Query Optimization Exercise Session 11

Andrey Gubichev

July 7, 2014

Homework

- Last Homework: Quick Pick
 - Union-Find
 - Union-By-Size
 - Path-Shortening

Edge	Roots	Union-Find Array	Join Trees
(D, C)			
(A, B)			
(E, F)			
(E,D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C		
(A, B)			
(E, F)			
(E,D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	
(A, B)			
(E, F)			
(E, D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)			
(E, F)			
(E,D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	А, В		
(E, F)			
(E,D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(<i>D</i> , <i>C</i>)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	А, В	$\begin{bmatrix} A & B & C & D & E \\ [-,0,-,2,-,-] \end{bmatrix}$	
(E, F)			
(E,D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	А, В	$\begin{bmatrix} A & B & C & D & E \\ [-,0,-,2,-,-] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)			
(E, D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(<i>D</i> , <i>C</i>)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	А, В	$\begin{bmatrix} A & B & C & D & E \\ [-,0,-,2,-,-] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)	E,F		
(E, D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	A,B	$\begin{bmatrix} A & B & C & D & E \\ [-,0,-,2,-,-] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-,0,-,2,-,4] \end{bmatrix}$	
(E, D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	A,B	$\begin{bmatrix} A & B & C & D & E \\ [-,0,-,2,-,-] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-,0,-,2,-,4] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E \bowtie F\}$
(E, D)			
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(<i>D</i> , <i>C</i>)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	A,B	$\begin{bmatrix} A & B & C & D & E \\ [-, 0, -, 2, -, -] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(<i>E</i> , <i>F</i>)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-,0,-,2,-,4] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E \bowtie F\}$
(E, D)	E,C		
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2] & & -, - \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	A,B	$\begin{bmatrix} A & B & C & D & E \\ [-,0,-,2,-,-] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-,0,-,2,-,4] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E \bowtie F\}$
(E, D)	E,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, 2, 2, 4] \end{bmatrix}$	
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(<i>D</i> , <i>C</i>)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	A,B	$\begin{bmatrix} A & B & C & D & E \\ [-, 0, -, 2, -, 2] & -, - \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, -, 4] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E \bowtie F\}$
(E, D)	E,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, 2, 2, 4] \end{bmatrix}$	$\{A \bowtie B, (C \bowtie D) \bowtie (E \bowtie F)\}$
(A, D)			

Edge	Roots	Union-Find Array	Join Trees
(<i>D</i> , <i>C</i>)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	A,B	$\begin{bmatrix} A & B & C & D & E \\ [-, 0, -, 2, -, -, -] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, -, 4] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E \bowtie F\}$
(E, D)	E,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-,0,-,2,2,4] \end{bmatrix}$	$\{A \bowtie B, (C \bowtie D) \bowtie (E \bowtie F)\}$
(A, D)	A, C		

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	A,B	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, -, -, -] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(E, F)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, -, 4] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E \bowtie F\}$
(E, D)	E,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, 2, 2, 4] \end{bmatrix}$	$\{A \bowtie B, (C \bowtie D) \bowtie (E \bowtie F)\}$
(A, D)	A, C	$\begin{bmatrix} A & B & C & D & E & F \\ [-,0,0,2,2,2,4] \end{bmatrix}$	

Edge	Roots	Union-Find Array	Join Trees
(D, C)	D,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, -, -, 2, -, 2, -, -] \end{bmatrix}$	$\{A, B, C \bowtie D, E, F\}$
(A, B)	А,В	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, -, -] & & \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E, F\}$
(<i>E</i> , <i>F</i>)	E,F	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, -, 4] \end{bmatrix}$	$\{A \bowtie B, C \bowtie D, E \bowtie F\}$
(E, D)	E,C	$\begin{bmatrix} A & B & C & D & E & F \\ [-, 0, -, 2, 2, 2, 4] \end{bmatrix}$	$\{A \bowtie B, (C \bowtie D) \bowtie (E \bowtie F)\}$
(A, D)	А, С	$\begin{bmatrix} A & B & C & D & E & F \\ [-,0,0,2,2,2,4] \end{bmatrix}$	$\{(A \bowtie B) \bowtie ((C \bowtie D) \bowtie (E \bowtie F))\}$

- A: A branch of mathematics concerning the study of finite or countable discrete structures.
- Q: What is ?

- A: A branch of mathematics concerning the study of finite or countable discrete structures.
- Q: What is combinatorics?

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Combinatorics 101

Given a set of n elements, how many distinct k-element subsets can be formed?

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Example: Choose 3 out of 5: $\binom{5}{3} = \frac{5!}{2! \cdot 3!} = \frac{120}{2 \cdot 6} = 10$

Direct, Uniform, Distinct

Given *m* pages with *n* tuples on each page, e.g. a total of $N = m \cdot n$ tuples:

How many distinct subsets of size k exist?

Given *m* pages with *n* tuples on each page, e.g. a total of $N = m \cdot n$ tuples:

• How many distinct subsets of size k exist? $\binom{N}{k}$

How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from N - n tuples:

Given *m* pages with *n* tuples on each page, e.g. a total of $N = m \cdot n$ tuples:

• How many distinct subsets of size k exist? $\binom{N}{k}$

How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from N - n tuples: N-n So the probability that a page contains none of the k tuples is

Given *m* pages with *n* tuples on each page, e.g. a total of $N = m \cdot n$ tuples:

• How many distinct subsets of size k exist? $\binom{N}{k}$

How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from N - n tuples: N-n So the probability that a page contains none of the k tuples is

$$p := \frac{\binom{N-n}{k}}{\binom{N}{k}}$$

What is the probability that a certains page contains at least one tuple?

Given *m* pages with *n* tuples on each page, e.g. a total of $N = m \cdot n$ tuples:

• How many distinct subsets of size k exist? $\binom{N}{k}$

How many distinct subsets of size k exist, where a page does not contain any chosen tuples? Choose k from all but one page, i.e. from N - n tuples: N-n So the probability that a page contains none of the k tuples is

$$p := \frac{\binom{N-n}{k}}{\binom{N}{k}}$$

- What is the probability that a certains page contains at least one tuple? 1 − p...unless all pages have to be involved (k > N − n).
- Multiplied by the number of pages, we get the number of qualifying pages, denoted \$\overline{\mathcal{V}_n^{N,m}(k)\$}\$.

Approximation

Let
$$m = 50$$
, $n = 1000 \Rightarrow N = 50k$, $k = 100$
Yao (exact) : $p = \frac{\binom{N-n}{k}}{\binom{N}{k}} = \prod_{i=0}^{k-1} \frac{N-n-i}{N-i} = \prod_{i=0}^{99} \frac{49k-i}{50k-i} = 13.2\%$
Waters : $p \approx (1 - \frac{k}{N})^n$

Approximation

Let
$$m = 50$$
, $n = 1000 \Rightarrow N = 50k$, $k = 100$
Yao (exact) : $p = \frac{\binom{N-n}{k}}{\binom{N}{k}} = \prod_{i=0}^{k-1} \frac{N-n-i}{N-i} = \prod_{i=0}^{99} \frac{49k-i}{50k-i} = 13.2\%$
Waters : $p \approx (1 - \frac{k}{N})^n \approx 13.5\%$

Direct, Uniform, Non-Distinct

Now with replacement: How many distinct multisets exist chosing k from n?

Now with replacement: How many distinct multisets exist chosing k from n?

As many as there are distinct sets chosing k from n + k - 1!

Now with replacement: How many distinct multisets exist chosing k from n?

As many as there are distinct sets chosing k from n + k - 1!

▶ Bijection between multisets and sets. From multiset to set: $f: (x_1, x_2, ..., x_k) \mapsto (x_1 + 0, x_2 + 1, ..., x_k + (k - 1))$

Now with replacement: How many distinct multisets exist chosing k from n?

As many as there are distinct sets chosing k from n + k - 1!

- ▶ Bijection between multisets and sets. From multiset to set: $f: (x_1, x_2, ..., x_k) \mapsto (x_1 + 0, x_2 + 1, ..., x_k + (k - 1))$
- Example: Choose 2 from 4

• # sets:
$$\binom{4}{2}$$

Cheung

- Like Yao, but not necessarily distinct
- Same formula as Yao, but:
 - We don't need to distinguish cases when computing the probability that a bucket contains at least one item
 - We substitue N by N + k 1 to compute \tilde{p}

Direct, Non-Uniform, Distinct

Direct, Non-Uniform, Distinct

Assume that $n_j > 0 \ \forall j \in [1, m]$, then the expected number of qualifying pages is

$$\sum_{j=1}^{m} \left(1 - \frac{\binom{N-n_j}{k}}{\binom{N}{k}} \right)$$

With $N = \sum_{j=1}^{m} n_j$.

Distribution Function

- ► The number of possibilities to select x (x ≤ n_j) items from bucket j is (^{n_j}/_x).
- ▶ The number of possibilities to draw the remaining k x items from other buckets is $\binom{N-n_j}{k-x}$.
- ▶ Recall: The number of possibilities to draw k items from N is $\binom{N}{k}$.
- \Rightarrow The probability that x items qualify from bucket j is

$$\frac{\binom{n_j}{x}\binom{N-n_j}{k-x}}{\binom{N}{k}}$$

Sequential, Uniform, Distinct

Sequential, Uniform, Distinct

- Estimate the distribution of distance between two qualifying tuples
- Bitvector B, b bits are set to 1
- > First, let's find the distribution of number of zeros
 - before first 1
 - between two consecutive 1s
 - after last 1

•
$$B - j - 1$$
 positions for *i*

• every bitvector has b-1 sequences of a form $10 \dots 01$

•
$$\frac{(B-j-1)\binom{B-j-2}{b-2}}{(b-1)\binom{B}{b}} = \frac{\binom{B-j-1}{b-1}}{\binom{B}{b}}$$

- ▶ now, the expected number of 0s: $\frac{B-b}{b+1}$
- then, the expected total number of bits between first and last 1:

Sequential, Uniform, Distinct

- Estimate the distribution of distance between two qualifying tuples
- Bitvector B, b bits are set to 1
- > First, let's find the distribution of number of zeros
 - before first 1
 - between two consecutive 1s
 - after last 1

• every bitvector has b-1 sequences of a form $10 \dots 01$

•
$$\frac{(B-j-1)\binom{B-j-2}{b-2}}{(b-1)\binom{B}{b}} = \frac{\binom{B-j-1}{b-1}}{\binom{B}{b}}$$

- now, the expected number of 0s: $\frac{B-b}{b+1}$
- ▶ then, the expected total number of bits between first and last
 1: B B-b/b+1 = Bb+b/b+1

Histograms

A histogram $H_A: B \to \mathbb{N}$ over a relation R partitions the domain of the aggregated attribute A into disjoint buckets B, such that

$$H_A(b) = |\{r | r \in R \land R.A \in b\}|$$

and thus $\sum_{b\in B} H_A(b) = |R|$.

Histograms

A rough histogram might look like this:

Using Histograms (3)

Given a histogram, we can approximate the selectivities as follows:

$$A = c \qquad \frac{\sum_{b \in B: c \in b} H_A(b)}{\sum_{b \in B} H_A(b)}$$

$$A > c \qquad \frac{\sum_{b \in B: c \in b} \frac{\max(b) - c}{\max(b) - \min(b)} H_A(b) + \sum_{b \in B: \min(b) > c} H_A(b)}{\sum_{b \in B} H_A(b)}$$

$$A_1 = A_2 \qquad \frac{\sum_{b_1 \in B_1, b_2 \in B_2, b' = b_1 \cap b_2: b' \neq \emptyset} \frac{\max(b') - \min(b')}{\max(b_1) - \min(b_1)} H_{A_1}(b_1) \frac{\max(b') - \min(b')}{\max(b_2) - \min(b_2)} H_{A_2}(b_2)}{\sum_{b_1 \in B_1} H_{A_1}(b_1) \sum_{b_2 \in B_2} H_{A_2}(b_2)}$$

Exam: Algorithms

- Exact vs approximate
- Deterministic vs probabilistic

Other important divisions:

- Bottom-up vs top-down (DP vs memoization)
- Random vs pseudo-random tree generation
- Hybrid algos

Some heuristics can be combined (and some can't):

- ► GOO + Iterative improvement
- Iterative Improvement + Simulated Annealing
- Does it make sense to do SA and then II?

Important aspects:

- When can it be applied?
- When is it good?
- What's the runtime complexity?

Important ones include, but are not limited to:

- Cost functions!
- rank in IKKBZ
- benefit in query simplification
- Yao formula (unless you can derive it yourself quick)
- Histograms
- ► ...

Info

- Exam: Hörsaal 2
- ▶ 30 July, 08:30 10:00
- No repeat exam