Query Optimization

Exercise Session 10

Andrey Gubichev

June 30, 2014

Random join trees with cross products

- Generate a tree, then generate a permutation: $C(n-1)$ trees, n ! permutations
- Pick a random number $b \in[0, C(n-1)[$, unrank b
- Pick a random number $p \in[0, n![$, unrank p
- Attach the permutation to the leaves

Unranking

- every tree is a word in $\{()$,
- map such words to the grid, every step up is (, down)

Unranking

- every tree is a word in $\{()$,
- map such words to the grid, every step up is (, down)

Unranking

- every tree is a word in $\{()$,
- map such words to the grid, every step up is (, down)
- the number of different paths q can be computed (see lectures)
- Procedure: start in (0,0), walk up as long as rank is smaller than q. When it is bigger, step down, rank=rank- q

Example

- Bushy tree number 56, 8 leaves

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Random Join Tree Selection

Plan for today

- Two heuristics: Iterative DP, Quick Pick
- Meta-heuristics

Iterative DP

- Create all join trees with size up to k, get the cheapest one
- Replace the cheapest tree with the compound relation, start all over again

Iterative Dynamic Programming

Iterative Dynamic Programming

$R_{1} R_{3}$	$R_{2} R_{3}$	$R_{3} R_{4}$	$R_{4} R_{5}$	$R_{5} R_{6}$	$R_{5} R_{7}$	$R_{7} R_{8}$
150	300	30	150	200	6	500

Quick Pick

- Trees $=\left\{R_{1}, \ldots, R_{n}\right\}$, Edges $=$ list of edges
- pick a random edge $e \in E d g e s$ that connects two trees in Trees
- exclude two selected trees from Trees, add the new tree to Trees, Edges $=$ Edges $\backslash\{e\}$
- repeat until the complete join tree is constructed

Question for the homework: How to check that an edge connects two trees? what data structures to use?

Metaheuristics

II \& SA

Iterative Improvement

- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
\Rightarrow You'll do a homework exercise on this.
- Rules for left-deep trees: swap and 3cycle
- Rules for bushy trees: commutativity, associativity, left/right join exchange
Simulated Annealing
- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":

II \& SA

Iterative Improvement

- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
\Rightarrow You'll do a homework exercise on this.
- Rules for left-deep trees: swap and 3cycle
- Rules for bushy trees: commutativity, associativity, left/right join exchange
Simulated Annealing
- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":
- \# iterations = \# relations

II \& SA

Iterative Improvement

- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
\Rightarrow You'll do a homework exercise on this.
- Rules for left-deep trees: swap and 3cycle
- Rules for bushy trees: commutativity, associativity, left/right join exchange
Simulated Annealing
- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":
- \# iterations = \# relations
- \# iterations $=16 \times$ \# relations

II \& SA

Iterative Improvement

- Get pseudo-random join tree
- Improve with random operation until local minimum is found
- If this yields a cheaper tree than previously known, keep it, else throw it away
\Rightarrow You'll do a homework exercise on this.
- Rules for left-deep trees: swap and 3cycle
- Rules for bushy trees: commutativity, associativity, left/right join exchange
Simulated Annealing
- Similar to II, but may keep worse tree (with decreasing probability) to escape local minimum
- Parameter tuning is a nightmare. Consider the following proposals for an "equilibrium":
- \# iterations = \# relations
- \# iterations $=16 \times \#$ relations
- "Would you bet your business on these numbers?"

Possible transformations

- Swap $A \bowtie B \rightarrow B \bowtie A$
- 3Cycle $A \bowtie(B \bowtie C) \rightarrow C \bowtie(A \bowtie B)$ (if possible)
- Associativity $(A \bowtie B) \bowtie C \rightarrow A \bowtie(B \bowtie C)$
- Left Join exchange $(A \bowtie B) \bowtie C \rightarrow(A \bowtie C) \bowtie B$
- Right Join exchange $A \bowtie(B \bowtie C) \rightarrow B \bowtie(A \bowtie C)$

Iterative Improvement

- left deep trees only
(commutativity for base relations, 3Cycle)
- cost function: $C_{o u t}$

Tabu Search

- In each step, take cheapest neighbor ${ }^{1}$ (even if more expensive than current)
- Avoid cycles by keeping visited trees in a tabu-set

[^0]
Genetic Algorithms

Big picture

- Create a "population", i.e. create p random join trees
- Encode them using ordered list or ordinal number encoding
- Create the next generation
- Randomly mutate some members (e.g. exchange two relations)
- Pairs members of the population and create "crossovers"
- Select the best, kill the rest

Details

- Encodings
- Crossovers

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it
Ordinal numbers
- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: $\left(\left(\left(R_{1} \bowtie R_{4}\right) \bowtie R_{3}\right) \bowtie R_{2}\right) \bowtie R_{5}$
- Bushy trees: $\left(R_{3} \bowtie\left(R_{1} \bowtie R_{2}\right)\right) \bowtie\left(R_{4} \bowtie R_{5}\right)$

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it
Ordinal numbers
- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: $\left(\left(\left(R_{1} \bowtie R_{4}\right) \bowtie R_{3}\right) \bowtie R_{2}\right) \bowtie R_{5} \mapsto 13211$
- Bushy trees: $\left(R_{3} \bowtie\left(R_{1} \bowtie R_{2}\right)\right) \bowtie\left(R_{4} \bowtie R_{5}\right)$

Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it
Ordinal numbers
- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: $\left(\left(\left(R_{1} \bowtie R_{4}\right) \bowtie R_{3}\right) \bowtie R_{2}\right) \bowtie R_{5} \mapsto 13211$
- Bushy trees: $\left(R_{3} \bowtie\left(R_{1} \bowtie R_{2}\right)\right) \bowtie\left(R_{4} \bowtie R_{5}\right) \mapsto 12212312$

Crossover

Subsequence exchange for ordered list encoding

- Select subsequence in parent 1, e.g. abcdefgh
- Reorder subsequence according to the order in parent 2

Subsequence exchange for ordinal number encoding

- Swap two sequcences of same length
- What if we get duplicates?

Subset exchange for ordered list encoding

- Find random subsequeces in both parents that have the same length and contain the same relations
- Exchange them to create two children

Quick Pick, Genetic Algorithm

- Submit exercises to Andrey.Gubichev@in.tum.de
- Due July 7, 2014.

[^0]: ${ }^{1}$ i.e. join tree that can be produced with a single transformation

