Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

"Teamwork is essential. It allows you to blame someone else." (Anonymous)

Part I: Background and Motivation

- 1 What Is It All About?
- 2 Computational Models

• 2.2 Ingredients

- 2.3 Page Model
- 2.4 Object Model
- 2.5 Roadmap
- 2.6 Lessons Learned

"Between theory and practice, some talk as they were two. Between theory and practice, both can be gained." (Bhagavad-gita 5:4)

Reminder: Database System Layers

Ingredients

- Elementary operations
- Transactions (i.e., transaction program executions)
- Histories and schedules
- Characterization of correct schedules
- Protocols (i.e., rules for online algorithms)

- 2.2 Ingredients
- 2.3 Page Model
- 2.4 Object Model
- 2.5 Roadmap
- 2.6 Lessons Learned

Page Model

"Syntax":

Definition 2.2 (Page Model Transaction):

A **transaction** t is a partial order of steps (actions) of the form r(x) or w(x), where $x \in D$ and reads and writes as well as multiple writes applied to the same object are ordered. We write t = (op, <)

for transaction t with step set op and partial order <.

Example: r(s) w(s) r(t) w(t)

Page Model

"Syntax":

Definition 2.2 (Page Model Transaction):

A **transaction** t is a partial order of steps (actions) of the form r(x) or w(x), where $x \in D$ and reads and writes as well as multiple writes applied to the same object are ordered. We write t = (op, <) for transaction t with step set on and partial order <

for transaction t with step set op and partial order <.

Example: r(s) w(s) r(t) w(t)

"Semantics":

Interpretation of jth step, p_j, of t: If $p_j=r(x)$, then interpretation is assignment $v_j := x$ to local variable v_j If $p_j=w(x)$ then interpretation is assignment $x := f_j (v_{j1}, ..., v_{jk})$. with unknown function f_j and $j_1, ..., j_k$ denoting t's prior read steps.

- 2.2 Ingredients
- 2.3 Page Model

• 2.4 Object Model

- 2.5 Roadmap
- 2.6 Lessons Learned

Object Model

Definition 2.3 (Object Model Transaction):

A transaction t is a (finite) tree of labeled nodes with

- the transaction identifier as the label of the root node,
- the names and parameters of invoked operations as labels of inner nodes, and
- page-model read/write operations as labels of leaf nodes, along with a partial order < on the leaf nodes such that for all leaf-node operations p and q with p of the form w(x) and q of the form r(x) or w(x) or vice versa, we have p<q v q<p

Object Model

Definition 2.3 (Object Model Transaction):

A transaction t is a (finite) tree of labeled nodes with

- the transaction identifier as the label of the root node,
- the names and parameters of invoked operations as labels of inner nodes, and
- page-model read/write operations as labels of leaf nodes, along with a partial order < on the leaf nodes such that for all leaf-node operations p and q with p of the form w(x) and q of the form r(x) or w(x) or vice versa, we have p<q v q<p

Special case: layered transactions (all leaves have same distance from root)

Derived inner-node ordering: a < b if all leaf-node descendants of a precede all leaf-node descendants of b

Example: DBS Internal Layers

Example: Business Objects

- 2.2 Ingredients
- 2.3 Page Model
- 2.4 Object Model

• 2.5 Roadmap

• 2.6 Lessons Learned

Roadmap

Part II: Concurrency Control
3 Notions of Correctness PM
4 CC Algorithms
5 Multiversion CC
6 Notions of Correctness OM
7 CC Algorithms on Objects
8 CC on Relational DB
9 CC on Search Structures
10 Impl. & Pragmatic Issues

Part III: Recovery

- 11 Transaction Recovery
- 12 Crash Recovery Correctness
- 13 CR Algorithms PM
- 14 CR Algorithms OM
- 15 Special Issues of Recovery
- 16 Media Recovery
- 17 Application Recovery

Part IV: Coordination of Distributed Transactions 18 Distributed CC 19 Distributed Transaction Recovery

- 2.2 Ingredients
- 2.3 Page Model
- 2.4 Object Model
- 2.5 Roadmap

• 2.6 Lessons Learned

Lessons Learned

"Nothing is as practical as a good theory." (Albert Einstein)