Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

"Teamwork is essential. It allows you to blame someone else."(Anonymous)

Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned
"Nothing is as practical as a good theory." (Albert Einstein)

Lost Update Problem

$\mathbf{P 1}$	Time	$\mathbf{P 2}$
$\mathbf{r}(\mathbf{x})$	$/ * \mathrm{x}=100 * /$	
$\mathbf{x}:=\mathbf{x}+\mathbf{1 0 0}$	$\mathbf{1}$	$\mathbf{r}(\mathbf{x})$
$\mathbf{w}(\mathbf{x})$	$\mathbf{4}$	$\mathbf{x}:=\mathbf{x}+\mathbf{2 0 0}$
	$/ * \mathrm{x}=\mathbf{5} 200 * /$	
	$/ * \mathrm{x}=300 * /$	$\mathbf{w}(\mathbf{x})$

\dagger
update "lost"

Lost Update Problem

$\mathbf{P 1}$	Time	$\mathbf{P 2}$
$\mathbf{r}(\mathbf{x})$	$/ * \mathrm{x}=100 * /$	
$\mathbf{x}:=\mathbf{x}+\mathbf{1 0 0}$	$\mathbf{1}$	$\mathbf{r}(\mathbf{x})$
$\mathbf{w}(\mathbf{x})$	$\mathbf{4}$	$\mathbf{x}:=\mathbf{x}+\mathbf{2 0 0}$
	$/ * \mathrm{x}=\mathbf{5} 200 * /$	
	$/ * \mathrm{x}=300 * /$	$\mathbf{w}(\mathbf{x})$

\dagger
update "lost"
Observation: problem is the interleaving $r_{1}(x) r_{2}(x) w_{1}(x) w_{2}(x)$

Inconsistent Read Problem

P1	Time	P2
$\begin{aligned} & \operatorname{sum}_{\text {r }}:=0 \\ & \mathbf{r}(x) \\ & \operatorname{sum}:=\operatorname{sum}+x \\ & \text { sum }:=\operatorname{sum}+\mathbf{y} \end{aligned}$	1	r (x)
	2	$\underset{\mathrm{w}}{\mathrm{x}}: \mathbf{=} \mathrm{x}) \mathrm{x}-10$
	4	
	5	
	6	
	7	
	8	
		$\underline{\mathrm{r}}$ (y) ${ }^{\text {d }}$
	11	$\underset{\mathrm{w}}{\mathrm{y}}:=\mathbf{y} \mathbf{(y)} \mathbf{y}+10$

Inconsistent Read Problem

P1	Time	P2
	1	r (x)
	2	$\mathrm{x}:=\mathrm{x}-10$
	3	W (x)
sum $:=0$	4	
r (y)	6	
sum $:=$ sum +x	7	
sum := sum + y	8	
	9	r (y)
	10	$y:=y+10$
	11	w (y)

\dagger
"sees" wrong sum
Observations:
problem is the interleaving $r_{2}(x) w_{2}(x) r_{1}(x) r_{1}(y) r_{2}(y) w_{2}(y)$
no problem with sequential execution

Dirty Read Problem

P1	Time	P2
	1	
$\underset{\sim}{x}:={ }_{(x)} \mathbf{x}+100$	2	
	4	r (x)
	5	$\mathrm{x}:=\mathrm{x}-100$
failure \& rollback	6	$\mathbf{w}(\mathbf{x})$

Dirty Read Problem

P1	Time	P2
$\underset{\sim}{r}(\mathbf{x})$		
$\mathbf{x}:=\mathbf{x}+\mathbf{1 0 0}$	$\mathbf{1}$	
$\mathbf{w}(\mathbf{x})$	$\mathbf{2}$	
	$\mathbf{3}$	$\mathbf{r}(\mathbf{x})$
failure \& rollback	$\mathbf{4}$	$\mathbf{x}:=\mathbf{x}-\mathbf{1 0 0}$
	$\mathbf{5}$	$\mathbf{w}(\mathbf{x})$
	$\mathbf{7}$	\uparrow
		cannot rely on validity
		of previously read data

Observation: transaction rollbacks could affect concurrent transactions

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Schedules and Histories

> Definition 3.1 (Schedules and histories):
> Let $\mathrm{T}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ be a set of transactions, where each $\mathrm{t}_{\mathrm{i}} \in \mathrm{T}$ has the form $\mathrm{t}_{\mathrm{i}}=\left(\mathrm{op}_{\mathrm{i}},<_{\mathrm{i}}\right)$ with op_{i} denoting the operations of t_{i} and $<_{\mathrm{i}}$ their ordering.
> (i) A history for T is a pair $\mathrm{s}=\left(\mathrm{op}(\mathrm{s}),<_{\mathrm{s}}\right) \mathrm{s.t}$.
> (a) $\mathrm{op}(\mathrm{s}) \subseteq \cup_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{op}_{\mathrm{i}} \cup \cup_{\mathrm{i}=1 . . \mathrm{n}}\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right\}$
> (b) for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}: \mathrm{c}_{\mathrm{i}} \in \mathrm{op}(\mathrm{s}) \Leftrightarrow \mathrm{a}_{\mathrm{i}} \notin \mathrm{op}(\mathrm{s})$
> (c) $\cup_{\mathrm{i}=1 . . \mathrm{n}}<_{\mathrm{i}} \subseteq<_{\mathrm{s}}$
> (d) for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, and all $\mathrm{p} \in \mathrm{op}_{\mathrm{i}}: \mathrm{p}<_{\mathrm{s}} \mathrm{c}_{\mathrm{i}}$ or $\mathrm{p}<_{\mathrm{s}} \mathrm{a}_{\mathrm{i}}$
> (e) for all $\mathrm{p}, \mathrm{q} \in \mathrm{op}(\mathrm{s})$ s.t. at least one of them is a write and both access the same data item: $\mathrm{p}<_{\mathrm{s}} \mathrm{q}$ or $\mathrm{q}<{ }_{\mathrm{s}} \mathrm{p}$
> (ii) A schedule is a prefix of a history.

Schedules and Histories

```
Definition 3.1 (Schedules and histories):
Let \(T=\left\{t_{1}, \ldots, t_{n}\right\}\) be a set of transactions, where each \(t_{i} \in T\) has the form \(\mathrm{t}_{\mathrm{i}}=\left(\mathrm{op}_{\mathrm{i}},<_{\mathrm{i}}\right)\) with \(\mathrm{op}_{\mathrm{i}}\) denoting the operations of \(\mathrm{t}_{\mathrm{i}}\) and \(<_{i}\) their ordering.
(i) A history for T is a pair \(\mathrm{s}=\left(\mathrm{op}(\mathrm{s}),<_{\mathrm{s}}\right)\) s.t.
(a) \(o p(s) \subseteq \cup_{i=1 . . n} o p_{i} \cup \cup_{i=1 . n}\left\{a_{i}, c_{i}\right\}\)
(b) for all \(\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}: \mathrm{c}_{\mathrm{i}} \in \mathrm{op}(\mathrm{s}) \Leftrightarrow \mathrm{a}_{\mathrm{i}} \notin \mathrm{op}(\mathrm{s})\)
(c) \(\cup_{i=1 . . n}<_{i} \subseteq<_{s}\)
(d) for all \(\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}\), and all \(\mathrm{p} \in \mathrm{op}_{\mathrm{i}}: \mathrm{p}<_{\mathrm{s}} \mathrm{c}_{\mathrm{i}}\) or \(\mathrm{p}<_{\mathrm{s}} \mathrm{a}_{\mathrm{i}}\)
(e) for all \(p, q \in o p(s)\) s.t. at least one of them is a write and both access the same data item: \(\mathrm{p}<{ }_{\mathrm{s}} \mathrm{q}\) or \(\mathrm{q}<{ }_{\mathrm{s}} \mathrm{p}\) (ii) A schedule is a prefix of a history.
```

Definition 3.2 (Serial history):
A history s is serial if for any two transactions t_{i} and t_{j} in s, where $i \neq j$, all operations from t_{i} are ordered in s before all operations from t_{j} or vice versa.

Example Schedules and Notation

Example 3.4:


```
trans(s):=
    {t}|\textrm{s}\mathrm{ contains step of }\mp@subsup{t}{i}{}
commit(s):=
    {t
abort(s):=
    {t, trans(s)| | a i f s }
active(s):=
    trans(s) - (commit(s) \cup abort(s))
```

Example 3.6:

$$
r_{1}(x) r_{2}(z) r_{3}(x) w_{2}(x) w_{1}(x) r_{3}(y) r_{1}(y) w_{1}(y) w_{2}(z) w_{3}(z) c_{1} a_{3}
$$

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Correctness of Schedules

1. Define equivalence relation $\approx \approx$ on set S of all schedules.
2. "Good" schedules are those in the equivalence classes of serial schedules.

- Equivalence must be efficiently decidable.
- "Good" equivalence classes should be "sufficiently large".

For the moment, disregard aborts: assume that all transactions are committed.

Activity

- What is an equivalence relation?
- List the three defining conditions!

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Herbrand Semantics of Schedules

Definition 3.3 (Herbrand Semantics of Steps):

For schedule s the Herbrand semantics H_{s} of steps $r_{i}(x), w_{i}(x) \in o p(s)$ is:
(i) $H_{s}\left[r_{i}(x)\right]:=H_{s}\left[w_{j}(x)\right]$ where $w_{j}(x)$ is the last write on x in s before $r_{i}(x)$.
(ii) $\mathrm{H}_{s}\left[\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right]:=\mathrm{f}_{\mathrm{ix}}\left(\mathrm{H}_{s}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{s}}\right)\right], \ldots, \mathrm{H}_{s}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{m}}\right)\right]\right)$ where the $\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{j}}\right), 1 \leq \mathrm{j} \leq \mathrm{m}$, are all read operations of t_{i} that occcur in s before $\mathrm{w}_{\mathrm{i}}(\mathrm{x})$ and $f_{i x}$ is an uninterpreted m-ary function symbol.

Herbrand Semantics of Schedules

Definition 3.3 (Herbrand Semantics of Steps):

For schedule s the Herbrand semantics H_{s} of steps $r_{i}(x), w_{i}(x) \in o p(s)$ is:
(i) $\mathrm{H}_{s}\left[\mathrm{r}_{\mathrm{i}}(\mathrm{x})\right]:=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{\mathrm{j}}(\mathrm{x})\right]$ where $\mathrm{w}_{\mathrm{j}}(\mathrm{x})$ is the last write on x in s before $\mathrm{r}_{\mathrm{i}}(\mathrm{x})$.
(ii) $\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right]:=\mathrm{f}_{\mathrm{ix}}\left(\mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}\right)\right], \ldots, \mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{m}}\right)\right]\right)$ where the $\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{j}}\right), 1 \leq \mathrm{j} \leq \mathrm{m}$, are all read operations of t_{i} that occcur in s before $\mathrm{w}_{\mathrm{i}}(\mathrm{x})$ and $f_{i x}$ is an uninterpreted m-ary function symbol.

Definition 3.4 (Herbrand Universe):

For data items $\mathrm{D}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ and transactions $\mathrm{t}, 1 \leq \mathrm{i} \leq \mathrm{n}$, the Herbrand universe $\mathbf{H U}$ is the smallest set of symbols s.t.
(i) $f_{0 x}() \in H U$ for each $x \in D$ where $f_{0 x}$ is a constant, and
(ii) if $w_{i}(x) \in o p_{i}$ for some t_{i}, there are m read operations $r_{i}\left(y_{1}\right), \ldots, r_{i}\left(y_{m}\right)$ that precede $w_{i}(x)$ in t_{i}, and $v_{1}, \ldots, v_{m} \in H U$, then $f_{i x}\left(v_{1}, \ldots, v_{m}\right) \in H U$.

Herbrand Semantics of Schedules

Definition 3.3 (Herbrand Semantics of Steps):

For schedule s the Herbrand semantics \mathbf{H}_{s} of steps $\mathrm{r}_{\mathrm{i}}(\mathrm{x}), \mathrm{w}_{\mathrm{i}}(\mathrm{x}) \in \mathrm{op}(\mathrm{s})$ is:
(i) $H_{s}\left[r_{i}(x)\right]:=H_{s}\left[w_{j}(x)\right]$ where $w_{j}(x)$ is the last write on x in s before $r_{i}(x)$.
(ii) $\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right]:=\mathrm{f}_{\mathrm{ix}}\left(\mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}\right)\right], \ldots, \mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{m}}\right)\right]\right)$ where the $\mathrm{r}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{j}}\right), 1 \leq \mathrm{j} \leq \mathrm{m}$, are all read operations of t_{i} that occcur in s before $\mathrm{w}_{\mathrm{i}}(\mathrm{x})$ and $f_{i x}$ is an uninterpreted m-ary function symbol.

Definition 3.4 (Herbrand Universe):

For data items $\mathrm{D}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ and transactions $\mathrm{t}, 1 \leq \mathrm{i} \leq \mathrm{n}$, the Herbrand universe $\mathbf{H U}$ is the smallest set of symbols s.t.
(i) $f_{0 x}() \in H U$ for each $x \in D$ where $f_{0 x}$ is a constant, and
(ii) if $w_{i}(x) \in o p_{i}$ for some t_{i}, there are m read operations $r_{i}\left(y_{1}\right), \ldots, r_{i}\left(y_{m}\right)$ that precede $w_{i}(x)$ in t_{i}, and $v_{1}, \ldots, v_{m} \in H U$, then $f_{i x}\left(v_{1}, \ldots, v_{m}\right) \in H U$.

Definition 3.5 (Schedule Semantics):

The Herbrand semantics of a schedule s is the mapping
$\mathrm{H}[\mathrm{s}]: \mathrm{D} \rightarrow \mathrm{HU}$ defined by $\mathrm{H}[\mathrm{s}](\mathrm{x}):=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right]$,
where $w_{i}(x)$ is the last operation from s writing x, for each $x \in D$.

Herbrand Semantics: Example

$$
\mathrm{s}=\mathrm{w}_{0}(\mathrm{x}) \mathrm{w}_{0}(\mathrm{y}) \mathrm{c}_{0} \mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{y}) \mathrm{c}_{2} \mathrm{c}_{1}
$$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{0}(\mathrm{x})\right]=\mathrm{f}_{0 \mathrm{x}}() \\
& \mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{0}(\mathrm{y})\right]=\mathrm{f}_{0 \mathrm{y}}() \\
& \mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{1}(\mathrm{x})\right]=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{0}(\mathrm{x})\right]=\mathrm{f}_{0 \mathrm{x}}() \\
& \mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{2}(\mathrm{y})\right]=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{0}(\mathrm{y})\right]=\mathrm{f}_{0 \mathrm{y}}() \\
& \mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{2}(\mathrm{x})\right]=\mathrm{f}_{2 \mathrm{x}}\left(\mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{2}(\mathrm{y})\right]\right)=\mathrm{f}_{2 \mathrm{x}}\left(\mathrm{f}_{0 \mathrm{y}}(\mathrm{~s})\right) \\
& \mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{1}(\mathrm{y})\right]=\mathrm{f}_{1 \mathrm{y}}\left(\mathrm{H}_{\mathrm{s}}\left[\mathrm{r}_{1}(\mathrm{x})\right]\right)=\mathrm{f}_{1 \mathrm{y}}\left(\mathrm{f}_{0 \mathrm{x}}(\mathrm{~s})\right)
\end{aligned}
$$

$\mathrm{H}[\mathrm{s}](\mathrm{x})=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{2}(\mathrm{x})\right]=\mathrm{f}_{2 \mathrm{x}}\left(\mathrm{f}_{0 \mathrm{y}}(\mathrm{O})\right)$
$\mathrm{H}[\mathrm{s}](\mathrm{y})=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{1}(\mathrm{y})\right]=\mathrm{f}_{1 \mathrm{y}}\left(\mathrm{f}_{0 \mathrm{x}}(\mathrm{r})\right)$

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Final-State Equivalence

Definition 3.6 (Final State Equivalence):
Schedules s and s' are called final state equivalent, denoted $s \approx_{f} s^{\prime}$, if $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\mathrm{H}[\mathrm{s}]=\mathrm{H}\left[\mathrm{s}^{\prime}\right]$.

Final-State Equivalence

Definition 3.6 (Final State Equivalence):

Schedules s and s^{\prime} are called final state equivalent, denoted $\mathrm{s} \approx_{\mathrm{f}} \mathrm{s}^{\prime}$, if $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\mathrm{H}[\mathrm{s}]=\mathrm{H}\left[\mathrm{s}^{\prime}\right]$.

Example a:

$$
\begin{aligned}
& s=r_{1}(x) r_{2}(y) w_{1}(y) r_{3}(z) w_{3}(z) r_{2}(x) w_{2}(z) w_{1}(x) \\
& s^{\prime}=r_{3}(z) w_{3}(z) r_{2}(y) r_{2}(x) w_{2}(z) r_{1}(x) w_{1}(y) w_{1}(x) \\
& H[s](x)=H_{s}\left[w_{1}(x)\right]=f_{11}\left(f_{0 x}()\right)=H_{s^{\prime}}\left[w_{1}(x)\right]=H\left[s^{\prime}\right](x) \\
& H[s](y)=H_{s}\left[w_{1}(y)\right]=f_{1 y}\left(f_{0 x}()\right)=H_{s^{\prime}}\left[w_{1}(y)\right]=H\left[s^{\prime}\right](y) \\
& H[s](z)=H_{s}\left[w_{2}(z)\right]=f_{2 z}\left(f_{0 x}(), f_{0 y}()\right)=H_{s^{\prime}}\left[w_{2}(z)\right]=H\left[s^{\prime}\right](z) \\
& \text { (z) }
\end{aligned}
$$

$$
\Rightarrow \mathrm{s} \approx_{\mathrm{f}} \mathrm{~s}^{\prime}
$$

Final-State Equivalence

Definition 3.6 (Final State Equivalence):

Schedules s and s are called final state equivalent, denoted $\mathrm{s} \approx_{\mathrm{f}} \mathrm{s}^{\prime}$, if $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\mathrm{H}[\mathrm{s}]=\mathrm{H}\left[\mathrm{s}^{\prime}\right]$.

Example a:

```
\(s=r_{1}(x) r_{2}(y) w_{1}(y) r_{3}(z) w_{3}(z) r_{2}(x) w_{2}(z) w_{1}(x)\)
\(s^{\prime}=r_{3}(z) w_{3}(z) r_{2}(y) r_{2}(x) w_{2}(z) r_{1}(x) w_{1}(y) w_{1}(x)\)
\(\mathrm{H}[\mathrm{s}](\mathrm{x})=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{1}(\mathrm{x})\right]=\mathrm{f}_{\mathrm{Ix}^{2}}\left(\mathrm{f}_{0 \mathrm{x}}(\mathrm{O})\right)=\mathrm{H}_{\mathrm{s}^{\prime}}\left[\mathrm{w}_{1}(\mathrm{x})\right]=\mathrm{H}\left[\mathrm{s}^{\prime}\right](\mathrm{x})\)
\(\mathrm{H}[\mathrm{s}](\mathrm{y})=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{1}(\mathrm{y})\right]=\mathrm{f}_{1 \mathrm{y}}\left(\mathrm{f}_{0 \mathrm{x}}(\mathrm{O})\right)=\mathrm{H}_{\mathrm{s}^{\prime}}\left[\mathrm{w}_{1}(\mathrm{y})\right]=\mathrm{H}\left[\mathrm{s}^{\prime}\right](\mathrm{y})\)
\(\mathrm{H}[\mathrm{s}](\mathrm{z})=\mathrm{H}_{\mathrm{s}}\left[\mathrm{w}_{2}(\mathrm{z})\right]=\mathrm{f}_{2 \mathrm{z}}\left(\mathrm{f}_{0 \mathrm{x}}\left(\mathrm{O}, \mathrm{f}_{0 \mathrm{y}}(\mathrm{O})=\mathrm{H}_{\mathrm{s}^{\prime}}\left[\mathrm{w}_{2}(\mathrm{z})\right]=\mathrm{H}\left[\mathrm{s}^{\prime}\right](\mathrm{z})\right.\right.\)
```

Example b:

$$
\begin{aligned}
& s=r_{1}(x) r_{2}(y) w_{1}(y) w_{2}(y) \\
& s^{\prime}=r_{1}(x) w_{1}(y) r_{2}(y) w_{2}(y) \\
& H[s](y)=H_{s}\left[w_{2}(y)\right]=f_{2 y}\left(f_{0 y}()\right) \\
& H\left[s^{\prime}\right](y)=H_{s^{\prime}}\left[w_{2}(y)\right]=f_{2 y}\left(f_{1 y}\left(f_{0 x}()\right)\right)
\end{aligned}
$$

Reads-from Relation

Definition 3.7 (Reads-from Relation; Useful, Alive, and Dead Steps):

Given a schedule s, extended with an initial and a final transaction, t_{0} and t_{∞}.
(i) $\quad r_{j}(x)$ reads x in s from $w_{i}(x)$ if $w_{i}(x)$ is the last write on x s.t. $w_{i}(x)<_{s} r_{j}(x)$.
(ii) The reads-from relation of s is
$R F(s):=\left\{\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}, \mathrm{t}_{\mathrm{j}}\right) \mid\right.$ an $\mathrm{r}_{\mathrm{j}}(\mathrm{x})$ reads x from a $\left.\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right\}$.
(iii) Step p is directly useful for step q, denoted $p \rightarrow q$, if q reads from p, or p is a read step and q is a subsequent write step of the same transaction. \rightarrow^{*}, the "useful" relation, denotes the reflexive and transitive closure of \rightarrow
(iv) Step p is alive in s if it is useful for some step from t_{∞}, and dead otherwise.
(v) The live-reads-from relation of s is
$\operatorname{LRF}(\mathrm{s}):=\left\{\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}, \mathrm{t}_{\mathrm{j}}\right) \mid\right.$ an alive $\mathrm{r}_{\mathrm{j}}(\mathrm{x})$ reads x from $\left.\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right\}$

Reads-from Relation

Definition 3.7 (Reads-from Relation; Useful, Alive, and Dead Steps):

Given a schedule s, extended with an initial and a final transaction, t_{0} and t_{∞}.
(i) $\quad r_{j}(x)$ reads x in s from $w_{i}(x)$ if $w_{i}(x)$ is the last write on x s.t. $w_{i}(x)<_{s} r_{j}(x)$.
(ii) The reads-from relation of s is
$R F(s):=\left\{\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}, \mathrm{t}_{\mathrm{j}}\right) \mid\right.$ an $\mathrm{r}_{\mathrm{j}}(\mathrm{x})$ reads x from a $\left.\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right\}$.
(iii) Step p is directly useful for step q, denoted $p \rightarrow q$, if q reads from p, or p is a read step and q is a subsequent write step of the same transaction.
\rightarrow^{*}, the "useful" relation, denotes the reflexive and transitive closure of \rightarrow
(iv) Step p is alive in s if it is useful for some step from t_{∞}, and dead otherwise.
(v) The live-reads-from relation of s is
$\operatorname{LRF}(\mathrm{s}):=\left\{\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}, \mathrm{t}_{\mathrm{j}}\right) \mid\right.$ an alive $\mathrm{r}_{\mathrm{j}}(\mathrm{x})$ reads x from $\left.\mathrm{w}_{\mathrm{i}}(\mathrm{x})\right\}$

Example 3.7:

$$
\begin{aligned}
& \mathrm{s}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{1}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \\
& \mathrm{s}^{\prime}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \\
& \operatorname{RF}(\mathrm{s})=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{RF}\left(\mathrm{s}^{\prime}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{1}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{LRF}(\mathrm{s})=\left\{\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{LRF}\left(\mathrm{s}^{\prime}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{1}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}
\end{aligned}
$$

Final-State Serializability

Theorem 3.1:

For schedules s and s^{\prime} the following statements hold.
(i) $\mathrm{s} \approx_{\mathrm{f}} \mathrm{s}^{\prime}$ iff $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\operatorname{LRF}(\mathrm{s})=\operatorname{LRF}\left(\mathrm{s}^{\prime}\right)$.
(ii) For s let the step graph $\mathrm{D}(\mathrm{s})=(\mathrm{V}, \mathrm{E})$ be a directed graph with vertices $V:=o p(s)$ and edges $E:=\{(p, q) \mid p \rightarrow q\}$, and the reduced step graph $D_{1}(s)$ be derived from $\mathrm{D}(\mathrm{s})$ by removing all vertices that correspond to dead steps. Then $\operatorname{LRF}(\mathrm{s})=\operatorname{LRF}\left(\mathrm{s}^{\prime}\right)$ iff $\mathrm{D}_{1}(\mathrm{~s})=\mathrm{D}_{1}\left(\mathrm{~s}^{\prime}\right)$.

Final-State Serializability

Theorem 3.1:

For schedules s and s^{\prime} the following statements hold.
(i) $\mathrm{s} \approx_{\mathrm{f}} \mathrm{s}^{\prime}$ iff $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\operatorname{LRF}(\mathrm{s})=\operatorname{LRF}\left(\mathrm{s}^{\prime}\right)$.
(ii) For s let the step graph $\mathrm{D}(\mathrm{s})=(\mathrm{V}, \mathrm{E})$ be a directed graph with vertices $V:=o p(s)$ and edges $E:=\{(p, q) \mid p \rightarrow q\}$, and the reduced step graph $D_{1}(s)$ be derived from $\mathrm{D}(\mathrm{s})$ by removing all vertices that correspond to dead steps. Then $\operatorname{LRF}(\mathrm{s})=\operatorname{LRF}\left(\mathrm{s}^{\prime}\right)$ iff $\mathrm{D}_{1}(\mathrm{~s})=\mathrm{D}_{1}\left(\mathrm{~s}^{\prime}\right)$.

Corollary 3.1:

Final-state equivalence of two schedules s and s' can be decided in time that is polynomial in the length of the two schedules.

Final-State Serializability

Theorem 3.1:

For schedules s and s^{\prime} the following statements hold.
(i) $\mathrm{s} \approx_{\mathrm{f}} \mathrm{s}$ iff $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\operatorname{LRF}(\mathrm{s})=\mathrm{LRF}\left(\mathrm{s}^{\prime}\right)$.
(ii) For s let the step graph $D(s)=(V, E)$ be a directed graph with vertices $V:=o p(s)$ and edges $E:=\{(p, q) \mid p \rightarrow q\}$, and the reduced step graph $D_{1}(s)$ be derived from $\mathrm{D}(\mathrm{s})$ by removing all vertices that correspond to dead steps. Then $\operatorname{LRF}(s)=\operatorname{LRF}\left(s^{\prime}\right)$ iff $D_{1}(s)=D_{1}\left(s^{\prime}\right)$.

Corollary 3.1:

Final-state equivalence of two schedules s and s^{\prime} can be decided in time that is polynomial in the length of the two schedules.

Definition 3.8 (Final State Serializability):

A schedule s is final state serializable if there is a serial schedule s ' s.t. $\mathrm{s} \approx_{\mathrm{f}} \mathrm{s}$ '. FSR denotes the class of all final-state serializable histories.

FSR: Example 3.9

$s=r_{1}(x) r_{2}(y) w_{1}(y) w_{2}(y)$
$\mathrm{D}(\mathrm{s})$:

$s^{\prime}=r_{1}(x) w_{1}(y) r_{2}(y) w_{2}(y)$
D(s'):

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Canonical Anomalies Reconsidered

- Lost update anomaly:
$\mathrm{L}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{1} \mathrm{c}_{2}$
\rightarrow history is not FSR

$$
\begin{aligned}
& \operatorname{LRF}(\mathrm{L})=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{LRF}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{1}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{LRF}\left(\mathrm{t}_{2} \mathrm{t}_{1}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{1}, \mathrm{x}, \mathrm{t}_{\infty}\right)\right\}
\end{aligned}
$$

- Inconsistent read anomaly:
$I=r_{2}(x) w_{2}(x) r_{1}(x) r_{1}(y) r_{2}(y) w_{2}(y) c_{1} c_{2}$
$\operatorname{LRF}(\mathrm{I})=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$
\rightarrow history is FSR! $\operatorname{LRF}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$
$\operatorname{LRF}\left(\mathrm{t}_{2} \mathrm{t}_{1}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$

Canonical Anomalies Reconsidered

- Lost update anomaly:
$L=r_{1}(x) r_{2}(x) W_{1}(x) w_{2}(x) c_{1} c_{2}$
\rightarrow history is not FSR

$$
\begin{aligned}
& \operatorname{LRF}(\mathrm{L})=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{LRF}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{1}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{LRF}\left(\mathrm{t}_{2} \mathrm{t}_{1}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{1}, \mathrm{x}, \mathrm{t}_{\infty}\right)\right\}
\end{aligned}
$$

- Inconsistent read anomaly:
$\mathrm{I}=\mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{c}_{1} \mathrm{c}_{2}$
$\operatorname{LRF}(\mathrm{I})=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$
\rightarrow history is FSR ! $\operatorname{LRF}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$
$\operatorname{LRF}\left(\mathrm{t}_{2} \mathrm{t}_{1}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$

Observation: (Herbrand) semantics of all read steps matters!

View Serializability

Definition 3.9 (View Equivalence):

Schedules s and s^{\prime} are view equivalent, denoted $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$, if the following hold:
(i) $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$
(ii) $\mathrm{H}[\mathrm{s}]=\mathrm{H}\left[\mathrm{s}^{\prime}\right]$
(iii) $\mathrm{H}_{\mathrm{s}}[\mathrm{p}]=\mathrm{H}_{\mathrm{s}^{\prime}}[\mathrm{p}]$ for all (read or write) steps

View Serializability

Definition 3.9 (View Equivalence):

Schedules s and s^{\prime} are view equivalent, denoted $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$, if the following hold:
(i) $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$
(ii) $\mathrm{H}[\mathrm{s}]=\mathrm{H}\left[\mathrm{s}^{\prime}\right]$
(iii) $\mathrm{H}_{\mathrm{s}}[\mathrm{p}]=\mathrm{H}_{\mathrm{s}^{\prime}}[\mathrm{p}]$ for all (read or write) steps

Theorem 3.2:

For schedules s and s^{\prime} the following statements hold.
(i) $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$ iff $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\mathrm{RF}(\mathrm{s})=\mathrm{RF}\left(\mathrm{s}^{\prime}\right)$
(ii) $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}$ ' iff $\mathrm{D}(\mathrm{s})=\mathrm{D}\left(\mathrm{s}^{\prime}\right)$

View Serializability

Definition 3.9 (View Equivalence):

Schedules s and s^{\prime} are view equivalent, denoted $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$, if the following hold:
(i) $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$
(ii) $\mathrm{H}[\mathrm{s}]=\mathrm{H}\left[\mathrm{s}^{\prime}\right]$
(iii) $\mathrm{H}_{\mathrm{s}}[\mathrm{p}]=\mathrm{H}_{\mathrm{s}^{\prime}}[\mathrm{p}]$ for all (read or write) steps

Theorem 3.2:

For schedules s and s^{\prime} the following statements hold.
(i) $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$ iff $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\mathrm{RF}(\mathrm{s})=\mathrm{RF}\left(\mathrm{s}^{\prime}\right)$
(ii) $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$ iff $\mathrm{D}(\mathrm{s})=\mathrm{D}\left(\mathrm{s}^{\prime}\right)$

Corollary 3.2:

View equivalence of two schedules s and s' can be decided in time that is polynomial in the length of the two schedules.

View Serializability

Definition 3.9 (View Equivalence):

Schedules s and s^{\prime} are view equivalent, denoted $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$, if the following hold:
(i) $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$
(ii) $\mathrm{H}[\mathrm{s}]=\mathrm{H}\left[\mathrm{s}^{\prime}\right]$
(iii) $\mathrm{H}_{\mathrm{s}}[\mathrm{p}]=\mathrm{H}_{\mathrm{s}^{\prime}}[\mathrm{p}]$ for all (read or write) steps

Theorem 3.2:

For schedules s and s^{\prime} the following statements hold.
(i) $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$ iff $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\mathrm{RF}(\mathrm{s})=\mathrm{RF}\left(\mathrm{s}^{\prime}\right)$
(ii) $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}^{\prime}$ iff $\mathrm{D}(\mathrm{s})=\mathrm{D}\left(\mathrm{s}^{\prime}\right)$

Corollary 3.2:

View equivalence of two schedules s and s' can be decided in time that is polynomial in the length of the two schedules.

Definition 3.10 (View Serializability):

A schedule s is view serializable if there exists a serial schedule s' s.t. $\mathrm{s} \approx_{\mathrm{v}} \mathrm{s}$ '. VSR denotes the class of all view-serializable histories.

Inconsistent Read Reconsidered

- Inconsistent read anomaly:
$\mathrm{I}=\mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{c}_{1} \mathrm{c}_{2}$
\rightarrow history is not VSR !

$$
\begin{aligned}
& \mathrm{RF}(\mathrm{I})=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\} \\
& \mathrm{RF}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\left\{\left\{\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\} \\
& \operatorname{RF}\left(\mathrm{t}_{2} \mathrm{t}_{1}\right)=\left\{\left\{\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}
\end{aligned}
$$

Inconsistent Read Reconsidered

- Inconsistent read anomaly:

$\mathrm{I}=\mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{c}_{1} \mathrm{c}_{2}$
\rightarrow history is not VSR !
$R F(I)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$
$\operatorname{RF}\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$
$\operatorname{RF}\left(\mathrm{t}_{2} \mathrm{t}_{1}\right)=\left\{\left(\mathrm{t}_{0}, \mathrm{x}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{0}, \mathrm{y}, \mathrm{t}_{2}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{2}, \mathrm{x}, \mathrm{t}_{\infty}\right),\left(\mathrm{t}_{2}, \mathrm{y}, \mathrm{t}_{\infty}\right)\right\}$

Observation: VSR properly captures our intuition

Relationship Between VSR and FSR

Theorem 3.3:
$\mathrm{VSR} \subset \mathrm{FSR}$.

Theorem 3.4:
Let s be a history without dead steps. Then $s \in \operatorname{VSR}$ iff $\mathrm{s} \in$ FSR.

On the Complexity of Testing VSR

Theorem 3.5:

The problem of deciding for a given schedule s whether $s \in$ VSR holds is NP-complete.

Properties of VSR

Definition 3.11 (Monotone Classes of Histories)

Let s be a schedule and $\mathrm{T} \subseteq \operatorname{trans}(\mathrm{s})$. $\Pi_{\mathrm{T}}(\mathrm{s})$ denotes the projection of s onto T . A class E of histories is called monotone if the following holds:
if s is in E, then $\Pi_{T}(s)$ is in E for each $T \subseteq \operatorname{trans}(s)$.
VSR is not monotone.

Example:

$$
\begin{aligned}
& s=w_{1}(x) w_{2}(x) w_{2}(y) c_{2} w_{1}(y) c_{1} w_{3}(x) w_{3}(y) c_{3} \\
& \Pi_{\{t 1,2\}}(s)=w_{1}(x) w_{2}(x) w_{2}(y) c_{2} w_{1}(y) c_{1}\left(\begin{array}{l}
\text { an }
\end{array}\right.
\end{aligned}
$$

$\rightarrow \in$ VSR
$\rightarrow \notin$ VSR

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Conflict Serializability

Definition 3.12 (Conflicts and Conflict Relations):
Let s be a schedule, t, t ' $\in \operatorname{trans}(\mathrm{s}), \mathrm{t} \neq \mathrm{t}$.
(i) Two data operations $\mathrm{p} \in \mathrm{t}$ and $\mathrm{q} \in \mathrm{t}^{\prime}$ are in conflict in s if they access the same data item and at least one of them is a write. (ii) $\{(\mathrm{p}, \mathrm{q})\} \mid \mathrm{p}, \mathrm{q}$ are in conflict and $\left.\mathrm{p}<_{\mathrm{s}} \mathrm{q}\right\}$ is the conflict relation of s .

Conflict Serializability

Definition 3.12 (Conflicts and Conflict Relations):

Let s be a schedule, $\mathrm{t}, \mathrm{t}^{\prime} \in \operatorname{trans}(\mathrm{s}), \mathrm{t} \neq \mathrm{t}^{\prime}$.
(i) Two data operations $\mathrm{p} \in \mathrm{t}$ and $\mathrm{q} \in \mathrm{t}^{\prime}$ are in conflict in s if they access the same data item and at least one of them is a write.
(ii) $\{(\mathrm{p}, \mathrm{q})\} \mid \mathrm{p}, \mathrm{q}$ are in conflict and $\left.\mathrm{p}<_{\mathrm{s}} \mathrm{q}\right\}$ is the conflict relation of s .

Definition 3.13 (Conflict Equivalence):
Schedules s and s^{\prime} are conflict equivalent, denoted $\mathrm{s} \approx_{\mathrm{c}} \mathrm{s}^{\prime}$, if $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\operatorname{conf}(\mathrm{s})=\operatorname{conf}\left(\mathrm{s}^{\prime}\right)$.

Conflict Serializability

Definition 3.12 (Conflicts and Conflict Relations):

Let s be a schedule, $\mathrm{t}, \mathrm{t}^{\prime} \in \operatorname{trans}(\mathrm{s}), \mathrm{t} \neq \mathrm{t}^{\prime}$.
(i) Two data operations $\mathrm{p} \in \mathrm{t}$ and $\mathrm{q} \in \mathrm{t}^{\prime}$ are in conflict in s if they access the same data item and at least one of them is a write.
(ii) $\{(\mathrm{p}, \mathrm{q})\} \mid \mathrm{p}, \mathrm{q}$ are in conflict and $\left.\mathrm{p}<_{\mathrm{s}} \mathrm{q}\right\}$ is the conflict relation of s .

Definition 3.13 (Conflict Equivalence):
Schedules s and s^{\prime} are conflict equivalent, denoted $\mathrm{s} \approx_{\mathrm{c}} \mathrm{s}^{\prime}$, if $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ and $\operatorname{conf}(\mathrm{s})=\operatorname{conf}\left(\mathrm{s}^{\prime}\right)$.

Definition 3.14 (Conflict Serializability):
Schedule s is conflict serializable if there is a serial schedule s' s.t. $s \approx_{c} \mathrm{~s}^{\prime}$. CSR denotes the class of all conflict serializable schedules.

Conflict Serializability

Definition 3.12 (Conflicts and Conflict Relations):

Let s be a schedule, $\mathrm{t}, \mathrm{t}^{\prime} \in \operatorname{trans}(\mathrm{s}), \mathrm{t} \neq \mathrm{t}^{\prime}$.
(i) Two data operations $\mathrm{p} \in \mathrm{t}$ and $\mathrm{q} \in \mathrm{t}^{\prime}$ are in conflict in s if they access the same data item and at least one of them is a write.
(ii) $\{(\mathrm{p}, \mathrm{q})\} \mid \mathrm{p}, \mathrm{q}$ are in conflict and $\left.\mathrm{p}<_{\mathrm{s}} \mathrm{q}\right\}$ is the conflict relation of s .

```
Definition 3.13 (Conflict Equivalence):
Schedules s and s' are conflict equivalent, denoted s}\mp@subsup{\approx}{c}{}\mp@subsup{s}{}{\prime}\mathrm{ , if \(\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)\) and \(\operatorname{conf}(\mathrm{s})=\operatorname{conf}\left(\mathrm{s}^{\prime}\right)\).
```


Definition 3.14 (Conflict Serializability):

Schedule s is conflict serializable if there is a serial schedule s' s.t. s $\approx_{\mathrm{c}} \mathrm{s}^{\prime}$. CSR denotes the class of all conflict serializable schedules.

Example a: $\mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{z}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{r}_{3}(\mathrm{z}) \mathrm{w}_{3}(\mathrm{y}) \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{w}_{3}(\mathrm{z}) \mathrm{c}_{3}$ $\rightarrow \in \mathrm{CSR}$ Example b: $r_{2}(x) w_{2}(x) r_{1}(x) r_{1}(y) r_{2}(y) w_{2}(y) c_{1} c_{2}$

Properties of CSR

Theorem 3.8:
 CSR \subset VSR

Example: $\mathrm{s}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{c}_{2} \mathrm{w}_{1}(\mathrm{y}) \mathrm{c}_{1} \mathrm{w}_{3}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{y}) \mathrm{c}_{3}$
$\mathrm{s} \in$ VSR, but $\mathrm{s} \notin$ CSR.

Theorem 3.9:

(i) CSR is monotone.
(ii) $\mathrm{s} \in \operatorname{CSR} \Leftrightarrow \Pi_{\mathrm{T}}(\mathrm{s}) \in \mathrm{VSR}$ for all $\mathrm{T} \subseteq \operatorname{trans}(\mathrm{s})$
(i.e., CSR is the largest monotone subset of VSR).

Activity

- What is a directed graph?
- Think of ways to associate a graph with a schedule!

Conflict Graph

> Definition 3.15 (Conflict Graph):
> Let s be a schedule. The conflict graph $G(s)=(V, E)$ is a directed graph with vertices $V:=\operatorname{commit}(s)$ and edges $E:=\left\{\left(t, t^{\prime}\right) \mid t \neq t^{\prime}\right.$ and there are steps $p \in t, q \in t^{\prime}$ with $\left.(p, q) \in \operatorname{conf}(s)\right\}$.

Conflict Graph

```
Definition 3.15 (Conflict Graph):
Let \(s\) be a schedule. The conflict graph \(G(s)=(V, E)\) is a directed graph with vertices \(\mathrm{V}:=\operatorname{commit}(\mathrm{s})\) and edges \(E:=\left\{\left(t, t^{\prime}\right) \mid t \neq t^{\prime}\right.\) and there are steps \(p \in t, q \in t^{\prime}\) with \(\left.(p, q) \in \operatorname{conf}(s)\right\}\)
```


Theorem 3.10:

Let s be a schedule. Then $s \in \operatorname{CSR}$ iff $\mathrm{G}(\mathrm{s})$ is acyclic.

Corollary 3.4:

Testing if a schedule is in CSR can be done in time polynomial to the schedule's number of transactions.

Conflict Graph

```
Definition 3.15 (Conflict Graph):
Let \(s\) be a schedule. The conflict graph \(G(s)=(V, E)\) is a directed graph with vertices \(\mathrm{V}:=\operatorname{commit}(\mathrm{s})\) and edges \(E:=\left\{\left(t, t^{\prime}\right) \mid t \neq t^{\prime}\right.\) and there are steps \(p \in t, q \in t^{\prime}\) with \(\left.(p, q) \in \operatorname{conf}(s)\right\}\)
```


Theorem 3.10:

Let s be a schedule. Then $s \in C S R$ iff $G(s)$ is acyclic.

Corollary 3.4:

Testing if a schedule is in CSR can be done in time polynomial to the schedule's number of transactions.

Example 3.12:
$\mathrm{s}=\mathrm{r}_{1}(\mathrm{y}) \mathrm{r}_{3}(\mathrm{w}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{1}(\mathrm{y}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{z}) \mathrm{w}_{3}(\mathrm{x}) \mathrm{c}_{1} \mathrm{c}_{3} \mathrm{c}_{2}$
G(s):

Activity

- What is a characterization (in a mathematical sense)?
- How do you prove a necessary and sufficient condition?
- What needs to be shown for the serializability theorem?

Proof of the Conflict-Graph Theorem

(i) Let s be a schedule in CSR. So there is a serial schedule s^{\prime} with $\operatorname{conf}(\mathrm{s})=\operatorname{conf}\left(\mathrm{s}^{\prime}\right)$. Now assume that $G(s)$ has a cycle $t_{1} \rightarrow t_{2} \rightarrow \ldots \rightarrow t_{k} \rightarrow t_{1}$. This implies that there are pairs $\left(p_{1}, q_{2}\right),\left(p_{2}, q_{3}\right), \ldots,\left(p_{k}, q_{1}\right)$
with $p_{i} \in t_{i}, q_{i} \in t_{i}, p_{i}<q_{(i+1)}$, and p_{i} in conflict with $q_{(i+1)}$.
Because $\mathrm{s}^{\prime} \approx_{\mathrm{c}} \mathrm{s}$, it also implies that $\mathrm{p}_{\mathrm{i}}<\mathrm{s}^{\prime} \mathrm{q}_{(\mathrm{i}+1)}$.
Because s^{\prime} is serial, we obtain $\mathrm{t}_{\mathrm{i}}<_{\mathrm{s}^{\prime}} \mathrm{t}_{\mathrm{i}+1)}$ for $\mathrm{i}=1, \ldots, \mathrm{k}-1$, and $\mathrm{t}_{\mathrm{k}}<_{\mathrm{s}^{\prime}} \mathrm{t}_{1}$. By transitivity we infer $\mathrm{t}_{1}<_{\mathrm{s}^{\prime}} \mathrm{t}_{2}$ and $\mathrm{t}_{2}<_{\mathrm{s}^{\prime}} \mathrm{t}_{1}$, which is impossible. This contradiction shows that the initial assumption is wrong. So $\mathrm{G}(\mathrm{s})$ is acyclic.
(ii) Let $\mathrm{G}(\mathrm{s})$ be acyclic. So it must have at least one source node. The following topological sort produces a total order < of transactions:
a) start with a source node (i.e., a node without incoming edges),
b) remove this node and all its outgoing edges,
c) iterate a) and b) until all nodes have been added to the sorted list.

The total transaction ordering order < preserves the edges in $\mathrm{G}(\mathrm{s})$; therefore it yields a serial schedule s' for which $\mathrm{s}^{\prime} \approx_{\mathrm{c}} \mathrm{s}$.

Commutativity and Ordering Rules

Commutativity rules:
C1: $r_{i}(x) r_{j}(y) \sim r_{j}(y) r_{i}(x)$ if $i \neq j$
C2: $r_{i}(x) w_{j}(y) \sim w_{j}(y) r_{i}(x)$ if $i \neq j$ and $x \neq y$
C3: $w_{i}(x) w_{j}(y) \sim w_{j}(y) w_{i}(x)$ if $i \neq j$ and $x \neq y$
Ordering rule:
C4: $o_{i}(x), p_{j}(y)$ unordered $\sim>o_{i}(x) p_{j}(y)$ if $x \neq y$ or both o and p are reads

Example for transformations of schedules:

$$
\begin{array}{ll}
s & w_{1}(x) \underbrace{}_{2}(x) w_{1}(y) w_{1}(z) r_{3}(z) w_{2}(y) w_{\beta}(y) w_{3}(z) \\
\sim[C 2] \quad & w_{1}(x) w_{1}(y) \underbrace{}_{2}(x) w_{1}(z) w_{2}(y) r_{3}(z) w_{3}(y) w_{3}(z) \\
\sim[C 2] \quad & w_{1}(x) w_{1}(y) w_{1}(z) r_{2}(x) w_{2}(y) r_{3}(z) w_{3}(y) w_{3}(z) \\
= & t_{1} t_{2} t_{3}
\end{array}
$$

Commutativity-based Reducibility

Definition 3.16 (Commutativity Based Equivalence):
Schedules s and s' s.t. $o p(s)=o p(s ')$ are commutativity based equivalent, denoted $\mathrm{s} \sim * \mathrm{~s}$ ', if s can be transformed into s' by applying rules C1, C2, C3, C4 finitely many times.

Theorem 3.11:

Let s and s^{\prime} be schedules s.t. $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$. Then $\mathrm{s} \approx_{\mathrm{c}} \mathrm{s}^{\prime}$ iff $\mathrm{s} \sim^{*}$ s'.

Commutativity-based Reducibility

Definition 3.16 (Commutativity Based Equivalence):
Schedules s and $\mathrm{s}^{\prime} \mathrm{s}$.t. $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$ are commutativity based equivalent, denoted $\mathrm{s} \sim$ * s ', if s can be transformed into s^{\prime} by applying rules C1, C2, C3, C4 finitely many times.

Theorem 3.11:

Let s and s^{\prime} be schedules s.t. $\mathrm{op}(\mathrm{s})=\mathrm{op}\left(\mathrm{s}^{\prime}\right)$. Then $\mathrm{s} \approx_{\mathrm{c}} \mathrm{s}^{\prime}$ iff $\mathrm{s} \sim^{*} \mathrm{~s}^{\prime}$.

Definition 3.17 (Commutativity Based Reducibility):

Schedule s is commutativity-based reducible if there is a serial schedule s' s.t. s ~* s'.

Corollary 3.5:

Schedule s is commutativity-based reducible iff $\mathrm{s} \in \mathrm{CSR}$.

Order Preserving Conflict Serializability

Definition 3.18 (Order Preservation):

Schedule s is order preserving conflict serializable if it is
conflict equivalent to a serial schedule s' and
for all $\mathrm{t}, \mathrm{t}^{\prime} \in \operatorname{trans}(\mathrm{s})$: if t completely precedes t^{\prime} in s , then the same holds in s^{\prime}. OCSR denotes the class of all schedules with this property.

Theorem 3.12:
OCSR $\subset \mathrm{CSR}$.

Example 3.13:
$\mathrm{s}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{w}_{3}(\mathrm{y}) \mathrm{c}_{3} \mathrm{w}_{1}(\mathrm{y}) \mathrm{c}_{1}$
$\rightarrow \in \operatorname{CSR}$
$\rightarrow \notin$ OCSR

Commit-order Preserving Conflict Serializability

Definition 3.19 (Commit Order Preservation):
Schedule s is commit order preserving conflict serializable if
for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s})$: if there are $\mathrm{p} \in \mathrm{t}_{\mathrm{i}}, \mathrm{q} \in \mathrm{t}_{\mathrm{j}}$ with $(\mathrm{p}, \mathrm{q}) \in \operatorname{conf}(\mathrm{s})$ then $\mathrm{c}_{\mathrm{i}}<\mathrm{c}_{\mathrm{j}}$. COCSR denotes the class of all schedules with this property.

Theorem 3.13:
COCSR \subset CSR .

Commit-order Preserving Conflict Serializability

Definition 3.19 (Commit Order Preservation):
 Schedule s is commit order preserving conflict serializable if for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s})$: if there are $\mathrm{p} \in \mathrm{t}_{\mathrm{i}}, \mathrm{q} \in \mathrm{t}_{\mathrm{j}}$ with $(\mathrm{p}, \mathrm{q}) \in \operatorname{conf}(\mathrm{s})$ then $\mathrm{c}_{\mathrm{i}}<\mathrm{c}_{\mathrm{j}}$. COCSR denotes the class of all schedules with this property.

Theorem 3.13:

$\mathrm{COCSR} \subset \mathrm{CSR}$.

Theorem 3.14:

Schedule s is in COCSR iff there is a serial schedule s' s.t. $\mathrm{s} \approx_{\mathrm{c}} \mathrm{s}^{\prime}$ and for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s}): \mathrm{t}_{\mathrm{i}}<_{\mathrm{s}^{\prime}} \mathrm{t}_{\mathrm{j}} \Leftrightarrow \mathrm{c}_{\mathrm{i}}<\mathrm{c}_{\mathrm{s}}$.

Commit-order Preserving Conflict Serializability

Definition 3.19 (Commit Order Preservation):
 Schedule s is commit order preserving conflict serializable if for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s})$: if there are $\mathrm{p} \in \mathrm{t}_{\mathrm{i}}, \mathrm{q} \in \mathrm{t}_{\mathrm{j}}$ with $(\mathrm{p}, \mathrm{q}) \in \operatorname{conf}(\mathrm{s})$ then $\mathrm{c}_{\mathrm{i}}<_{\mathrm{s}} \mathrm{c}_{\mathrm{j}}$. COCSR denotes the class of all schedules with this property.

Theorem 3.13:

COCSR \subset CSR .

Theorem 3.14:
Schedule s is in COCSR iff there is a serial schedule s' s.t. $\mathrm{s} \approx_{\mathrm{c}} \mathrm{s}^{\prime}$ and for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s}): \mathrm{t}_{\mathrm{i}}<_{\mathrm{s}^{\prime}} \mathrm{t}_{\mathrm{j}} \Leftrightarrow \mathrm{c}_{\mathrm{i}}<\mathrm{c}_{\mathrm{s}}$.

Theorem 3.15:
COCSR \subset OCSR .
Example:
$\begin{array}{ll}\mathrm{s}=\mathrm{w}_{3}(\mathrm{y}) \mathrm{c}_{3} \mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{w}_{1}(\mathrm{y}) \mathrm{c}_{1} & \rightarrow \in \operatorname{OCSR} \\ & \rightarrow \notin \operatorname{COCSR}\end{array}$

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
-3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Commit Serializability

Definition 3.20 (Closure Properties of Schedule Classes):
Let E be a class of schedules.
For schedule s let $\mathrm{CP}(\mathrm{s})$ denote the projection $\Pi_{\text {commit(s) }}$ (s).
E is prefix-closed if the following holds: $s \in E \Leftrightarrow p \in E$ for each prefix of s.
E is commit-closed if the following holds: $\mathrm{s} \in \mathrm{E} \Rightarrow \mathrm{CP}(\mathrm{s}) \in \mathrm{E}$.
Theorem 3.16:
CSR is prefix-commit-closed, i.e., prefix-closed and commit-closed.

Commit Serializability

Definition 3.20 (Closure Properties of Schedule Classes):

Let E be a class of schedules.
For schedule s let $\mathrm{CP}(\mathrm{s})$ denote the projection $\Pi_{\text {commit(s) }}$ (s).
E is prefix-closed if the following holds: $s \in E \Leftrightarrow p \in E$ for each prefix of s.
E is commit-closed if the following holds: $s \in E \Rightarrow C P(s) \in E$.
Theorem 3.16:
CSR is prefix-commit-closed, i.e., prefix-closed and commit-closed.

Definition 3.21 (Commit Serializability):

Schedule s is commit- Θ-serializable if $\mathrm{CP}(\mathrm{p})$ is Θ-serializable for each prefix p of s, where Θ can be FSR, VSR, or CSR.
The resulting classes of commit- Θ-serializable schedules are denoted CMFSR, CMVSR, and CMCSR.

Theorem 3.17:
(i) CMFSR, CMVSR, CMCSR are prefix-commit-closed.
(ii) $\mathrm{CMCSR} \subset \mathrm{CMVSR} \subset \mathrm{CMFSR}$

Landscape of History Classes

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
-3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Interleaving Specifications: Motivation

Example: all transactions known in advance
transfer transactions on checking accounts a and b and savings account c :

$$
\begin{aligned}
& \mathrm{t}_{1}=\mathrm{r}_{1}(\mathrm{a}) \mathrm{w}_{1}(\mathrm{a}) \mathrm{r}_{1}(\mathrm{c}) \mathrm{w}_{1}(\mathrm{c}) \\
& \mathrm{t}_{2}=\mathrm{r}_{2}(\mathrm{~b}) \mathrm{w}_{2}(\mathrm{~b}) \mathrm{r}_{2}(\mathrm{c}) \mathrm{w}_{2}(\mathrm{c})
\end{aligned}
$$

balance transaction:

$$
t_{3}=r_{3}(a) r_{3}(b) r_{3}(c)
$$

audit transaction:

$$
\mathrm{t}_{4}=\mathrm{r}_{4}(\mathrm{a}) \mathrm{r}_{4}(\mathrm{~b}) \mathrm{r}_{4}(\mathrm{c}) \mathrm{w}_{4}(\mathrm{z})
$$

Possible schedules:

$\mathrm{r}_{1}(\mathrm{a}) \mathrm{w}_{1}(\mathrm{a}) \mathrm{r}_{2}(\mathrm{~b}) \mathrm{w}_{2}(\mathrm{~b}) \mathrm{r}_{2}(\mathrm{c}) \mathrm{w}_{2}(\mathrm{c}) \mathrm{r}_{1}(\mathrm{c}) \mathrm{w}_{1}(\mathrm{c})$	$\rightarrow \in \mathrm{CSR}$	application-tolerable
$\mathrm{r}_{1}(\mathrm{a}) \mathrm{w}_{1}(\mathrm{a}) \mathrm{r}_{3}(\mathrm{a}) \mathrm{r}_{3}(\mathrm{~b}) \mathrm{r}_{3}(\mathrm{c}) \mathrm{r}_{1}(\mathrm{c}) \mathrm{w}_{1}(\mathrm{c})$	$\rightarrow \notin \mathrm{CSR}$	interleavings
$\mathrm{r}_{1}(\mathrm{a}) \mathrm{w}_{1}(\mathrm{a}) \mathrm{r}_{2}(\mathrm{~b}) \mathrm{w}_{2}(\mathrm{~b}) \mathrm{r}_{1}(\mathrm{c}) \mathrm{r}_{2}(\mathrm{c}) \mathrm{w}_{2}(\mathrm{c}) \mathrm{w}_{1}(\mathrm{c})$	$\rightarrow \notin \mathrm{CSR}]$	non-admissable
$\mathrm{r}_{1}(\mathrm{a}) \mathrm{w}_{1}(\mathrm{a}) \mathrm{r}_{4}(\mathrm{a}) \mathrm{r}_{4}(\mathrm{~b}) \mathrm{r}_{4}(\mathrm{c}) \mathrm{w}_{4}(\mathrm{z}) \mathrm{r}_{1}(\mathrm{c}) \mathrm{w}_{1}(\mathrm{c})$	$\rightarrow \notin \mathrm{CSR}\}$	interleavings

Interleaving Specifications: Motivation

Example: all transactions known in advance
transfer transactions on checking accounts a and b and savings account c :

$$
\begin{aligned}
& \mathrm{t}_{1}=\mathrm{r}_{1}(\mathrm{a}) \mathrm{w}_{1}(\mathrm{a}) \mathrm{r}_{1}(\mathrm{c}) \mathrm{w}_{1}(\mathrm{c}) \\
& \mathrm{t}_{2}=\mathrm{r}_{2}(\mathrm{~b}) \mathrm{w}_{2}(\mathrm{~b}) \mathrm{r}_{2}(\mathrm{c}) \mathrm{w}_{2}(\mathrm{c})
\end{aligned}
$$

balance transaction:

$$
t_{3}=r_{3}(a) r_{3}(b) r_{3}(c)
$$

audit transaction:

$$
\mathrm{t}_{4}=\mathrm{r}_{4}(\mathrm{a}) \mathrm{r}_{4}(\mathrm{~b}) \mathrm{r}_{4}(\mathrm{c}) \mathrm{w}_{4}(\mathrm{z})
$$

Possible schedules:

Observations: application may tolerate non-CSR schedules a priori knowledge of all transactions impractical

Indivisible Units

Definition 3.22 (Indivisible Units):

Let $\mathrm{T}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ be a set of transactions. For $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \mathrm{T}, \mathrm{t}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{j}}$, an indivisible unit of t_{i} relative to t_{j} is a sequence of consecutive steps of t_{i} s.t. no operations of t_{j} are allowed to interleave with this sequence.
$\mathbf{I U}\left(\mathbf{t}_{\mathbf{i}}, \mathbf{t}_{\mathbf{j}}\right)$ denotes the ordered sequence of indivisible units of t_{i} relative to t_{j}. $\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ denotes the k^{th} element of $\mathrm{IU}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$.

Indivisible Units

Definition 3.22 (Indivisible Units):

Let $\mathrm{T}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ be a set of transactions. For $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \mathrm{T}, \mathrm{t}_{\mathrm{i}} \not \mathrm{t}_{\mathrm{j}}$, an indivisible unit of t_{i} relative to t_{j} is a sequence of consecutive steps of t_{i} s.t. no operations of t_{j} are allowed to interleave with this sequence.
$\mathbf{I U}\left(\mathbf{t}_{\mathbf{i}}, \mathrm{t}_{\mathbf{j}}\right)$ denotes the ordered sequence of indivisible units of t_{i} relative to t_{j}. $\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$ denotes the $\mathrm{k}^{\text {th }}$ element of $\mathrm{IU}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$.

Example 3.14:

$\mathrm{t}_{1}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{z}) \mathrm{r}_{1}(\mathrm{y})$
$\mathrm{t}_{2}=\mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{x})$
$\mathrm{t}_{3}=\mathrm{w}_{3}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{y}) \mathrm{w}_{3}(\mathrm{z})$

$$
\begin{aligned}
& \operatorname{IU}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=<\left[\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x})\right],\left[\mathrm{w}_{1}(\mathrm{z}) \mathrm{r}_{1}(\mathrm{y})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{1}, \mathrm{t}_{3}\right)=<\left[\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x})\right],\left[\mathrm{w}_{1}(\mathrm{z})\right],\left[\mathrm{r}_{1}(\mathrm{y})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)=<\left[\mathrm{r}_{2}(\mathrm{y})\right],\left[\mathrm{w}_{2}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{x})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{2}, \mathrm{t}_{3}\right)=<\left[\mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y})\right],\left[\mathrm{r}_{2}(\mathrm{x})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{3}, \mathrm{t}_{1}\right)=<\left[\mathrm{w}_{3}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{y})\right],\left[\mathrm{w}_{3}(\mathrm{z})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{3}, \mathrm{t}_{2}\right)=<\left[\mathrm{w}_{3}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{y})\right],\left[\mathrm{w}_{3}(\mathrm{z})\right]>
\end{aligned}
$$

Indivisible Units

Definition 3.22 (Indivisible Units):

Let $\mathrm{T}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ be a set of transactions. For $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \mathrm{T}, \mathrm{t}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{j}}$, an indivisible unit of t_{i} relative to t_{j} is a sequence of consecutive steps of t_{i} s.t. no operations of t_{j} are allowed to interleave with this sequence.
$\mathbf{I U}\left(\mathbf{t}_{\mathbf{i}}, \mathrm{t}_{\mathbf{j}}\right)$ denotes the ordered sequence of indivisible units of t_{i} relative to t_{j}.
$\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$ denotes the $\mathrm{k}^{\text {th }}$ element of $\mathrm{IU}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$.

Example 3.14:

$\mathrm{t}_{1}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{z}) \mathrm{r}_{1}(\mathrm{y})$
$\mathrm{t}_{2}=\mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{x})$
$\mathrm{t}_{3}=\mathrm{w}_{3}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{y}) \mathrm{w}_{3}(\mathrm{z})$

$$
\begin{aligned}
& \operatorname{IU}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\left\langle\left[\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x})\right],\left[\mathrm{w}_{1}(\mathrm{z}) \mathrm{r}_{1}(\mathrm{y})\right]\right\rangle \\
& \mathrm{IU}\left(\mathrm{t}_{1}, \mathrm{t}_{3}\right)=\left\langle\left[\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x})\right],\left[\mathrm{w}_{1}(\mathrm{z})\right],\left[\mathrm{r}_{1}(\mathrm{y})\right]\right\rangle \\
& \mathrm{IU}\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)=\left\langle\left[\mathrm{r}_{2}(\mathrm{y})\right],\left[\mathrm{w}_{2}(\mathrm{y}) \mathrm{r}_{2}(\mathrm{x})\right]\right\rangle \\
& \operatorname{IU}\left(\mathrm{t}_{2}, \mathrm{t}_{3}\right)=\left\langle\left[\mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y})\right],\left[\mathrm{r}_{2}(\mathrm{x})\right]\right\rangle \\
& \mathrm{IU}\left(\mathrm{t}_{3}, \mathrm{t}_{1}\right)=\left\langle\left[\mathrm{w}_{3}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{y})\right],\left[\mathrm{w}_{3}(\mathrm{z})\right]\right\rangle \\
& \operatorname{IU}\left(\mathrm{t}_{3}, \mathrm{t}_{2}\right)=\left\langle\left[\mathrm{w}_{3}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{y})\right],\left[\mathrm{w}_{3}(\mathrm{z})\right]\right\rangle
\end{aligned}
$$

Example 3.15:
$s_{1}=r_{2}(y) r_{1}(x) w_{1}(x) w_{2}(y) r_{2}(x) w_{1}(z) w_{3}(x) w_{3}(y) r_{1}(y) w_{3}(z) \rightarrow$ respects all IUs
$\mathrm{s}_{2}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{z}) \mathrm{r}_{1}(\mathrm{y}) \quad \overrightarrow{\left.\mathrm{t}_{1}\right)} \xrightarrow{\rightarrow}$ violates $\mathrm{IU}_{1}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ and $\mathrm{IU}_{2}\left(\mathrm{t}_{2}\right.$, but is conflict equivalent to an allowed schedule

Relatively Serializable Schedules

Definition 3.23 (Dependence of Steps):

Step q directly depends on step p in schedule s, denoted $p \sim>q$, if $p<s q$ and either p, q belong to the same transaction t and $\mathrm{p}<_{\mathrm{t}} \mathrm{q}$ or p and q are in conflict. $\sim>^{*}$ denotes the reflexive and transitive closure of $\sim>$.

Relatively Serializable Schedules

Definition 3.23 (Dependence of Steps):

Step q directly depends on step p in schedule s, denoted $p \sim>q$, if $p<_{s} q$ and either p, q belong to the same transaction t and $\mathrm{p}<_{\mathrm{t}} \mathrm{q}$ or p and q are in conflict. $\sim>^{*}$ denotes the reflexive and transitive closure of $\sim>$.

Definition 3.24 (Relatively Serial Schedule):

s is relatively serial if for all transactions t_{i}, t_{j} : if $\mathrm{q} \in \mathrm{t}_{\mathrm{j}}$ is interleaved with some $\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$, then there is no operation $\mathrm{p} \in \mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ s.t. $\mathrm{p} \sim>^{*} \mathrm{q}$ or $\mathrm{q} \sim^{*} \mathrm{p}$

Example 3.16:

$s_{3}=r_{1}(x) r_{2}(y) w_{1}(x) w_{2}(y) w_{3}(x) w_{1}(z) w_{3}(y) r_{2}(x) r_{1}(y) w_{3}(z)$

Relatively Serializable Schedules

Definition 3.23 (Dependence of Steps):

Step q directly depends on step p in schedule s, denoted $p \sim>q$, if $p<_{s} q$ and either p, q belong to the same transaction t and $\mathrm{p}<_{\mathrm{t}} \mathrm{q}$ or p and q are in conflict. $\sim>^{*}$ denotes the reflexive and transitive closure of $\sim>$.

Definition 3.24 (Relatively Serial Schedule):

s is relatively serial if for all transactions t_{i}, t_{j} : if $\mathrm{q} \in \mathrm{t}_{\mathrm{j}}$ is interleaved with some $\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$, then there is no operation $\mathrm{p} \in \mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ s.t. $\mathrm{p} \sim>^{*} \mathrm{q}$ or $\mathrm{q} \sim>^{*} \mathrm{p}$

Example 3.16:

$$
s_{3}=r_{1}(x) r_{2}(y) w_{1}(x) w_{2}(y) w_{3}(x) w_{1}(z) w_{3}(y) r_{2}(x) r_{1}(y) w_{3}(z)
$$

Definition 3.25 (Relatively Serializable Schedule):

s is relatively serializable if it is conflict equivalent to a relatively serial schedule.

Example 3.17:

$\mathrm{s}_{4}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{y}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{3}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{z}) \mathrm{w}_{3}(\mathrm{y}) \mathrm{r}_{1}(\mathrm{y}) \mathrm{w}_{3}(\mathrm{z})$

Relative Serialization Graph

Definition 3.26 (Push Forward and Pull Backward):

Let $\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ be an IU of t_{i} relative to t_{j}. For an operation $\mathrm{p}_{\mathrm{i}} \in \mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ let
(i) $\mathrm{F}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ be the last operation in $\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ and
(ii) $\mathrm{B}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$ be the first operation in $\mathrm{IU}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$.

Definition 3.27 (Relative Serialization Graph):

The relative serialization graph $\operatorname{RSG}(\mathrm{s})=(\mathrm{V}, \mathrm{E})$ of schedule s is a graph with vertices $\mathrm{V}:=\mathrm{op}(\mathrm{s})$ and edge set $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ containing four types of edges:
(i) for consecutive operations p, q of the same transaction $(\mathrm{p}, \mathrm{q}) \in \mathrm{E}$ (I-edge)
(ii) if $\mathrm{p} \sim>^{*} \mathrm{q}$ for $\mathrm{p} \in \mathrm{t}_{\mathrm{i}}, \mathrm{q} \in \mathrm{t}_{\mathrm{j}}, \mathrm{t}_{\mathrm{i}} \neq \mathrm{t}_{\mathrm{j}}$, then $(\mathrm{p}, \mathrm{q}) \in \mathrm{E}$
(iii) if (p, q) is a D-edge with $p \in t_{i}, q \in t_{j}$, then $\left(F\left(p, t_{j}\right), q\right) \in E$
(F-edge)
(iv) if (p, q) is a D-edge with $\mathrm{p} \in \mathrm{t}_{\mathrm{i}}, \mathrm{q} \in \mathrm{t}_{\mathrm{j}}$, then $\left(\mathrm{p}, \mathrm{B}\left(\mathrm{q}, \mathrm{t}_{\mathrm{i}}\right)\right) \in \mathrm{E}$
(B-edge)

Theorem 3.18:

A schedule s is relatively serializable iff $\operatorname{RSG}(\mathrm{s})$ is acyclic.

RSG Example

Example 3.19:

$$
\begin{aligned}
& \mathrm{t}_{1}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{z}) \\
& \mathrm{t}_{2}=\mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{y}) \\
& \mathrm{t}_{3}=\mathrm{r}_{3}(\mathrm{z}) \mathrm{r}_{3}(\mathrm{y})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{IU}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=<\left[\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{1}(\mathrm{z})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{1}, \mathrm{t}_{3}\right)=<\left[\mathrm{w}_{1}(\mathrm{x})\right],\left[\mathrm{r}_{1}(\mathrm{z})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)=<\left[\mathrm{r}_{2}(\mathrm{x})\right],\left[\quad \mathrm{w}_{2}(\mathrm{y})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{2}, \mathrm{t}_{3}\right)=<\left[\mathrm{r}_{2}(\mathrm{x})\right],\left[\mathrm{w}_{2}(\mathrm{y})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{3}, \mathrm{t}_{1}\right)=<\left[\mathrm{r}_{3}(\mathrm{z})\right],\left[\mathrm{r} \mathrm{r}_{3}(\mathrm{y})\right]> \\
& \mathrm{IU}\left(\mathrm{t}_{3}, \mathrm{t}_{2}\right)=<\left[\mathrm{r}_{3}(\mathrm{z}) \mathrm{r}_{3}(\mathrm{y})\right]>
\end{aligned}
$$

$$
s_{5}=w_{1}(x) r_{2}(x) r_{3}(z) w_{2}(y) r_{3}(y) r_{1}(z)
$$

$\operatorname{RSG}\left(\mathrm{s}_{5}\right)$:

Chapter 3: Concurrency Control - Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
-3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned

Lessons Learned

- Equivalence to serial history is a natural correctness criterion
- CSR, albeit less general than VSR,
is most appropriate for
- complexity reasons
- its monotonicity property
- its generalizability to semantically rich operations
- OCSR and COCSR have additional beneficial properties

