ =
#pages in R

block size
(10s) ≈ 100s

Homework: Task 3

I Time to read one block:
Tb = avg .seek + (100 1

transfer speed) = 0.02s

I Read 1 block from R, join it with S :

Tb + time to read S ≈ 10s

I Repeat it for every block in R:

TBNLJ =
#pages in R

block size
(10s) ≈ 100s

Query Graphs

select v.titel

from Vorlesungen v, Professoren p

where v.gelesenvon = p.persnr

and p.name = ’Kant’

and v.sws = 2;

Query Graphs

select r.a, s.c

from R r, S s, T t, U u

where r.a = s.a

and r.b = t.b

and r.b = u.b;

Query Graphs

select r.a, s.c

from R r, S s

where r.a + s.a = 7;

Query Graphs

select r.a, s.c

from R r, S s, T t, U u

where (r.a + s.b) = (t.b + u.a);

Search space

Search space is defined by:

I Query graph type

(chain, star, tree, clique,cycle, grid)

I Join tree class (left-deep, zig-zag, bushy)

I Cost function class

Search space

Search space is defined by:

I Query graph type (chain, star, tree, clique,cycle, grid)

I Join tree class

(left-deep, zig-zag, bushy)

I Cost function class

Search space

Search space is defined by:

I Query graph type (chain, star, tree, clique,cycle, grid)

I Join tree class (left-deep, zig-zag, bushy)

I Cost function class

Search space

select *

from R1, R2, R3, R4

where R1.a = R2.b

and R2.c = R3.d

and R3.e = R4.f

I What kind of query graph is it?

I Let’s allow cross-products ⇒ the shape of the query graph
does not matter

I Count left-deep trees

I Count zig-zag trees

I Count bushy trees

Search space

select *

from R1, R2, R3, R4

where R1.a = R2.b

and R2.c = R3.d

and R3.e = R4.f

I What kind of query graph is it?

I Let’s allow cross-products ⇒ the shape of the query graph
does not matter

I Count left-deep trees

I Count zig-zag trees

I Count bushy trees

Search space

select *

from R1, R2, R3, R4

where R1.a = R2.b

and R2.c = R3.d

and R3.e = R4.f

I What kind of query graph is it?

I Let’s allow cross-products ⇒ the shape of the query graph
does not matter

I Count left-deep trees

I Count zig-zag trees

I Count bushy trees

Roadmap

Good optimizer deals with the following issues:

I Cost Model
I Cost Function Done
I Selectivity estimation, statistics Homework

I Logical Optimization
I Search Space Done
I Algorithms for Optimal Plan finding Rest of the course

I Physical Optimization
I Enhancing the logical plan with physical operators Seen

DB design

I RTS (Runtime System) – TinyDB
I how the database is organized on disk? (buffer manager,

segments, etc)
I access methods, operators (scans, joins)

I CTS (Compile-time System) – Goal of the programming
exercises

I Parser (SQLLexer, SQLParser)
I Semantic Analysis – construct the Query graph, also other

transformations
I Plan generator – logical optimization (join ordering algorithms)
I Code generator – generates the plan that can be executed by

RTS

Homework: Task 1 (10 points)

Selectivity estimation continues...

I Our estimations (prev.homework) are far from perfect

I Construct specific examples (database schema, concrete
instances of relations and selections/joins), where our
estimations are very ”bad”

I ”Bad” – means that for some queries (give examples of SQL
queries) the logical plan will be suboptimal (w.r.t Cout), if we
use these estimations

I In other words, bad estimations mislead the optimizer and it
outputs a clearly suboptimal plan

I Two examples (one for selections, one for joins)

Homework: Task 2 (5 points)

I Give an example query instance where the optimal join tree
(using Cout) is bushy and includes a cross product.

I Note: the query graph should be connected!

Homework: Task 3 (15 points)

I Using the program from the first exercise as a basis,
implement a program that

I parses SQL queries
I translates them into tinydb execution plans
I and executes the query.

I Note: a canonical translation of the joins is fine, but push all
predicates of the form attr = const down to the base relations

I Don’t do semantic analysis

I Logical optimizer: just takes canonical translation and push
down selections, no join ordering

Info

I Slides and exercises: www3.in.tum.de/teaching/ss14/queryopt

I Send any comments, questions, solutions for the exercises etc.
to Andrey.Gubichev@in.tum.de

I Exercises due: 9 AM, May 12, 2014

