
Exercises for
Database Implementation

Elite Graduate Program Software Engineering

Andreas Kipf (kipf@in.tum.de)

Assignment 4

Excercise 1
Implement a B+-Tree index for your database system on top of the segments. Your tree
should . . .

. . . support different (opaque) key1 types. Parameterize the B+-Tree with a key
type and a comparator. You can assume that all key types have fixed length.

. . . offer the following reentrant operations

– insert Inserts a new key/TID pair into the tree.

– erase Deletes a specified key. You may simplify the logic by accepting under-
full pages.

– lookup Returns a TID or indicates that the key was not found.

– lookupRange Returns an iterator that allows to iterate over the result set.

. . . support graphical output method visualize, e.g. via Graphviz/dot2 (see note
below).

Use the concurrency control techniques from the slides “Concurrent Access (2)” and
“Concurrent Access (3)”.

Note
The following example Graphviz/dot code could be the output of a visualize method.
It can then be rendered using the command dot -Tpng tree.dot -o tree.png (your
program does not need to invoke the rendering automatically). You can either produce
the output yourself, or employ a library.

digraph myBTree {

node [shape=record];

node0 [shape=record, label=

"<count> 2 | <isLeaf> false | <key0> NL | <key1> US | <key2> | <key3> | <ptr0> * | <ptr1> * | <ptr2> * | <ptr3> | <ptr4>"];

leaf1 [shape=record, label=

"<count> 3 | <isLeaf> true | <key0> AU | <key1> DE | <key2> ES | <key3> | <tid0> 123:3 | <tid1> 456:7 | <tid2> 789:12 | <tid3> | <next> *"];

leaf2 [shape=record, label=

"<count> 3 | <isLeaf> true | <key0> NL | <key1> NZ | <key2> NO | <key3> | <tid0> 4711:2 | <tid1> 4:11 | <tid2> 101:8 | <tid3> | <next> *"];

leaf3 [shape=record, label=

"<count> 2 | <isLeaf> true | <key0> US | <key1> VN | <key2> | <key3> | <tid0> 47:2 | <tid1> 46:11 | <tid2> 10101:4 | <tid3> | <next>"];

node0:ptr0 -> leaf1:count;

node0:ptr1 -> leaf2:count;

node0:ptr2 -> leaf3:count;

leaf1:next -> leaf2:count;

leaf2:next -> leaf3:count;

}

1Your tree does not need to support non-unique entries.
2www.graphviz.org

1

2 false NL US * * *

3 t r u e AU DE ES 1 2 3 : 3 4 5 6 : 7 7 8 9 : 1 2 *

3 t r u e NL NZ NO 4 7 1 1 : 2 4 : 1 1 1 0 1 : 8 *

2 t r u e US VN 4 7 : 2 4 6 : 1 1 1 0 1 0 1 : 4

In this example, the inner node (root) consists of the count (the number of entries), a
flag indicating if it is a leaf or not (false), 4 key slots (two of which are used) and then
5 child-pointer slots (three of which are used). The leaves consist of the count, the flag,
4 key slots, 4 TID slots and a next pointer slot.

2

