Query Optimization

 Exercise Session 4Andrey Gubichev

May 12, 2014

Homework: Selectivity estimations

The selectivity of $\sigma_{R 1 . x=c}$ is...

- if x is the key: $\frac{1}{|R 1|}$
- if x is not the key: $\frac{1}{|R 1 . x|}$

The selectivity of $\bowtie_{R 1 . x=R 2 . y}$ is...

- if both x and y are the keys: $\frac{1}{\max (|R 1|,|R 2|)}$
- if only x is the key: $\frac{1}{|R 1|}$
- if both x and y are not the keys: $\frac{1}{\max (|R 1 . x|,|R 2 . y|)}$

When our selectivity estimations are bad?

Homework: Selectivity estimations

Setup: due Florian Walch
Description: Consider online shop selling women's clothing
Schema: Customers, Countries, Orders (FK: Customers,
Countries)
100 customers (99 female), 50 countries, 1000 orders
Query 1: find all the orders and countries of male customers

Homework: Selectivity estimations

Estimations

σ Male customers: 50 tuples
Sel.($\sigma \bowtie$ Orders): 0.02
Sel.(Orders \ltimes Countries):

Reality

Male customers: 1 tuple
Join with Orders: ca. 10 tuples
Join with Countries: ca. 10 tuples

Another example

Tables: Person (ID, Name, City), Friends(FK: Person, Person)
Query: Find all people called John from NYC who are friends with a person called Mary from Beijing.

Homework

When is a bushy tree with a crossproduct optimal?

- When is a bushy tree optimal?
- When use of a crossproduct is beneficial?

Greedy operator ordering

- take the query graph
- find relations R_{1}, R_{2} such that $\left|R_{1} \bowtie R_{2}\right|$ is minimal and merge them into one node
- repeat until the query graph has more than one node

Generates bushy trees!

Example

Example - step 1

Example - after step 1

Example - step 2

Example- after step 2

Example - step 3

Example - after step 3

Example - step 4

$$
\begin{gathered}
R_{1}(10) \xrightarrow{0.8} R_{2}(10) \underline{0.5} R_{3} \bowtie R_{4}(30) \\
\left(R_{5} \bowtie R_{6}\right) \bowtie R_{9}(60) \\
R_{7} \bowtie R_{8}(30)
\end{gathered}
$$

Example - after step 4

Example - step 5

Example - after step 5

$\left(R_{1} \bowtie R_{2}\right) \bowtie\left(R_{3} \bowtie R_{4}\right)(1200)$
0.2268
$\left(R_{7} \bowtie R_{8}\right) \bowtie\left(\left(R_{5} \bowtie R_{6}\right) \bowtie R_{9}\right)(1080)$

Example - result

IKKBZ (informally)

Query graph Q is acyclic. Pick a root node, turn it into a tree. Run the following procedure for every root node, select the cheapest plan

Input: rooted tree Q

1. if the tree is a single chain, stop
2. find the subtree (rooted at r) all of whose children are chains
3. normalize, if $c_{1} \rightarrow c_{2}$, but $\operatorname{rank}\left(c_{1}\right)>\operatorname{rank}\left(c_{2}\right)$ in the subtree rooted at r
4. merge chains in the subtree rooted at r, rank is ascending
5. repeat 1

IKKBZ (informally)

For every relation R_{i} we keep

- cardinality n_{i}
- selectivity s_{i} — the selectivity of the incoming edge from the parent of R_{i}
- cost $C\left(R_{i}\right)=n_{i} s_{i}$ (or 0 , if R_{i} is the root)
- rank $r_{i}=\frac{n_{i} s_{i}-1}{n_{i} s_{i}}$

Moreover,

- $C\left(S_{1} S_{2}\right)=C\left(S_{1}\right)+T\left(S_{1}\right) C\left(S_{2}\right)$
- $T(S)=\prod_{R_{i} \in S}\left(s_{i} n_{i}\right)$
- rank of a sequence $r(S)=\frac{T(S)-1}{C(S)}$

Understanding IKKBZ

- what is the rank?
- when is $\left(R_{1} \bowtie R_{2}\right) \bowtie R_{3}$ cheaper than $\left(R_{1} \bowtie R_{3}\right) \bowtie R_{2}$?

Understanding IKKBZ

- what is the rank?
- when is $\left(R_{1} \bowtie R_{2}\right) \bowtie R_{3}$ cheaper than $\left(R_{1} \bowtie R_{3}\right) \bowtie R_{2}$?
- if $r\left(R_{2}\right)<r\left(R_{3}\right)$!

IKKBZ - example

IKKBZ - example

Subtree R_{3} : merging, $\operatorname{rank}\left(R_{5}\right)<\operatorname{rank}\left(R_{4}\right)$

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{3}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$

IKKBZ - example

Subtree R_{1} :
$\operatorname{rank}\left(R_{3}\right)>\operatorname{rank}\left(R_{5}\right)$, normalizing

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{3}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$
3,5	60	$\frac{1}{3}$	30	20	$\frac{19}{30}$

IKKBZ - example

Subtree R_{1} : merging

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{15}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$
3,5	60	$\frac{1}{3}$	30	20	$\frac{19}{30}$

IKKBZ - example

Denormalizing
R_{1}

Relation	n	s	C	T	rank
2	20	$\frac{1}{5}$	4	4	$\frac{3}{4}$
3	30	$\frac{1}{15}$	10	10	$\frac{9}{10}$
4	50	$\frac{1}{10}$	5	5	$\frac{4}{5}$
5	2	1	2	2	$\frac{1}{2}$
3,5	60	$\frac{1}{3}$	30	20	$\frac{19}{30}$

IKKBZ - another example

IKKBZ

- $r\left(R_{2}\right)=\frac{9}{10}$
- $r\left(R_{3}\right)=\frac{4}{5}$
- $r\left(R_{4}\right)=0$
- $r\left(R_{5}\right)=\frac{13}{15}$
- $r\left(R_{6}\right)=\frac{9}{10}$
- $r\left(R_{7}\right)=\frac{4}{5}$
- $r\left(R_{8}\right)=\frac{19}{20}$
- $r\left(R_{9}\right)=\frac{3}{4}$

IKKBZ

IKKBZ

IKKBZ

$$
\begin{aligned}
& R_{2} \frac{1}{10}
\end{aligned}
$$

IKKBZ

> - $r\left(R_{2}\right)=\frac{9}{10}$
> - $r\left(R_{3}\right)=\frac{4}{5}$
> - $r\left(R_{4}\right)=0$

IKKBZ

IKKBZ

- $n_{5,8,9}=800$
- $C_{5,8,9}=\frac{1515}{2}$
- $T_{5,8,9}=600$
- $r\left(R_{5,8,9}\right)=\frac{1198}{1515}=$ 0.79..
- $r\left(R_{6,7}\right)=0.816 .$.

IKKBZ

$$
\begin{aligned}
& r\left(R_{2}\right)=\frac{9}{10} \\
- & r\left(R_{5,8,9}\right)=\frac{1198}{1515}= \\
& 0.79 . . \\
- & r\left(R_{3}\right)=0.8 \\
- & r\left(R_{4}\right)=0 \\
- & r\left(R_{6,7}\right)=0.816 . .
\end{aligned}
$$

IKKBZ
$R_{1}-R_{3}-R_{4}-R_{5,8,9}-R_{6,7}-R_{2}$

IKKBZ
$R_{1}-R_{3}-R_{4}-R_{5}-R_{8}-R_{9}-R_{6}-R_{7}-R_{2}$

IKKBZ-based heuristics

What if Q has cycles?

- Observation 1: the answer of the query, corresponding to any subgraph of the query graph, is a superset of the answer to the original query
- Observation 2: a very selective join is more likely to be influential in choosing the order than a non-selective join

IKKBZ-based heuristics

What if Q has cycles?

- Observation 1: the answer of the query, corresponding to any subgraph of the query graph, is a superset of the answer to the original query
- Observation 2: a very selective join is more likely to be influential in choosing the order than a non-selective join

Choose the minimum spanning tree (minimize the product of the edge weights), compute the total order, compute the original query.

Homework: Task 1 (15 points)

- Give an example query qraph with join selectivities for which the greedy operator ordering (GOO) algorithm does not give the optimal (with regards to $C_{\text {out }}$) join tree. Specify the optimal join tree.
- For that example perform the IKKBZ-based heuristics

Homework: Task 2 (15 points)

- Using the program from the the last exercise as basis, construct the query graph for each connected component.

Info

- Slides and exercises: www3.in.tum.de/teaching/ss14/queryopt
- Send any comments, questions, solutions for the exercises etc. to Andrey.Gubichev@in.tum.de
- Exercises due: 9 AM, May 19, 2014

