
1 / 53

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 53

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

“

The optimist believes we live in the best of all possible worlds.

The pessimist fears this is true.

”

(Robert Oppenheimer)

4 / 53

Transaction Scheduler

Database

Data

Server

Clients

Requests

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Client 2

Client 1

Client 3

1

1

1

1

2

2

2

3

3

3

3

3

...

Data

Manager

(DM)

Transaction

Manager

(TM)

1

1

2

2

3

3

5 / 53

Scheduler Actions and Transaction

States

running

blocked

aborted

committed

active

block

resume

commit

reject

begin

restart

5 / 53

Scheduler Actions and Transaction

States

running

blocked

aborted

committed

active

block

resume

commit

reject

begin

restart

Definition 4.1 (CSR Safety):

For a scheduler S,

Gen(S)

denotes the set of all schedules that

S can generate. A scheduler is called

CSR safe

if Gen(S)

⊆

CSR.

6 / 53

Scheduler Classification

concurrency control protocols

pessimistic

optimistic

non

-

locking

locking

BOCC

FOCC

TO

SGT

two

-

phase

non

-

two

-

phase

AL

O2PL

2PL

hybrid

C2PL

S2PL

SS2PL

WTL

RWTL

7 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.3.1 Introduction

•

4.3.2 Two

-

Phase Locking (2PL)

•

4.3.3 Deadlock Handling

•

4.3.4 Variants of 2PL

•

4.3.5 Ordered Sharing of Locks (O2PL)

•

4.3.6 Altruistic Locking (AL)

•

4.3.7 Non

-

Two

-

Phase Locking (WTL, RWTL)

•

4.3.8 Geometry of Locking

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

8 / 53

General Locking Rules

For each step the scheduler

requests a lock

on behalf of the step's transaction.

Each lock is requested in a specific

mode (read or write)

.

If the data item is not yet locked in an

incompatible mode

the lock is granted;

otherwise there is a

lock conflict

and the transaction becomes

blocked

(suffers a

lock wait

) until the current lock holder

releases the lock

.

8 / 53

General Locking Rules

For each step the scheduler

requests a lock

on behalf of the step's transaction.

Each lock is requested in a specific

mode (read or write)

.

If the data item is not yet locked in an

incompatible mode

the lock is granted;

otherwise there is a

lock conflict

and the transaction becomes

blocked

(suffers a

lock wait

) until the current lock holder

releases the lock

.

Compatibility of locks:

+

_

_

_

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

lock

holder

lock requestor

8 / 53

General Locking Rules

For each step the scheduler

requests a lock

on behalf of the step's transaction.

Each lock is requested in a specific

mode (read or write)

.

If the data item is not yet locked in an

incompatible mode

the lock is granted;

otherwise there is a

lock conflict

and the transaction becomes

blocked

(suffers a

lock wait

) until the current lock holder

releases the lock

.

Compatibility of locks:

+

_

_

_

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

lock

holder

lock requestor

General locking rules:

LR1

: Each data operation o

i

(x) must be preceded by ol

i

(x) and followed by ou

i

(x).

LR2

: For each x and t

i

there is at most one ol

i

(x) and at most one ou

i

(x).

LR3

: No ol

i

(x) or ou

i

(x) is redundant.

LR4

: If x is locked by both t

i

and t

j

, then these locks are compatible.

9 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.3.1 Introduction

•

4.3.2 Two

-

Phase Locking (2PL)

•

4.3.3 Deadlock Handling

•

4.3.4 Variants of 2PL

•

4.3.5 Ordered Sharing of Locks (O2PL)

•

4.3.6 Altruistic Locking (AL)

•

4.3.7 Non

-

Two

-

Phase Locking (WTL, RWTL)

•

4.3.8 Geometry of Locking

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

10 / 53

Two

-

Phase Locking (2PL)

Definition 4.2 (2PL):

A locking protocol is

two

-

phase (2PL)

if for every output schedule s and every

transaction t

i

∈

trans(s) no ql

i

step follows the first ou

i

step (q, o

∈

{r, w}).

Example 4.4:

s =

w

1

(x)

r

2

(x)

w

1

(y) w

1

(z)

r

3

(z)

c

1

w

2

(y)

w

3

(y)

c

2

w

3

(z) c

3

10 / 53

Two

-

Phase Locking (2PL)

Definition 4.2 (2PL):

A locking protocol is

two

-

phase (2PL)

if for every output schedule s and every

transaction t

i

∈

trans(s) no ql

i

step follows the first ou

i

step (q, o

∈

{r, w}).

Example 4.4:

s =

w

1

(x)

r

2

(x)

w

1

(y) w

1

(z)

r

3

(z)

c

1

w

2

(y)

w

3

(y)

c

2

w

3

(z) c

3

t

1

w

1

(x)

w

1

(y)

w

1

(z)

t

2

r

2

(x)

w

2

(y

)

t

3

r

3

(z)

w

3

(y)

w

3

(z)

10 / 53

Two

-

Phase Locking (2PL)

Definition 4.2 (2PL):

A locking protocol is

two

-

phase (2PL)

if for every output schedule s and every

transaction t

i

∈

trans(s) no ql

i

step follows the first ou

i

step (q, o

∈

{r, w}).

Example 4.4:

s =

w

1

(x)

r

2

(x)

w

1

(y) w

1

(z)

r

3

(z)

c

1

w

2

(y)

w

3

(y)

c

2

w

3

(z) c

3

t

1

w

1

(x)

w

1

(y)

w

1

(z)

t

2

r

2

(x)

w

2

(y

)

t

3

r

3

(z)

w

3

(y)

w

3

(z)

wl

1

(x) w

1

(x) wl

1

(y) w

1

(y) wl

1

(z) w

1

(z) wu

1

(x)

rl

2

(x) r

2

(x)

wu

1

(y) wu

1

(z) c

1

rl

3

(z) r

3

(z)

wl

2

(y) w

2

(y) wu

2

(y) ru

2

(x) c

2

wl

3

(y) w

3

(y) wl

3

(z) w

3

(z) wu

3

(z) wu

3

(y) c

3

11 / 53

Correctness and Properties of 2PL

Theorem 4.1:

Gen(2PL)

⊂

CSR (i.e., 2PL is CSR

-

safe).

Example 4.5:

s =

w

1

(x)

r

2

(x) c

2

r

3

(y) c

3

w

1

(y)

c

1

∈

CSR

but

∉

Gen(2PL) for

wu

1

(x)

<

rl

2

(x)

and ru

3

(y) <

wl

1

(y)

,

rl

2

(x)

<

r

2

(x)

and r

3

(y) < ru

3

(y), and

r

2

(x)

< r

3

(y)

would imply

wu

1

(x)

<

wl

1

(y)

which contradicts the two

-

phase property.

11 / 53

Correctness and Properties of 2PL

Theorem 4.1:

Gen(2PL)

⊂

CSR (i.e., 2PL is CSR

-

safe).

Example 4.5:

s =

w

1

(x)

r

2

(x) c

2

r

3

(y) c

3

w

1

(y)

c

1

∈

CSR

but

∉

Gen(2PL) for

wu

1

(x)

<

rl

2

(x)

and ru

3

(y) <

wl

1

(y)

,

rl

2

(x)

<

r

2

(x)

and r

3

(y) < ru

3

(y), and

r

2

(x)

< r

3

(y)

would imply

wu

1

(x)

<

wl

1

(y)

which contradicts the two

-

phase property.

Theorem 4.2:

Gen(2PL)

⊂

OCSR

Example:

w

1

(x)

r

2

(x)

r

3

(y)

r

2

(z)

w

1

(y)

c

3

c

1

c

2

12 / 53

Proof of 2PL Correctness

Let s be the output of a 2PL scheduler, and let G be the conflict graph of

CP (DT(s)) where DT is the projection onto data and termination operations

and CP is the committed projection.

The following holds (Lemma 4.2):

(i)

If (t

i

, t

j

) is an edge in G, then pu

i

(x) < ql

j

(x) for some x with conflicting p, q.

(ii)

If (t

1

, t

2

, ..., t

n

) is a path in G, then pu

1

(x) < ql

n

(y) for some x, y.

(iii)

G is acyclic.

This can be shown as follows:

(i)

By locking rules LR1 through LR4.

(ii)

By induction on n.

(iii)

Assume G has a cycle of the form (t

1

, t

2

, ..., t

n

, t

1

).

By (ii), pu

1

(x) < ql

1

(y) for some x, y,

which contradicts the two

-

phase property.

13 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.3.1 Introduction

•

4.3.2 Two

-

Phase Locking (2PL)

•

4.3.3 Deadlock Handling

•

4.3.4 Variants of 2PL

•

4.3.5 Ordered Sharing of Locks (O2PL)

•

4.3.6 Altruistic Locking (AL)

•

4.3.7 Non

-

Two

-

Phase Locking (WTL, RWTL)

•

4.3.8 Geometry of Locking

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

14 / 53

Deadlock Detection

Deadlocks are caused by cyclic lock waits

(e.g., in conjunction with lock conversions).

t

2

w

2

(y)

w

2

(x)

t

1

r

1

(x)

w

1

(y)

Example:

Deadlock detection:

(i)

Maintain dynamic

waits

-

for graph (WFG)

with

active transactions as nodes and

an edge from t

i

to t

j

if t

j

waits for a lock held by t

i

.

(ii)

Test WFG for cycles

•

continuously (i.e., upon each lock wait) or

•

periodically.

15 / 53

Deadlock Resolution

Choose a transaction on a WFG cycle as a

deadlock victim

and abort this transaction,

and repeat until no more cycles.

Possible victim selection strategies:

1.

Last blocked

2.

Random

3.

Youngest

4.

Minimum locks

5.

Minimum work

6.

Most cycles

7.

Most edges

16 / 53

Illustration of Victim Selection Strategies

Most

-

cycles strategy would select t

1

(or t

3

) to break all 5 cycles.

t

1

t

2

t

3

t

6

t

5

t

4

t

7

t

8

t

10

t

9

Example WFG:

16 / 53

Illustration of Victim Selection Strategies

Most

-

cycles strategy would select t

1

(or t

3

) to break all 5 cycles.

t

1

t

2

t

3

t

6

t

5

t

4

t

7

t

8

t

10

t

9

Example WFG:

Example WFG:

t

4

t

3

t

6

t

5

t

1

t

2

Most

-

edges strategy would select t

1

to remove 4 edges.

17 / 53

Deadlock Prevention

Restrict lock waits

to ensure

acyclic WFG

at all times.

Reasonable deadlock prevention strategies:

1.

Wait

-

die:

upon t

i

blocked by t

j

:

if t

i

started before t

j

then wait else abort t

i

2.

Wound

-

wait:

upon t

i

blocked by t

j

:

if t

i

started before t

j

then abort t

j

else wait

3.

Immediate restart:

upon t

i

blocked by t

j

: abort t

i

4.

Running priority:

upon t

i

blocked by t

j

:

if t

j

is itself blocked then abort t

j

else wait

5.

Timeout:

abort waiting transaction when a timer expires

Abort entails later restart.

18 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.3.1 Introduction

•

4.3.2 Two

-

Phase Locking (2PL)

•

4.3.3 Deadlock Handling

•

4.3.4 Variants of 2PL

•

4.3.5 Ordered Sharing of Locks (O2PL)

•

4.3.6 Altruistic Locking (AL)

•

4.3.7 Non

-

Two

-

Phase Locking (WTL, RWTL)

•

4.3.8 Geometry of Locking

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

19 / 53

Variants of 2PL

Definition 4.3 (Conservative 2PL):

Under

static

or

conservative 2PL (C2PL)

each transaction acquires all its locks

before the first data operation (

preclaiming

).

time

time

general 2PL

19 / 53

Variants of 2PL

Definition 4.3 (Conservative 2PL):

Under

static

or

conservative 2PL (C2PL)

each transaction acquires all its locks

before the first data operation (

preclaiming

).

time

time

general 2PL

Definition 4.4 (Strict 2PL):

Under

strict 2PL (S2PL)

each transaction holds all its write locks

until the transaction terminates.

time

19 / 53

Variants of 2PL

Definition 4.3 (Conservative 2PL):

Under

static

or

conservative 2PL (C2PL)

each transaction acquires all its locks

before the first data operation (

preclaiming

).

time

time

general 2PL

Definition 4.4 (Strict 2PL):

Under

strict 2PL (S2PL)

each transaction holds all its write locks

until the transaction terminates.

time

Definition 4.5 (Strong 2PL):

Under

strong 2PL (SS2PL)

each transaction holds all its locks (i.e., both

r and w) until the transaction terminates.

20 / 53

Properties of S2PL and SS2PL

Theorem 4.3:

Gen(SS2PL)

⊂

Gen(S2PL)

⊂

Gen(2PL)

Theorem 4.4:

Gen(SS2PL)

⊂

COCSR

21 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.3.1 Introduction

•

4.3.2 Two

-

Phase Locking (2PL)

•

4.3.3 Deadlock Handling

•

4.3.4 Variants of 2PL

•

4.3.5 Ordered Sharing of Locks (O2PL)

•

4.3.6 Altruistic Locking (AL)

•

4.3.7 Non

-

Two

-

Phase Locking (WTL, RWTL)

•

4.3.8 Geometry of Locking

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

22 / 53

Ordered Sharing of Locks

Motivation:

Example 4.6:

s

1

=

w

1

(x)

r

2

(x)

r

3

(y) c

3

w

1

(y)

c

1

w

2

(z) c

2

∈

COCSR, but

∉

Gen(2PL)

Observation:

the schedule were feasible if

write locks could be shared

s.t. the order of lock acquisitions dictates the order of data operations

Notation:

pl

i

(x)

→

ql

j

(x)

(with

i

≠

j

) for

pl

i

(x) <

s

ql

j

(x)

∧

p

i

(x) <

s

q

j

(x)

Example reconsidered with ordered sharing of locks:

wl

1

(x) w

1

(x)

rl

2

(x) r

2

(x)

rl

3

(y) r

3

(y) ru

3

(y) c

3

wl

1

(y) w

1

(y) wu

1

(x) wu

1

(y) c

1

wl

2

(z) w

2

(z) ru

2

(x) wu

2

(z) c

2

23 / 53

Lock Compatibility Tables With Ordered

Sharing

+

_

_

_

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

1

+

→

_

_

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

2

+

_

_

→

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

3

+

_

→

_

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

4

+

→

_

→

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

5

+

_

→

→

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

6

+

→

→

_

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

7

+

→

→

→

rl

i

(x)

wl

i

(x)

rl

j

(x)

wl

j

(x)

LT

8

24 / 53

Additional Locking Rules for O2PL

OS1 (lock acquisition):

Assuming that pl

i

(x)

→

ql

j

(x) is permitted,

if pl

i

(x) <

s

ql

j

(x) then p

i

(x) <

s

q

j

(x)

must hold.

Example:

wl

1

(x) w

1

(x) wl

2

(x) w

2

(x) wl

2

(y) w

2

(y) wu

2

(x) wu

2

(y) c

2

wl

1

(y) w

1

(y) wu

1

(x) wu

1

(y) c

1

Satisfies OS1,

LR1

–

LR4,

is two

-

phase,

but

∉

CSR

24 / 53

Additional Locking Rules for O2PL

OS1 (lock acquisition):

Assuming that pl

i

(x)

→

ql

j

(x) is permitted,

if pl

i

(x) <

s

ql

j

(x) then p

i

(x) <

s

q

j

(x)

must hold.

Example:

wl

1

(x) w

1

(x) wl

2

(x) w

2

(x) wl

2

(y) w

2

(y) wu

2

(x) wu

2

(y) c

2

wl

1

(y) w

1

(y) wu

1

(x) wu

1

(y) c

1

Satisfies OS1,

LR1

–

LR4,

is two

-

phase,

but

∉

CSR

OS2 (lock release):

If pl

i

(x)

→

ql

j

(x) and t

i

has not yet released any lock, then

t

j

is

order

-

dependent

on t

i

. If such t

i

exists, then t

j

is

on hold

.

While a transaction is on hold, it must not release any locks.

O2PL:

locking with rules LR1

-

LR4, two

-

phase property,

rules OS1

-

OS2, and lock table LT

8

25 / 53

O2PL Example

Example 4.7:

s =

r

1

(x)

w

2

(x)

r

3

(y)

w

2

(y) c

2

w

3

(z) c

3

r

1

(z) c

1

rl

1

(x)

r

1

(x)

wl

2

(x) w

2

(x)

rl

3

(y) r

3

(y)

wl

2

(y) w

2

(y)

wl

3

(z) w

3

(z) ru

3

(y) wu

3

(z) c

3

rl

1

(z) r

1

(z) ru

1

(x) ru

1

(z)

wu

2

(x) wu

2

(y) c

2

c

1

t

1

r

1

(x)

t

2

w

2

(x)

t

3

r

3

(y)

w

2

(y)

w

3

(z)

c

2

c

3

r

1

(z)

26 / 53

Correctness and Properties of O2PL

Theorem 4.5:

Let LT

i

denote the locking protocol with ordered sharing

according to lock compatibility table LT

i

.

For each i, 1

≤

i

≤

8, Gen(LT

i

)

⊆

CSR.

26 / 53

Correctness and Properties of O2PL

Theorem 4.5:

Let LT

i

denote the locking protocol with ordered sharing

according to lock compatibility table LT

i

.

For each i, 1

≤

i

≤

8, Gen(LT

i

)

⊆

CSR.

Theorem 4.6:

Gen(O2PL)

⊆

OCSR

26 / 53

Correctness and Properties of O2PL

Theorem 4.5:

Let LT

i

denote the locking protocol with ordered sharing

according to lock compatibility table LT

i

.

For each i, 1

≤

i

≤

8, Gen(LT

i

)

⊆

CSR.

Theorem 4.6:

Gen(O2PL)

⊆

OCSR

Theorem 4.7:

OCSR

⊆

Gen(O2PL)

Corollary 4.1:

Gen(O2PL

) = OCSR

27 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.3.1 Introduction

•

4.3.2 Two

-

Phase Locking (2PL)

•

4.3.3 Deadlock Handling

•

4.3.4 Variants of 2PL

•

4.3.5 Ordered Sharing of Locks (O2PL)

•

4.3.6 Altruistic Locking (AL)

•

4.3.7 Non

-

Two

-

Phase Locking (WTL, RWTL)

•

4.3.8 Geometry of Locking

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

28 / 53

Altruistic Locking (AL)

Motivation:

Example 4.8:

concurrent executions of

t

1

=

w

1

(a) w

1

(b) w

1

(c) w

1

(d) w

1

(e) w

1

(f) w

1

(g

)

t

2

=

r

2

(a) r

2

(b)

t

3

= r

3

(c) r

3

(e)

Observations:

-

t

2

and t

3

access subsets of the data items accessed by t

1

-

t

1

knows when it is

“

finished

”

with a data item

-

t

1

could

“

pass over

”

locks on specific data items to

transactions that access only data items that t

1

is finished with

(such transactions are

“

in the wake

”

of t

1

)

Notation:

d

i

(x)

for t

i

donating

its lock on x to other transactions

Example with donation of locks:

wl

1

(a) w

1

(a) d

1

(a)

rl

2

(a) r

2

(a)

wl

1

(b) w

1

(b) d

1

(b)

rl

2

(b) r

2

(b)

wl

1

(c) w

1

(c)

...

...

ru

2

(a) ru

2

(b)

...

wu

1

(a) wu

1

(b) wu

1

(c)

...

29 / 53

Additional Locking Rules for AL

AL1:

Once t

i

has donated a lock on x, it can no longer access x.

AL2:

After t

i

has donated a lock x, t

i

must eventually unlock x.

AL3:

t

i

and t

j

can simultaneously hold conflicting locks

only if t

i

has donated its lock on x.

29 / 53

Additional Locking Rules for AL

AL1:

Once t

i

has donated a lock on x, it can no longer access x.

AL2:

After t

i

has donated a lock x, t

i

must eventually unlock x.

AL3:

t

i

and t

j

can simultaneously hold conflicting locks

only if t

i

has donated its lock on x.

Definition 4.27:

(i)

p

j

(x) is

in the wake

of t

i

(i

≠

j) in s if d

i

(x) <

s

p

j

(x) <

s

ou

i

(x).

(ii)

t

j

is in the wake of t

i

if some operation of t

j

is in the wake of t

i

.

t

j

is

completely in the wake

of t

i

if all its operations are in the wake of t

i

.

(iii)

t

j

is

indebted

to t

i

in s if there are steps o

i

(x), d

i

(x), p

j

(x) s.t.

p

j

(x) is in the wake of t

i

and (p

j

(x) and o

i

(x) are in conflict or

there is q

k

(x) conflicting with both p

j

(x) and o

i

(x) and o

i

(x) <

s

q

k

(x) <

s

p

j

(x).

29 / 53

Additional Locking Rules for AL

AL1:

Once t

i

has donated a lock on x, it can no longer access x.

AL2:

After t

i

has donated a lock x, t

i

must eventually unlock x.

AL3:

t

i

and t

j

can simultaneously hold conflicting locks

only if t

i

has donated its lock on x.

Definition 4.27:

(i)

p

j

(x) is

in the wake

of t

i

(i

≠

j) in s if d

i

(x) <

s

p

j

(x) <

s

ou

i

(x).

(ii)

t

j

is in the wake of t

i

if some operation of t

j

is in the wake of t

i

.

t

j

is

completely in the wake

of t

i

if all its operations are in the wake of t

i

.

(iii)

t

j

is

indebted

to t

i

in s if there are steps o

i

(x), d

i

(x), p

j

(x) s.t.

p

j

(x) is in the wake of t

i

and (p

j

(x) and o

i

(x) are in conflict or

there is q

k

(x) conflicting with both p

j

(x) and o

i

(x) and o

i

(x) <

s

q

k

(x) <

s

p

j

(x).

AL4:

When t

j

is indebted to t

i

,

t

j

must remain completely in the wake of t

i

.

AL:

locking with rules LR1

-

LR4, two

-

phase property,

donations, and rules AL1

-

AL4 .

30 / 53

AL Example

Example:

rl

1

(a) r

1

(a) d

1

(a)

wl

3

(a) w

3

(a) wu

3

(a) c

3

rl

2

(a) r

2

(a) wl

2

(b) ru

2

(a) w

2

(b) wu

2

(b) c

2

rl

1

(b) r

1

(b) ru

1

(a) ru

1

(b) c

1

→

disallowed by AL (even

∉

CSR)

Example corrected using rules AL1

-

AL4:

rl

1

(a) r

1

(a) d

1

(a)

wl

3

(a) w

3

(a) wu

3

(a) c

3

rl

2

(a) r

2

(a)

rl

1

(b) r

1

(b) ru

1

(a) ru

1

(b) c

1

wl

2

(b) ru

2

(a) w

2

(b) wu

2

(b) c

2

→

admitted by

AL (

t

2

stays completely in the wake of

t

1

)

31 / 53

Correctness and Properties of AL

Theorem 4.8:

Gen(2PL)

⊂

Gen(AL).

Theorem 4.9:

Gen(AL)

⊂

CSR

Example:

s =

r

1

(x)

r

2

(z)

r

3

(z)

w

2

(x) c

2

w

3

(y) c

3

r

1

(y) r

1

(z) c

1

→

∈

CSR,

but

∉

Gen(AL)

32 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.3.1 Introduction

•

4.3.2 Two

-

Phase Locking (2PL)

•

4.3.3 Deadlock Handling

•

4.3.4 Variants of 2PL

•

4.3.5 Ordered Sharing of Locks (O2PL)

•

4.3.6 Altruistic Locking (AL)

•

4.3.7 Non

-

Two

-

Phase Locking (WTL, RWTL)

•

4.3.8 Geometry of Locking

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

33 / 53

(Write

-

only) Tree Locking

Motivating example:

concurrent executions of transactions with access patterns

that comply with organizing data items into a virtual tree

t

1

=

w

1

(a) w

1

(b) w

1

(d) w

1

(e) w

1

(i) w

1

(k)

t

2

=

w

2

(a) w

2

(b) w

2

(c) w

2

(d) w

2

(h)

a

b

c

d

e

h

i

j

k

f

g

33 / 53

(Write

-

only) Tree Locking

Motivating example:

concurrent executions of transactions with access patterns

that comply with organizing data items into a virtual tree

t

1

=

w

1

(a) w

1

(b) w

1

(d) w

1

(e) w

1

(i) w

1

(k)

t

2

=

w

2

(a) w

2

(b) w

2

(c) w

2

(d) w

2

(h)

a

b

c

d

e

h

i

j

k

f

g

Example:

wl

1

(a) w

1

(a) wl

1

(b) wu

1

(a) w

1

(b)

wl

2

(a) w

2

(a)

wl

1

(d) w

1

(d) wu

1

(d) wl

1

(e) wu

1

(b)

w

1

(e)

wl

2

(b) wu

2

(a) w

2

(b)

...

Definition (Write

-

only Tree Locking (WTL)):

Under the

write

-

only tree locking protocol (WTL)

lock requests and releases

must obey LR1

-

LR4 and the following additional rules:

WTL1:

A lock on a node x other than the tree root can be acquired only

if the transaction already holds a lock on the parent of x.

WTL2:

After a wu

i

(x) no further wl

i

(x) is allowed (on the same x).

34 / 53

Correctness and Properties of WTL

Theorem 4.10:

Gen(WTL)

⊆

CSR.

Theorem 4.11:

WTL is deadlock

-

free.

Lemma 4.6:

If t

i

locks x before t

j

does in schedule s, then for each successor v of x

that is locked by both t

i

and t

j

the following holds: wl

i

(v) <

s

wu

i

(v) <

s

wl

j

(v).

Comment:

WTL is applicable even if a transaction's access patterns

are not tree

-

compliant, but then locks must still be obtained

along all relevant paths in the tree using the WTL rules.

35 / 53

Read

-

Write Tree Locking

Problem:

t

i

locks root before t

j

does,

but t

j

passes t

i

within a

“

read zone

”

Solution:

formalize

“

read zone

”

and enforce two

-

phase property on

“

read zones

”

Example:

rl

1

(a) rl

1

(b) r

1

(a) r

1

(b) wl

1

(a)

w

1

(a)

wl

1

(b) ul

1

(a)

rl

2

(a)

r

2

(a)

w

1

(b) rl

1

(e) ul

1

(b)

rl

2

(b) r

2

(b) ul

2

(a) rl

2

(e) rl

2

(i) ul

2

(b) r

2

(e)

r

1

(e)

r

2

(i) wl

2

(i)

w

2

(i)

wl

2

(k) ul

2

(e) ul

2

(i)

rl

1

(i) ul

1

(e)

r

1

(i)

...

a

b

c

d

e

h

i

j

k

f

g

→

appears to follow TL rules

but

∉

CSR

36 / 53

Locking Rules of RWTL

For transaction t with read set RS(t) and write set WS(t)

let C

1

, ..., C

m

be the connected components of RS(t).

A

pitfall

of t is a set of the form

C

i

∪

{x

∈

WS(t) | x is a child or parent of some y

∈

C

i

}.

Example:

t with RS(t)={f, i, g} and WS(t)={c, l, j, k, o}

has pitfalls pf

1

={c, f, i, l, j} and pf

2

={g, c, k}

.

a

b

c

d

h

f

g

e

i

j

k

o

l

m

n

Definition (read

-

write tree locking (RWTL)):

Under the

read

-

write tree locking protocol (RWTL)

lock requests and releases

Must obey LR1

-

LR4, WTL1, WTL2, and the two

-

phase property within each pitfall.

37 / 53

Correctness and Generalization of

RWTL

Theorem 4.12:

Gen (RWTL)

⊆

CSR.

RWTL can be generalized for a DAG organization of data items

into a

DAG locking

protocol with the following additional rule:

t

i

is allowed to lock data item x only if holds locks on

a majority of the predecessors of x.

38 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.4 Non

-

Locking Schedulers

•

4.4.1 Timestamp Ordering

•

4.4.2 Serialization

-

Graph Testing

•

4.4.3 Optimistic Protocols

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

39 / 53

(Basic) Timestamp Ordering

Timestamp ordering rule (TO rule):

Each transaction t

i

is assigned a

unique timestamp ts(t

i

)

(e.g., the time of t

i

's beginning).

If p

i

(x) and q

j

(x) are in conflict, then the following must hold:

p

i

(x) <

s

q

j

(x) iff ts(t

i

) < ts(t

j

)

for every schedule s.

Theorem 4.15:

Gen (TO)

⊆

CSR.

Basic timestamp ordering protocol (BTO):

•

For each data item x maintain max

-

r (x) = max{ts(t

j

) | r

j

(x) has been scheduled}

and max

-

w (x) = max{ts(t

j

) | w

j

(x) has been scheduled}.

•

Operation p

i

(x) is compared to max

-

q (x) for each conflicting q:

•

if ts(t

i

) < max

-

q (x) for some q then abort t

i

•

else schedule p

i

(x) for execution and set max

-

p (x) to ts(t

i

)

40 / 53

BTO Example

s =

r

1

(x)

w

2

(x)

r

3

(y)

w

2

(y) c

2

w

3

(z) c

3

r

1

(z) c

1

r

1

(x)

w

2

(x)

r

3

(y)

a

2

w

3

(z) c

3

a

1

t

1

r

1

(x)

t

2

w

2

(x)

t

3

r

3

(y)

w

2

(y)

w

3

(z)

abort

c

3

r

1

(z)

abort

41 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.4 Non

-

Locking Schedulers

•

4.4.1 Timestamp Ordering

•

4.4.2 Serialization

-

Graph Testing

•

4.4.3 Optimistic Protocols

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

42 / 53

Serialization Graph Testing (SGT)

SGT protocol:

•

For p

i

(x) create a new node in the graph if it is the first operation of t

i

•

Insert edges (t

j

, t

i

) for each q

j

(x) <

s

p

i

(x) that is in conflict with p

i

(x) (i

≠

j).

•

If the graph has become cyclic then abort t

i

(and remove it from the graph)

else schedule p

i

(x) for execution.

42 / 53

Serialization Graph Testing (SGT)

SGT protocol:

•

For p

i

(x) create a new node in the graph if it is the first operation of t

i

•

Insert edges (t

j

, t

i

) for each q

j

(x) <

s

p

i

(x) that is in conflict with p

i

(x) (i

≠

j).

•

If the graph has become cyclic then abort t

i

(and remove it from the graph)

else schedule p

i

(x) for execution.

Theorem 4.16:

Gen (SGT) = CSR.

42 / 53

Serialization Graph Testing (SGT)

SGT protocol:

•

For p

i

(x) create a new node in the graph if it is the first operation of t

i

•

Insert edges (t

j

, t

i

) for each q

j

(x) <

s

p

i

(x) that is in conflict with p

i

(x) (i

≠

j).

•

If the graph has become cyclic then abort t

i

(and remove it from the graph)

else schedule p

i

(x) for execution.

Theorem 4.16:

Gen (SGT) = CSR.

Node deletion rule:

A node t

i

in the graph (and its incident edges) can be removed

when t

i

is terminated and is a source node (i.e., has no incoming edges).

Example:

r

1

(x)

w

2

(x) w

2

(y) c

2

r

1

(y) c

1

removing node t

2

at the time of c

2

would make it impossible to detect the cycle.

43 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.4 Non

-

Locking Schedulers

•

4.4.1 Timestamp Ordering

•

4.4.2 Serialization

-

Graph Testing

•

4.4.3 Optimistic Protocols

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

44 / 53

Optimistic Protocols

Motivation:

conflicts are infrequent

Approach:

divide each transaction t into three phases:

read phase:

execute transaction with writes into

private workspace

validation phase (certifier):

upon t's commit request

test if schedule remains CSR if t is committed now

based on t's read set RS(t) and write set WS(t)

write phase:

upon successful validation

transfer the workspace contents into the database

(

deferred writes

)

otherwise abort t (i.e., discard workspace)

45 / 53

Backward

-

oriented Optimistic CC

(BOCC)

BOCC validation

of t

j

:

compare t

j

to all previously committed t

i

accept t

j

if one of the following holds

•

t

i

has ended before t

j

has started, or

•

RS(t

j

)

∩

WS(t

i

) =

∅

and t

i

has validated before t

j

Execute a transaction's validation and write phase together as a

critical section

:

while t

i

being in the

val

-

write phase

, no other t

k

can enter its val

-

write phase

45 / 53

Backward

-

oriented Optimistic CC

(BOCC)

BOCC validation

of t

j

:

compare t

j

to all previously committed t

i

accept t

j

if one of the following holds

•

t

i

has ended before t

j

has started, or

•

RS(t

j

)

∩

WS(t

i

) =

∅

and t

i

has validated before t

j

Execute a transaction's validation and write phase together as a

critical section

:

while t

i

being in the

val

-

write phase

, no other t

k

can enter its val

-

write phase

Theorem 4.46:

Gen (BOCC)

⊂

CSR.

Proof:

Assume that G(s) is acyclic. Adding a newly validated transaction

can insert only edges into the new node, but no outgoing edges

(i.e., the new node is last in the serialization order).

46 / 53

BOCC Example

t

1

r

1

(x)

r

1

(y)

w

1

(x)

read

phase

write

phase

val.

t

2

r

2

(y)

r

2

(z)

w

2

(z)

val.

t

3

r

3

(x)

r

3

(y)

val.

abort

t

4

r

4

(x)

val.

w

4

(x)

47 / 53

Forward

-

oriented Optimistic CC

(FOCC)

FOCC validation

of t

j

:

compare t

j

to all concurrently active t

i

(which must be in their read phase)

accept t

j

if WS(t

j

)

∩

RS*(t

i

) =

∅

where RS*(t

i

) is the current read set of t

i

Execute a transaction's val

-

write phase as a

strong critical section

:

while t

i

being in the

val

-

write phase

, no other t

k

can perform any steps.

47 / 53

Forward

-

oriented Optimistic CC

(FOCC)

FOCC validation

of t

j

:

compare t

j

to all concurrently active t

i

(which must be in their read phase)

accept t

j

if WS(t

j

)

∩

RS*(t

i

) =

∅

where RS*(t

i

) is the current read set of t

i

Execute a transaction's val

-

write phase as a

strong critical section

:

while t

i

being in the

val

-

write phase

, no other t

k

can perform any steps.

Remarks:

•

FOCC is much more flexible than BOCC:

upon unsuccessful validation of t

j

it has three options:

•

abort t

j

•

abort one of the active t

i

for which

RS*(t

i

) and WS(t

j

) intersect

•

wait and retry the validation of t

j

later

(after the commit of the intersecting t

i

)

•

Read

-

only transactions do not need to validate at all.

48 / 53

Correctness of FOCC

Theorem 4.18:

Gen (FOCC)

⊂

CSR.

Proof:

Assume that G(s) has been acyclic and that validating t

j

would create a cycle.

So t

j

would have to have an outgoing edge to an already committed t

k

.

However, for all previously committed t

k

the following holds:

•

If t

k

was committed before t

j

started, then no edge (t

j

, t

k

) is possible.

•

If t

j

was in its read phase when t

k

validated, then WS(t

k

) must be

disjoint with RS*(t

j

) and all later reads of t

j

and all writes of t

j

must follow t

k

(because of the strong critical section);

so neither a wr nor a ww/rw edge (t

j

, t

k

) is possible.

49 / 53

FOCC Example

t

1

r

1

(x)

r

1

(y)

w

1

(x)

read

phase

write

phase

val.

t

2

r

2

(y)

r

2

(z)

w

2

(z)

val.

t

3

r

3

(z)

abort

t

4

r

4

(x)

val.

w

4

(y)

r

4

(y)

t

5

r

5

(x)

r

5

(y)

50 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

51 / 53

Hybrid Protocols

Idea:

Combine different protocols,

each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat:

The combination must guarantee that the

union

of the

underlying

“

local

”

conflict graphs is acyclic.

51 / 53

Hybrid Protocols

Idea:

Combine different protocols,

each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat:

The combination must guarantee that the

union

of the

underlying

“

local

”

conflict graphs is acyclic.

Example 4.15:

use SS2PL for rw/wr synchronization and TO or TWR for ww

with

TWR (Thomas‘ write rule)

as follows:

for w

j

(x): if ts(t

j

) > max

-

w (x) then execute w

j

(x) else do nothing

s

1

= w

1

(x) r

2

(y) w

2

(x) w

2

(y) c

2

w

1

(y) c

1

both accepted by SS2PL/TWR

with ts(t

1

) < ts(t

2

),

but s

2

is not CSR

s

2

= w

1

(x) r

2

(y) w

2

(x) w

2

(y) c

2

r

1

(y) w

1

(y) c

1

51 / 53

Hybrid Protocols

Idea:

Combine different protocols,

each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat:

The combination must guarantee that the

union

of the

underlying

“

local

”

conflict graphs is acyclic.

Example 4.15:

use SS2PL for rw/wr synchronization and TO or TWR for ww

with

TWR (Thomas‘ write rule)

as follows:

for w

j

(x): if ts(t

j

) > max

-

w (x) then execute w

j

(x) else do nothing

s

1

= w

1

(x) r

2

(y) w

2

(x) w

2

(y) c

2

w

1

(y) c

1

both accepted by SS2PL/TWR

with ts(t

1

) < ts(t

2

),

but s

2

is not CSR

s

2

= w

1

(x) r

2

(y) w

2

(x) w

2

(y) c

2

r

1

(y) w

1

(y) c

1

Problem with s

2

:

needs synch among the two

“

local

”

serialization orders

Solution:

assign timestamps such that the serialization orders

of SS2PL and TWR are in line

→

ts(i) < ts(j)

⇔

c

i

< c

j

52 / 53

Chapter 4: Concurrency Control

Algorithms

•

4.2 General Scheduler Design

•

4.3 Locking Schedulers

•

4.4 Non

-

Locking Schedulers

•

4.5 Hybrid Protocols

•

4.6 Lessons Learned

53 / 53

Lessons Learned

•

S2PL is the most versatile and robust protocol

and widely used in practice

•

Knowledge about specifically restricted access patterns

facilitates non

-

two

-

phase locking protocols (e.g., TL, AL)

•

O2PL and SGT are more powerful but have more overhead

•

FOCC can be attractive for specific workloads

•

Hybrid protocols are conceivable but non

-

trivial

	Chapter 4
	General Scheduler Design
	Locking Schedulers
	Two-Phase Locking
	Deadlock Handling
	Variants of 2PL
	Ordered Sharing of Locks
	Altruistic Locking
	Non-Two-Phase Locking
	Timestamp Ordering
	Serialization-Graph Testing
	Optimistic Protocols
	Hybrid Protocols
	Lessons Learned

