Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

"Teamwork is essential. It allows you to blame someone else." (Anonymous)

Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues

Chapter 4: Concurrency Control Algorithms

• 4.2 General Scheduler Design

- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

"The optimist believes we live in the best of all possible worlds. The pessimist fears this is true."(*Robert Oppenheimer*)

Transaction Scheduler

Scheduler Actions and Transaction States

Scheduler Actions and Transaction States

Definition 4.1 (CSR Safety): For a scheduler S, **Gen(S)** denotes the set of all schedules that S can generate. A scheduler is called **CSR safe** if $Gen(S) \subseteq CSR$.

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

General Locking Rules

For each step the scheduler **requests a lock** on behalf of the step's transaction. Each lock is requested in a specific **mode** (**read or write**). If the data item is not yet locked in an **incompatible mode** the lock is granted; otherwise there is a **lock conflict** and the transaction becomes **blocked** (suffers a **lock wait**) until the current lock holder **releases the lock**.

General Locking Rules

For each step the scheduler **requests a lock** on behalf of the step's transaction. Each lock is requested in a specific **mode** (**read or write**). If the data item is not yet locked in an **incompatible mode** the lock is granted; otherwise there is a **lock conflict** and the transaction becomes **blocked** (suffers a **lock wait**) until the current lock holder **releases the lock**.

General Locking Rules

For each step the scheduler **requests a lock** on behalf of the step's transaction. Each lock is requested in a specific **mode** (**read or write**). If the data item is not yet locked in an **incompatible mode** the lock is granted; otherwise there is a **lock conflict** and the transaction becomes **blocked** (suffers a **lock wait**) until the current lock holder **releases the lock**.

General locking rules:

LR1: Each data operation $o_i(x)$ must be preceded by $ol_i(x)$ and followed by $ou_i(x)$.

- **LR2**: For each x and t_i there is at most one $ol_i(x)$ and at most one $ou_i(x)$.
- **LR3**: No $ol_i(x)$ or $ou_i(x)$ is redundant.
- **LR4**: If x is locked by both t_i and t_j , then these locks are compatible.

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Two-Phase Locking (2PL)

Definition 4.2 (2PL):

A locking protocol is **two-phase (2PL)** if for every output schedule s and every transaction $t_i \in \text{trans}(s)$ no ql_i step follows the first ou_i step $(q, o \in \{r, w\})$.

Example 4.4: $s = w_1(x) r_2(x) w_1(y) w_1(z) r_3(z) c_1 w_2(y) w_3(y) c_2 w_3(z) c_3$

Two-Phase Locking (2PL)

Definition 4.2 (2PL):

A locking protocol is **two-phase (2PL)** if for every output schedule s and every transaction $t_i \in \text{trans}(s)$ no ql_i step follows the first ou_i step $(q, o \in \{r, w\})$.

Example 4.4:

 $s = w_1(x) r_2(x) w_1(y) w_1(z) r_3(z) c_1 w_2(y) w_3(y) c_2 w_3(z) c_3$

Two-Phase Locking (2PL)

Definition 4.2 (2PL):

A locking protocol is **two-phase (2PL)** if for every output schedule s and every transaction $t_i \in \text{trans}(s)$ no ql_i step follows the first ou_i step $(q, o \in \{r, w\})$.

Example 4.4:

 $\mathbf{s} = \mathbf{w}_{1}(\mathbf{x}) \mathbf{r}_{2}(\mathbf{x}) \mathbf{w}_{1}(\mathbf{y}) \mathbf{w}_{1}(\mathbf{z}) \mathbf{r}_{3}(\mathbf{z}) \mathbf{c}_{1} \mathbf{w}_{2}(\mathbf{y}) \mathbf{w}_{3}(\mathbf{y}) \mathbf{c}_{2} \mathbf{w}_{3}(\mathbf{z}) \mathbf{c}_{3}$

$$\begin{split} & wl_1(x) \; w_1(x) \; wl_1(y) \; w_1(y) \; wl_1(z) \; w_1(z) \; wu_1(x) \; rl_2(x) \; r_2(x) \; wu_1(y) \; wu_1(z) \; c_1 \\ & rl_3(z) \; r_3(z) \; wl_2(y) \; w_2(y) \; wu_2(y) \; ru_2(x) \; c_2 \\ & wl_3(y) \; w_3(y) \; wl_3(z) \; w_3(z) \; wu_3(z) \; wu_3(y) \; c_3 \end{split}$$

Correctness and Properties of 2PL

Theorem 4.1: Gen(2PL) \subset CSR (i.e., 2PL is CSR-safe).

Example 4.5: $s = w_1(x) r_2(x) c_2 r_3(y) c_3 w_1(y) c_1 \in CSR$ but \notin Gen(2PL) for $wu_1(x) < rl_2(x)$ and $ru_3(y) < wl_1(y)$, $rl_2(x) < r_2(x)$ and $r_3(y) < ru_3(y)$, and $r_2(x) < r_3(y)$ would imply $wu_1(x) < wl_1(y)$ which contradicts the two-phase property.

Correctness and Properties of 2PL

Theorem 4.1: Gen(2PL) \subset CSR (i.e., 2PL is CSR-safe).

Example 4.5: $s = w_1(x) r_2(x) c_2 r_3(y) c_3 w_1(y) c_1 \in CSR$ but \notin Gen(2PL) for $wu_1(x) < rl_2(x)$ and $ru_3(y) < wl_1(y)$, $rl_2(x) < r_2(x)$ and $r_3(y) < ru_3(y)$, and $r_2(x) < r_3(y)$ would imply $wu_1(x) < wl_1(y)$ which contradicts the two-phase property.

Theorem 4.2: $Gen(2PL) \subset OCSR$

Example: w₁(x) $r_2(x) r_3(y) r_2(z) w_1(y) c_3 c_1 c_2$

Proof of 2PL Correctness

Let s be the output of a 2PL scheduler, and let G be the conflict graph of CP(DT(s)) where DT is the projection onto data and termination operations and CP is the committed projection.

The following holds (Lemma 4.2):

- (i) If (t_i, t_j) is an edge in G, then $pu_i(x) < ql_j(x)$ for some x with conflicting p, q.
- (ii) If $(t_1, t_2, ..., t_n)$ is a path in G, then $pu_1(x) < ql_n(y)$ for some x, y.
- (iii) G is acyclic.

This can be shown as follows:

- (i) By locking rules LR1 through LR4.
- (ii) By induction on n.
- (iii) Assume G has a cycle of the form $(t_1, t_2, ..., t_n, t_1)$. By (ii), $pu_1(x) < ql_1(y)$ for some x, y, which contradicts the two-phase property.

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Deadlock Detection

Deadlocks are caused by cyclic lock waits (e.g., in conjunction with lock conversions).

Deadlock detection:

- (i) Maintain dynamic waits-for graph (WFG) with active transactions as nodes and an edge from t_i to t_j if t_j waits for a lock held by t_i.
 (ii) Test WFG for cycles
 - continuously (i.e., upon each lock wait) or
 - periodically.

Deadlock Resolution

Choose a transaction on a WFG cycle as a **deadlock victim** and abort this transaction, and repeat until no more cycles.

Possible victim selection strategies:

- 1. Last blocked
- 2. Random
- 3. Youngest
- 4. Minimum locks
- 5. Minimum work
- 6. Most cycles
- 7. Most edges

Illustration of Victim Selection Strategies

Example WFG:

Most-cycles strategy would select t_1 (or t_3) to break all 5 cycles.

Illustration of Victim Selection Strategies

Example WFG:

Most-cycles strategy would select t_1 (or t_3) to break all 5 cycles.

Example WFG: $t_2 \longrightarrow t_1$ $t_3 \longrightarrow t_4$ $t_5 \longrightarrow t_6$

Most-edges strategy would select t_1 to remove 4 edges.

Deadlock Prevention

Restrict lock waits to ensure **acyclic WFG** at all times.

```
Reasonable deadlock prevention strategies:
1. Wait-die:
     upon t<sub>i</sub> blocked by t<sub>i</sub>:
          if t_i started before t_i then wait else abort t_i
2. Wound-wait:
     upon t<sub>i</sub> blocked by t<sub>i</sub>:
          if t<sub>i</sub> started before t<sub>i</sub> then abort t<sub>i</sub> else wait
3. Immediate restart:
     upon t<sub>i</sub> blocked by t<sub>i</sub>: abort t<sub>i</sub>
4. Running priority:
     upon t<sub>i</sub> blocked by t<sub>i</sub>:
          if t<sub>i</sub> is itself blocked then abort t<sub>i</sub> else wait
5 Timeout:
     abort waiting transaction when a timer expires
Abort entails later restart.
```

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Variants of 2PL

ume

Variants of 2PL

Variants of 2PL

Definition 4.5 (Strong 2PL): Under strong 2PL (SS2PL)

each transaction holds all its locks (i.e., both r and w) until the transaction terminates.

Properties of S2PL and SS2PL

Theorem 4.3: Gen(S2PL) \subset Gen(S2PL) \subset Gen(2PL)

Theorem 4.4: Gen(SS2PL) \subset COCSR

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Ordered Sharing of Locks

Motivation: Example 4.6: $s_1 = w_1(x) r_2(x) r_3(y) c_3 w_1(y) c_1 w_2(z) c_2 \in COCSR$, but $\notin Gen(2PL)$

Observation:

the schedule were feasible if **write locks could be shared** s.t. the order of lock acquisitions dictates the order of data operations

Notation:

 $pl_i(x) \rightarrow ql_j(x) \text{ (with }_i \neq_j) \text{ for } pl_i(x) <_s ql_j(x) \land p_i(x) <_s q_j(x)$

Example reconsidered with ordered sharing of locks: $wl_1(x) w_1(x) rl_2(x) r_2(x) rl_3(y) r_3(y) ru_3(y) c_3$ $wl_1(y) w_1(y) wu_1(x) wu_1(y) c_1 wl_2(z) w_2(z) ru_2(x) wu_2(z) c_2$

Lock Compatibility Tables With Ordered Sharing

LI_1	$rI_{j}(x)$	wi _j (x)
$rl_i(x)$	+	_
$wl_i(x)$.	_

LT_2	$rl_j(x)$	wl _j (x)
$rl_i(x)$	+	\rightarrow
$wl_i(x)$	_	_

LT_5	$rl_j(x)$	$wl_j(x)$
$rl_i(x)$	+	\rightarrow
$wl_i(x)$	\rightarrow	_

LT_3	$rl_j(x)$	$wl_j(x)$
$rl_i(x)$	+	_
$wl_i(x)$	\rightarrow	_

LT_6	$rl_{j}(x)$	$wl_j(x)$
$rl_i(x)$	+	_
$wl_i(x)$	\rightarrow	\rightarrow

LT_4	$rl_j(x)$	$wl_j(x)$
$rl_i(x)$	+	_
$wl_i(x)$		\rightarrow

LT_7	$rl_{j}(x)$	$wl_j(x)$
$rl_i(x)$	+	\rightarrow
$wl_i(x)$	_	\rightarrow

LT_8	$rl_j(x)$	$wl_j(x)$
$rl_i(x)$	+	\rightarrow
$wl_i(x)$	\rightarrow	\rightarrow

Additional Locking Rules for O2PL

OS1 (lock acquisition):

Assuming that $pl_i(x) \rightarrow ql_j(x)$ is permitted, if $pl_i(x) <_s ql_j(x)$ then $p_i(x) <_s q_j(x)$ must hold.

Example:

$$\begin{split} & wl_1(x) \; w_1(x) \; wl_2(x) \; w_2(x) \; wl_2(y) \; w_2(y) \; wu_2(x) \; wu_2(y) \; c_2 \\ & wl_1(y) \; w_1(y) \; wu_1(x) \; wu_1(y) \; c_1 \end{split}$$

Satisfies OS1, LR1 – LR4, is two-phase, but ∉ CSR

Additional Locking Rules for O2PL

OS1 (lock acquisition):

Assuming that $pl_i(x) \rightarrow ql_j(x)$ is permitted, if $pl_i(x) <_s ql_j(x)$ then $p_i(x) <_s q_j(x)$ must hold.

Example:

$$\begin{split} & wl_1(x) \; w_1(x) \; wl_2(x) \; w_2(x) \; wl_2(y) \; w_2(y) \; wu_2(x) \; wu_2(y) \; c_2 \\ & wl_1(y) \; w_1(y) \; wu_1(x) \; wu_1(y) \; c_1 \end{split}$$

Satisfies OS1, LR1 – LR4, is two-phase, but \notin CSR

OS2 (lock release):

If $pl_i(x) \rightarrow ql_j(x)$ and t_i has not yet released any lock, then t_j is **order-dependent** on t_i . If such t_i exists, then t_j is **on hold**. While a transaction is on hold, it must not release any locks.

O2PL: locking with rules LR1 - LR4, two-phase property, rules OS1 - OS2, and lock table LT₈

O2PL Example

Example 4.7: $s = r_1(x) w_2(x) r_3(y) w_2(y) c_2 w_3(z) c_3 r_1(z) c_1$

 $\begin{array}{l} rl_1(x) \ r_1(x) \ wl_2(x) \ w_2(x) \ rl_3(y) \ r_3(y) \ wl_2(y) \ w_2(y) \\ wl_3(z) \ w_3(z) \ ru_3(y) \ wu_3(z) \ c_3 \ rl_1(z) \ r_1(z) \ ru_1(z) \ wu_2(x) \ wu_2(y) \ c_2 \ c_1 \end{array}$

Correctness and Properties of O2PL

Theorem 4.5: Let LT_i denote the locking protocol with ordered sharing according to lock compatibility table LT_i . For each i, $1 \le i \le 8$, $Gen(LT_i) \subseteq CSR$.
Correctness and Properties of O2PL

Theorem 4.5:

Let LT_i denote the locking protocol with ordered sharing according to lock compatibility table LT_i . For each i, $1 \le i \le 8$, $Gen(LT_i) \subseteq CSR$.

Theorem 4.6: $Gen(O2PL) \subseteq OCSR$

Correctness and Properties of O2PL

Theorem 4.5:

Let LT_i denote the locking protocol with ordered sharing according to lock compatibility table LT_i . For each i, $1 \le i \le 8$, $Gen(LT_i) \subseteq CSR$.

Theorem 4.6: $Gen(O2PL) \subseteq OCSR$

Theorem 4.7: $OCSR \subseteq Gen(O2PL)$

Corollary 4.1: Gen(O2PL) = OCSR

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Altruistic Locking (AL)

Motivation:

Example 4.8: concurrent executions of

- $t_1 = w_1(a) w_1(b) w_1(c) w_1(d) w_1(e) w_1(f) w_1(g)$
- $t_2 = r_2(a) r_2(b)$
- $t_3 = r_3(c) r_3(e)$

Observations:

- t_2 and t_3 access subsets of the data items accessed by t_1
- t₁ knows when it is "finished" with a data item
- t_1 could "pass over" locks on specific data items to transactions that access only data items that t_1 is finished with (such transactions are "in the wake" of t_1)

Notation:

 $\mathbf{d}_{i}(\mathbf{x})$ for t_{i} **donating** its lock on x to other transactions

Example with donation of locks:

$$\begin{split} & wl_1(a) \; w_1(a) \; d_1(a) \; rl_2(a) \; r_2(a) \; wl_1(b) \; w_1(b) \; d_1(b) \; rl_2(b) \; r_2(b) \; wl_1(c) \; w_1(c) \; ... \\ & \ldots \; ru_2(a) \; ru_2(b) \; ... \; wu_1(a) \; wu_1(b) \; wu_1(c) \; ... \end{split}$$

Additional Locking Rules for AL

- AL1: Once t_i has donated a lock on x, it can no longer access x.
- **AL2:** After t_i has donated a lock x, t_i must eventually unlock x.
- **AL3:** t_i and t_j can simultaneously hold conflicting locks only if t_i has donated its lock on x.

Additional Locking Rules for AL

- AL1: Once t_i has donated a lock on x, it can no longer access x.
- **AL2:** After t_i has donated a lock x, t_i must eventually unlock x.
- **AL3:** t_i and t_j can simultaneously hold conflicting locks only if t_i has donated its lock on x.

Definition 4.27:

- (i) $p_j(x)$ is **in the wake** of t_i ($i \neq j$) in s if $d_i(x) <_s p_j(x) <_s ou_i(x)$.
- (ii) t_j is in the wake of t_i if some operation of t_j is in the wake of t_i. t_j is completely in the wake of t_i if all its operations are in the wake of t_i.
 (iii) t_j is indebted to t_i in s if there are steps o_i(x), d_i(x), p_j(x) s.t. p_j(x) is in the wake of t_i and (p_j(x) and o_i(x) are in conflict or

there is $q_k(x)$ conflicting with both $p_j(x)$ and $o_i(x)$ and $o_i(x) <_s q_k(x) <_s p_j(x)$.

Additional Locking Rules for AL

- **AL1:** Once t_i has donated a lock on x, it can no longer access x.
- **AL2:** After t_i has donated a lock x, t_i must eventually unlock x.
- AL3: t_i and t_j can simultaneously hold conflicting locks only if t_i has donated its lock on x.

Definition 4.27:

- (i) $p_j(x)$ is **in the wake** of t_i ($i \neq j$) in s if $d_i(x) <_s p_j(x) <_s ou_i(x)$.
- (ii) t_j is in the wake of t_i if some operation of t_j is in the wake of t_i.
 t_j is completely in the wake of t_i if all its operations are in the wake of t_i.
- (iii) t_j is **indebted** to t_i in s if there are steps $o_i(x)$, $d_i(x)$, $p_j(x)$ s.t. $p_j(x)$ is in the wake of t_i and $(p_j(x) \text{ and } o_i(x) \text{ are in conflict or}$ there is $q_k(x)$ conflicting with both $p_i(x)$ and $o_i(x)$ and $o_i(x) <_s q_k(x) <_s p_j(x)$.
- AL4: When t_j is indebted to t_i , t_j must remain completely in the wake of t_i .
- AL: locking with rules LR1 LR4, two-phase property, donations, and rules AL1 AL4 .

AL Example

Example:

 $\begin{array}{l} rl_{1}(a) \ r_{1}(a) \ d_{1}(a) \ wl_{3}(a) \ w_{3}(a) \ wu_{3}(a) \ c_{3} \\ rl_{2}(a) \ r_{2}(a) \ wl_{2}(b) \ ru_{2}(a) \ w_{2}(b) \ wu_{2}(b) \ c_{2} \ rl_{1}(b) \ r_{1}(b) \ ru_{1}(a) \ ru_{1}(b) \ c_{1} \end{array}$

 \rightarrow disallowed by AL (even \notin CSR)

Example corrected using rules AL1 - AL4: $rl_1(a) r_1(a) d_1(a) wl_3(a) w_3(a) wu_3(a) c_3$ $rl_2(a) r_2(a) rl_1(b) r_1(b) ru_1(a) ru_1(b) c_1 wl_2(b) ru_2(a) w_2(b) wu_2(b) c_2$

 \rightarrow admitted by AL (t₂ stays completely in the wake of t₁)

Correctness and Properties of AL

Theorem 4.8: $Gen(2PL) \subset Gen(AL)$.

Theorem 4.9: $Gen(AL) \subset CSR$

Example:

 $s = r_1(x) r_2(z) r_3(z) w_2(x) c_2 w_3(y) c_3 r_1(y) r_1(z) c_1$

 $\rightarrow \in CSR, \\ but \notin Gen(AL)$

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

(Write-only) Tree Locking

Motivating example:

concurrent executions of transactions with access patterns that comply with organizing data items into a virtual tree

$$\begin{split} t_1 &= w_1(a) \ w_1(b) \ w_1(d) \ w_1(e) \ w_1(i) \ w_1(k) \\ t_2 &= w_2(a) \ w_2(b) \ w_2(c) \ w_2(d) \ w_2(h) \end{split}$$

(Write-only) Tree Locking

Motivating example:

concurrent executions of transactions with access patterns that comply with organizing data items into a virtual tree

 $t_1 = w_1(a) w_1(b) w_1(d) w_1(e) w_1(i) w_1(k)$ $t_2 = w_2(a) w_2(b) w_2(c) w_2(d) w_2(h)$

Definition (Write-only Tree Locking (WTL)):
Under the write-only tree locking protocol (WTL) lock requests and releases must obey LR1 - LR4 and the following additional rules:
WTL1: A lock on a node x other than the tree root can be acquired only if the transaction already holds a lock on the parent of x.
WTL2: After a wu_i(x) no further wl_i(x) is allowed (on the same x).

Example:

 $wl_1(a) \ w_1(a) \ w_1(b) \ w_1(a) \ w_1(b) \ w_2(a) \ w_2(a) \ w_1(d) \ w_1(d) \ w_1(d) \ w_1(d) \ w_1(e) \ w_1(b) \ w_1(e) \ w_2(b) \ w_2(b) \ w_2(b) \ \dots$

Correctness and Properties of WTL

Lemma 4.6:

If t_i locks x before t_j does in schedule s, then for each successor v of x that is locked by both t_i and t_j the following holds: $wl_i(v) <_s wu_i(v) <_s wl_j(v)$.

Theorem 4.10: $Gen(WTL) \subseteq CSR.$

Theorem 4.11: WTL is deadlock-free.

Comment: WTL is applicable even if a transaction's access patterns are not tree-compliant, but then locks must still be obtained along all relevant paths in the tree using the WTL rules.

Read-Write Tree Locking

Problem: t_i locks root before t_j does, but t_j passes t_i within a "read zone"

Example:

 $\begin{array}{l} rl_1(a) \ rl_1(b) \ r_1(a) \ r_1(b) \ wl_1(a) \ wl_1(a) \ wl_1(b) \ ul_1(a) \ rl_2(a) \ r_2(a) \\ w_1(b) \ rl_1(e) \ ul_1(b) \ rl_2(b) \ r_2(b) \ ul_2(a) \ rl_2(e) \ rl_2(i) \ ul_2(b) \ r_2(e) \ r_1(e) \\ r_2(i) \ wl_2(i) \ wl_2(k) \ ul_2(e) \ ul_2(i) \ rl_1(i) \ ul_1(e) \ r_1(i) \ ... \end{array}$

→ appears to follow TL rules but ∉ CSR

Solution: formalize "read zone" and enforce two-phase property on "read zones"

Locking Rules of RWTL

For transaction t with read set RS(t) and write set WS(t) let $C_1, ..., C_m$ be the connected components of RS(t). A **pitfall** of t is a set of the form $C_i \cup \{x \in WS(t) \mid x \text{ is a child or parent of some } y \in C_i\}.$

Definition (read-write tree locking (RWTL)): Under the **read-write tree locking protocol (RWTL)** lock requests and releases Must obey LR1 - LR4, WTL1, WTL2, and the two-phase property within each pitfall.

Example:

t with RS(t)={f, i, g} and WS(t)={c, l, j, k, o} has pitfalls p_1 ={c, f, i, l, j} and p_2 ={g, c, k}.

Correctness and Generalization of RWTL

Theorem 4.12: Gen (RWTL) \subseteq CSR.

RWTL can be generalized for a DAG organization of data items into a **DAG locking** protocol with the following additional rule: t_i is allowed to lock data item x only if holds locks on a majority of the predecessors of x.

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
 - 4.4.1 Timestamp Ordering
 - 4.4.2 Serialization-Graph Testing
 - 4.4.3 Optimistic Protocols
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

(Basic) Timestamp Ordering

Timestamp ordering rule (TO rule):

Each transaction t_i is assigned a **unique timestamp ts**(t_i) (e.g., the time of t_i 's beginning). If $p_i(x)$ and $q_j(x)$ are in conflict, then the following must hold: $p_i(x) <_s q_i(x)$ iff $ts(t_i) < ts(t_i)$ for every schedule s.

Theorem 4.15: Gen (TO) \subseteq CSR.

Basic timestamp ordering protocol (BTO):

- For each data item x maintain max-r (x) = max{ts(t_j) | r_j(x) has been scheduled} and max-w (x) = max{ts(t_j) | w_j(x) has been scheduled}.
- Operation $p_i(x)$ is compared to max-q (x) for each conflicting q:
 - if $ts(t_i) < max-q(x)$ for some q then abort t_i
 - \bullet else schedule $p_i(x)$ for execution and set max-p (x) to $ts(t_i)$

BTO Example

 $s = r_1(x) w_2(x) r_3(y) w_2(y) c_2 w_3(z) c_3 r_1(z) c_1$

 $r_1(x) w_2(x) r_3(y) a_2 w_3(z) c_3 a_1$

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
 - 4.4.1 Timestamp Ordering
 - 4.4.2 Serialization-Graph Testing
 - 4.4.3 Optimistic Protocols
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Serialization Graph Testing (SGT)

SGT protocol:

- \bullet For $p_i(x)$ create a new node in the graph if it is the first operation of t_i
- Insert edges (t_j, t_i) for each $q_j(x) <_s p_i(x)$ that is in conflict with $p_i(x)$ $(i \neq j)$.
- If the graph has become cyclic then abort t_i (and remove it from the graph) else schedule $p_i(x)$ for execution.

Serialization Graph Testing (SGT)

SGT protocol:

- \bullet For $p_i(x)$ create a new node in the graph if it is the first operation of t_i
- Insert edges (t_i, t_i) for each $q_i(x) <_s p_i(x)$ that is in conflict with $p_i(x)$ $(i \neq j)$.
- If the graph has become cyclic then abort t_i (and remove it from the graph) else schedule $p_i(x)$ for execution.

Theorem 4.16: Gen (SGT) = CSR.

Serialization Graph Testing (SGT)

SGT protocol:

- \bullet For $p_i(x)$ create a new node in the graph if it is the first operation of t_i
- Insert edges (t_i, t_i) for each $q_i(x) <_s p_i(x)$ that is in conflict with $p_i(x)$ $(i \neq j)$.
- If the graph has become cyclic then abort t_i (and remove it from the graph) else schedule $p_i(x)$ for execution.

Theorem 4.16: Gen (SGT) = CSR.

Node deletion rule:

A node t_i in the graph (and its incident edges) can be removed when t_i is terminated and is a source node (i.e., has no incoming edges).

Example:

 $r_1(x) w_2(x) w_2(y) c_2 r_1(y) c_1$ removing node t_2 at the time of c_2 would make it impossible to detect the cycle.

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
 - 4.4.1 Timestamp Ordering
 - 4.4.2 Serialization-Graph Testing
 - 4.4.3 Optimistic Protocols
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Optimistic Protocols

Motivation: conflicts are infrequent

Approach: divide each transaction t into three phases: read phase: execute transaction with writes into private workspace validation phase (certifier): upon t's commit request test if schedule remains CSR if t is committed now based on t's read set RS(t) and write set WS(t)write phase: upon successful validation transfer the workspace contents into the database (deferred writes)

otherwise abort t (i.e., discard workspace)

Backward-oriented Optimistic CC (BOCC)

Execute a transaction's validation and write phase together as a **critical section**: while t_i being in the **val-write phase**, no other t_k can enter its val-write phase

BOCC validation of t_j : compare t_j to all previously committed t_i accept t_j if one of the following holds • t_i has ended before t_j has started, or • $RS(t_i) \cap WS(t_i) = \emptyset$ and t_i has validated before t_i

Backward-oriented Optimistic CC (BOCC)

Execute a transaction's validation and write phase together as a **critical section**: while t_i being in the **val-write phase**, no other t_k can enter its val-write phase

BOCC validation of t_j : compare t_j to all previously committed t_i accept t_j if one of the following holds

- t_i has ended before t_i has started, or
- $RS(t_i) \cap WS(t_i) = \emptyset$ and t_i has validated before t_i

Theorem 4.46: Gen (BOCC) \subset CSR.

Proof:

Assume that G(s) is acyclic. Adding a newly validated transaction can insert only edges into the new node, but no outgoing edges (i.e., the new node is last in the serialization order).

BOCC Example

Forward-oriented Optimistic CC (FOCC)

Execute a transaction's val-write phase as a **strong critical section**: while t_i being in the **val-write phase**, no other t_k can perform any steps.

FOCC validation of t_i:

compare t_j to all concurrently active t_i (which must be in their read phase) accept t_i if $WS(t_i) \cap RS^*(t_i) = \emptyset$ where $RS^*(t_i)$ is the current read set of t_i

Forward-oriented Optimistic CC (FOCC)

Execute a transaction's val-write phase as a **strong critical section**: while t_i being in the **val-write phase**, no other t_k can perform any steps.

FOCC validation of t_i:

compare t_i to all concurrently active t_i (which must be in their read phase) accept t_i if $WS(t_i) \cap RS^*(t_i) = \emptyset$ where $RS^*(t_i)$ is the current read set of t_i

Remarks:

- FOCC is much more flexible than BOCC: upon unsuccessful validation of t_i it has three options:
 - abort t_i
 - abort one of the active t_i for which $RS^*(t_i)$ and $WS(t_i)$ intersect
 - \bullet wait and retry the validation of t_{j} later

(after the commit of the intersecting t_i)

• Read-only transactions do not need to validate at all.

Correctness of FOCC

Theorem 4.18: Gen (FOCC) \subset CSR.

Proof:

Assume that G(s) has been acyclic and that validating t_j would create a cycle. So t_j would have to have an outgoing edge to an already committed t_k . However, for all previously committed t_k the following holds:

- If t_k was committed before t_j started, then no edge (t_j, t_k) is possible.
- If t_j was in its read phase when t_k validated, then WS(t_k) must be disjoint with RS*(t_j) and all later reads of t_j and all writes of t_j must follow t_k (because of the strong critical section); so neither a wr nor a ww/rw edge (t_j, t_k) is possible.

FOCC Example

Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Hybrid Protocols

Idea: Combine different protocols,

each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the **union** of the underlying "local" conflict graphs is acyclic.

Hybrid Protocols

Idea: Combine different protocols,

each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the **union** of the underlying "local" conflict graphs is acyclic.

Example 4.15:

use SS2PL for rw/wr synchronization and TO or TWR for ww with **TWR (Thomas' write rule)** as follows:

for $w_i(x)$: if $ts(t_i) > max-w(x)$ then execute $w_i(x)$ else do nothing

$$s_{1} = w_{1}(x) r_{2}(y) w_{2}(x) w_{2}(y) c_{2} w_{1}(y) c_{1}$$

$$s_{2} = w_{1}(x) r_{2}(y) w_{2}(x) w_{2}(y) c_{2} r_{1}(y) w_{1}(y) c_{1}$$

both accepted by SS2PL/TWR with $ts(t_1) < ts(t_2)$, but s_2 is not CSR

Hybrid Protocols

Idea: Combine different protocols,

each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the **union** of the underlying "local" conflict graphs is acyclic.

Example 4.15:

use SS2PL for rw/wr synchronization and TO or TWR for ww with **TWR (Thomas' write rule)** as follows:

for $w_i(x)$: if $ts(t_i) > max-w(x)$ then execute $w_i(x)$ else do nothing

$$s_{1} = w_{1}(x) r_{2}(y) w_{2}(x) w_{2}(y) c_{2} w_{1}(y) c_{1}$$

$$s_{2} = w_{1}(x) r_{2}(y) w_{2}(x) w_{2}(y) c_{2} r_{1}(y) w_{1}(y) c_{1}$$

both accepted by SS2PL/TWI
with ts(t_{1}) < ts(t_{2}),
but s_{2} is not CSR

Problem with s₂: needs synch among the two "local" serialization orders

Solution: assign timestamps such that the serialization orders of SS2PL and TWR are in line $\rightarrow ts(i) < ts(j) \Leftrightarrow c_i < c_j$
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

Lessons Learned

- S2PL is the most versatile and robust protocol and widely used in practice
- Knowledge about specifically restricted access patterns facilitates non-two-phase locking protocols (e.g., TL, AL)
- O2PL and SGT are more powerful but have more overhead
- FOCC can be attractive for specific workloads
- Hybrid protocols are conceivable but non-trivial