
Exercises for
Database Implementation

TUM

Viktor Leis (leis@in.tum.de)

Assignment 2

Info
• Send your submission as a zip or tar.gz file to leis@in.tum.de by 05 May 2015,

10:00am.

• Your submission should include your implementation and testing code as well as
information on how to build your project, e.g. a Makefile. It should also contain
a README file explaining how to run the program and how you tested it. Example
directory structure:

BufferManager.zip

|-yourFancyDB

|-Makefile

|-README

|-buffer

| |-BufferManager.hpp

| |-BufferManager.cpp

| |-BufferFrame.hpp

| |-BufferFrame.cpp

|-testing

|-BufferManagerTest.cpp

Please do not include binary files in your submission and ensure that your program
can be built and run on Linux.

• Please include your full name and the full name of your teammate(s) in your email
an put them on CC.

• In case you want to share a git repository with me, my GitHub and BitBucket
username is viktorleis

• You are encouraged to use C++ for the exercises.

1

Excercise 1
Write a basic buffer manager that manages buffer frames and controls concurrent access
to these frames. The buffer manager should offer the following functionality:

BufferManager::BufferManager(unsigned pageCount) Create a new instance that
keeps up to size frames in main memory.

BufferFrame& BufferManager::fixPage(uint64_t pageId, bool exclusive) A me-
thod to retrieve frames given a page ID and indicating whether the page will be
held exclusively by this thread or not. The method can fail (by throwing an ex-
ception) if no free frame is available and no used frame can be freed. The pageID

variable is split into a segment ID and the actual page ID. Each page is stored on
disk in a file with the same name as its segment ID (e.g., ”1”).

void BufferManager::unfixPage(BufferFrame& frame, bool isDirty) Return a fra-
me to the buffer manager indicating whether it is dirty or not. If dirty, the page
manager must write it back to disk. It does not have to write it back immediately,
but must not write it back before unfixPage is called.

void* BufferFrame::getData() A buffer frame should offer a method giving access
to the buffered page. Except for the buffered page, BufferFrame objects can also
store control information (page ID, dirtyness, . . .).

BufferManager::~BufferManager() Destructor. Write all dirty frames to disk and free
all resources.

Your buffer manager should have the following features:

• High performance. Release locks as early as possible.

• Concurrency: It should be able to handle concurrent method invocations efficiently
(e.g. using latches1). Requests to fixPage should block until the requested access
(exclusive or shared) can be fulfilled.

• Buffering: It should use a buffer of size frames to keep pages in memory as long
as possible. If no free frames are available, old frames should be reclaimed using
some reasonable strategy.

• The page size should be a multiple of the size of a virtual memory page (4096 bytes
on most systems).

Your buffer manager does not need to have the following advanced features:

• Asynchronous flushing of pages to disk.

• Prefetching of pages that are likely to be accessed in the near future.

Excercise 2
Use the test program from the website to validate your implementation.

1e.g. pthread_rwlock_t

2

