
Standard Library I

Standard Library I

439



Standard Library I Introduction

The Standard Library

Provides a collection of useful C++ classes and functions
• Is itself implemented in C++
• Part of the ISO C++ standard

• Defines interface, semantics and contracts the implementation has to abide by
(e.g. runtime complexity)

• Implementation is not part of the standard
• Multiple vendors provide their own implementations
• Best known: libstdc++ (used by gcc) and libc++ (used by llvm)

• All features are declared within the std namespace
• Functionality is divided into sub-libraries each consisting of multiple headers
• Includes parts of the C standard library

• For backward compatibility
• Headers begin with “c” (e.g. cstring)
• Never use them unless you absolutely know what you are doing!

440

https://en.cppreference.com/w/cpp/header


Standard Library I Introduction

The Standard Library - Feature Overview (1)
Most important library features:
• Utilities

• Memory management (new, delete, unique_ptr, shared_ptr)
• Error handling (exceptions, assert())
• Time (clocks, durations, timestamps, …)
• Optionals, Variants, Tuples, …

• Strings
• String class
• String views
• C-style string handling

• Containers: array, vector, lists, maps, sets
• Algorithms: (stable) sort, search, max, min, …
• Iterators
• Numerics

• Common mathematic functions (sqrt, pow, mod, log, …)
• Complex numbers
• Random number generation

441

https://en.cppreference.com/w/cpp/header


Standard Library I Introduction

The Standard Library - Feature Overview (2)

• I/O
• Input-/Output streams
• File streams
• String streams

• Threads
• Thread class
• (shared) mutexes
• futures

• And much more
• Localization
• Regex
• Atomics
• Filesystem support
• …

442

https://en.cppreference.com/w/cpp/header


Standard Library I Strings

std::string

std::string is a class encapsulating character sequences
• Manages its own memory (so no need for new/malloc/unique_ptr)
• Has a wide array of member functions, making string manipulation easier
• Knows its own length: No need to worry about null termination!
• Contents are guaranteed to be stored in memory contiguously
• Can be used like a C-style char pointer
• Access to the underlying C-style char pointer via c_str()

std::string is defined in the <string> library header
• It is a typedef to std::basic_string<char>
• std::basic_string also has specializations for 16- and 32-bit character

strings
• Specialization of std::basic_string with custom character types possible

std::string should always be preferred over char pointers!

443

https://en.cppreference.com/w/cpp/header/string


Standard Library I Strings

Creating a std::string

The default constructor creates an empty string of length 0
std::string s;
s.size(); // == 0

Creation from a string literal via constructor argument or assignment
std::string s_constructed("my literal");
std::string s_assigned = "my literal";

Take care for strings that contain null-bytes:
std::string s = "null\0byte!";
std::cout << s << std::endl; // prints "null"

std::string s_with_size("null\0byte!", 10);
std::cout << s_with_size << std::endl; // prints "nullbyte!"

444

https://en.cppreference.com/w/cpp/string/basic_string/basic_string


Standard Library I Strings

Accessing contents of std::string (1)

Single characters can be accessed with at() or array notation
std::string s = "Hello World!";
std::cout << s.at(4) << s[6] << std::endl; // prints "oW"

Since both functions return a reference, this can be used to modify the string
std::string s = "Hello World!";
s.at(4) = 'x';
s[6] = 'Y';
s[10] = s.at(9);
std::cout << s << std::endl; // prints "Hellx Yorll!"

Out of bounds access with array notation results in undefined behaviour, at()
throws an exception

445

https://en.cppreference.com/w/cpp/string/basic_string


Standard Library I Strings

Accessing contents of std::string (2)

Iterators allow iteration over contents
std::string s = "Hello World!";
for (auto iter = s.begin(); iter != s.end(); ++iter) {

++(*iter);
}
std::cout << s << std::endl; // prints "Ifmmp!Xpsme"

For backwards compatibility: c_str() returns null-terminated char pointer
int i_only_know_c(const char* str) {

int len = 0;
while (str) { str++; len++; }
return len;

}

std::string i_am_modern_cpp = "Hello World!";
int len = i_only_know_c(i_am_modern_cpp.c_str()); // 12

446

https://en.cppreference.com/w/cpp/string/basic_string


Standard Library I Strings

Comparing std::string

The std::string class provides a compare() function, comparing two strings
(or substrings) lexicographically
std::string s1 = "Hello World!";
std::string s2 = "Goodbye World!";

std::cout << s1.compare(s2); // 1, G before H
//For substrings:
std::cout << s1.compare(6, 5, s2, 8, 5); //0, both are "World"

If three-way- or substring comparison is not needed, the standard relational
operators <, ==, <=, … can be used instead
std::string u0510 = "breezy badger";
std::string u1804 = "bionic beaver";
std::string u1904 = "disco dingo";

assert(u1904 > u1804); //okay, d after b
assert(u1804 > u0510); //fails, bi before br. Why, Ubuntu?!

447

https://en.cppreference.com/w/cpp/string/basic_string


Standard Library I Strings

std::string Operations

The standard library provides features a modern string library is expected to have,
such as:
• size() or length(): The number of characters in the string
• empty(): Returns true if the string has no characters
• append() and +=: Appends another string or character. No need for manual

memory allocations!
• + concatenates two strings
• find(): Returns the offset of thie first occurence of the substring, or the

constant std::string::npos if not found
• substr(): Returns a new std::string that is a substring at the given

offset and length. Be careful! Most of the times, you probably want a string
view instead of a substring!

448

https://en.cppreference.com/w/cpp/string/basic_string


Standard Library I Strings

std::string_view (1)

Copying strings and creating substrings is expensive
• Whenever a substring is created, data is essentially duplicated
• Huge overhead when handling large amounts of data (e.g. parsing large

JSON files)

std::string_view help avoid expensive copying
• Read-only views on already existing strings
• Internally: Just a pointer and a length
• Creation, substring and copying in constant time (vs. linear for strings)

std::string_view is defined in the <string_view> library header
• Creation: std::string (and optionally size) as constructor argument, from

a char pointer with a length, or from a string literal
• Also has all (read-only) member functions of std::string
• Substring creates another string view in O(1)

Use std::string_view over std::string whenever possible!

449

https://en.cppreference.com/w/cpp/string/basic_string


Standard Library I Strings

std::string_view (2)
Example
std::string s = "garbage garbage garbage interesting garbage";

std::string sub = s.substr(24,11); // With string: O(n)

// With string view:
std::string_view s_view = s; // O(1)
std::string_view sub_view = s_view.substr(24,11); // O(1)

// Or in place:
s_view.remove_prefix(24); // O(1)
s_view.remove_suffix(s_view.size() - 11); // O(1)

// Also useful for function calls:
bool is_eq_naive(std::string a, std::string b) {return a == b; }
bool is_eq_views(std::string_view a, std::string_view b) {

return a == b; }

is_eq_naive("abc", "def"); // 2 allocations at runtime
is_eq_with_views("abc", "def"); // no allocation at runtime

450

https://en.cppreference.com/w/cpp/string/basic_string_view


Standard Library I Strings

String Literals

There are also special literals to construct std::string_view and std::string
objects that deal with null bytes correctly.
To use them, you have to use
using namespace std::literals::string_view_literals or
using namespace std::literals::string_literals.

using namespace std::literals::string_view_literals;
using namespace std::literals::string_literals;

auto s1 = "string_view\0with\0nulls"sv; // s1 is a string_view
auto s2 = "string\0with\0nulls"s; // s2 is a string

std::cout << s1; // prints "string_viewwithnulls"
std::cout << s2; // prints "stringwithnulls"

451

https://en.cppreference.com/w/cpp/string/basic_string_view/operator""sv


Standard Library I Optional, Pair, Tuple

std::optional

std::optional is a class encapsulating a value that might or might not exist
• Defined in the header <optional>
• Some functions might fail or return without a valid result (e.g. looking up a

non-existing file)
• It’s unfavourable to encode such failures with a value of the function domain

(e.g. an empty string when file could not be read)
• std::optional helps to express such results:

• At any point in time, an optional either has a value, or it doesn’t
• If the computation succeeded, it returns an optional containing a value
• If it failed, it returns an optional without a value

• The template parameter T denotes, of which type the optional may contain a
value (e.g. optional<int> might contain an int)

• Guarantees to not dynamically allocate any memory when being assigned a
value

• Is an object, despite supporting the dereference operators * and ->
• Internally implemented as an object with a member of type T and a boolean

452

https://en.cppreference.com/w/cpp/utility/optional


Standard Library I Optional, Pair, Tuple

std::optional: Creation
Optionals are created through its constructor or with std::make_optional:
std::optional<std::string> might_fail(int arg) {

if (arg == 0) {
return std::optional<std::string>("zero");

} else if (arg == 1) {
return "one"; // equivalent to the case above

} else if (arg < 7) {
//std::make_optional takes constructor arguments of type T
return std::make_optional<std::string>("less than 7");

} else {
return std::nullopt; // alternatively: return {}

}
}

The value of an optional can be read whith value() (throws exception when
empty) or dereferenced with * or -> (undefined behavior when empty)
might_fail(3).value(); // "less than 7"
might_fail(8).value(); // throws std::bad_optional_access

*might_fail(3); // "less than 7"
might_fail(6)->size(); // 11
might_fail(7)->empty(); // undefined behavior

453

https://en.cppreference.com/w/cpp/utility/optional


Standard Library I Optional, Pair, Tuple

std::optional: Checking and Accessing
There are multiple ways to check whether an optional has a value:
might_fail(3).has_value(); // true
might_fail(8).has_value(); // false

// Or even simpler:
std::optional<std::string> opt5 = might_fail(5)
if (opt5) { //contextual conversion to bool

opt5->size(); // 11
}

Providing a default value without boilerplate:
might_fail(42).value_or("default"); // "default"

Clearing an optional:
std::optional<std::string> opt5 = might_fail(5)
opt5.has_value(); // true
opt5.reset(); // Clears the value
opt5.has_value(); // false

454

https://en.cppreference.com/w/cpp/utility/optional


Standard Library I Optional, Pair, Tuple

std::pair

std::pair<T, U> is a template class that stores exactly one object of type T
and one of type U.
• Defined in the header <utility>
• Constructor takes object of T and U
• Pairs can also be constructed with std::make_pair()
• Objects can be accessed with first and second
• Can be compared for equality and inequality
• Can be compared lexicographically with <, <=, >, and >=

std::pair<int, double> p1(123, 4.56);
p1.first; // == 123
p1.second; // == 4.56
auto p2 = std::make_pair(456, 1.23);
// p2 has type std::pair<double, int>
p1 < p2; // true

455

https://en.cppreference.com/w/cpp/utility/pair


Standard Library I Optional, Pair, Tuple

std::tuple

std::tuple is a template class with n type template parameters that stores
exactly one object of each of the n types.
• Defined in the header <tuple>
• Constructor takes all objects
• Tuples can also be constructed with std::make_tuple()
• The ith object can be accessed with std::get<i>()
• Just like pairs, tuples define all relational comparison operators

std::pair<int, double, char> t1(123, 4.56, 'x');
std::get<1>(t1); // == 4.56
auto p2 = std::make_tuple(456, 1.23, 'y');
// p2 has type std::tuple<int, double, char>
p1 < p2; // true

456

https://en.cppreference.com/w/cpp/utility/tuple


Standard Library I Optional, Pair, Tuple

std::tie()

Tuples can also contain values of reference type. They can be constructed with
std::tie().
• Can be used to easily “decompose” a tuple into existing variables
• Can also be used to quickly do lexicographic comparison on different objects

auto t = std::make_tuple(123, 4.56);
int a; double b;
std::tie(a, b) = t; // "decompose" t into a and b
// a is now 123, b is 4.56
int x = 456; double y = 1.23;
// Lexicographic comparison on (a, b) and (x, y):
std::tie(a, b) < std::tie(x, y); // true

457

https://en.cppreference.com/w/cpp/utility/tuple/tie


Standard Library I Optional, Pair, Tuple

Structured Bindings and Tuples

• Often, using structured bindings is easier than using std::tie()
• For tuples, auto [a, b, c] = t; initializes a, b, and c with
std::get<0>(t), std::get<1>(t), and std::get<2>(t), respectively

• Also works with auto& and const auto& in which case a, b, and c become
references

• Also works with std::pair

auto t = std::make_tuple(1, 2, 3);
auto [a, b, c] = t; // a, b, c have type int
auto p = std::make_pair(4, 5);
auto& [x, y] = p; // x, y have type int&
x = 123; // p.first is now 123

458

https://en.cppreference.com/w/cpp/language/structured_bindings


Standard Library I Containers

Containers - A Short Overview

A container is an object that stores a collection of other objects
• Manage the storage space for their elements
• Generic: The type(s) of elements stored are template parameter(s)
• Provide member functions for accessing elements directly, or through iterators
• (Most) member functions shared between containers
• Make guarantees about the complexity of their operations:

• Sequence containers (e.g. std::array, std::vector, std::list):
Optimized for sequential access

• Associative containers (e.g. std::set, std::map): Sorted, optimized for
search (O(log n))

• Unordered asscoiative containers (e.g. std::unordered_set,
std::unordered_map): Hashed, optimized for search (amortized: O(1),
worst case: O(n))

Use containers whenever possible! When in doubt, use std::vector!

459

https://en.cppreference.com/w/cpp/container


Standard Library I Containers

std::vector

Vectors are arrays that can dynamically grow in size
• Defined in the header <vector>
• Elements are still stored contiguously
• Elements can be inserted and removed at any position
• Preallocates memory for a certain amount of elements
• Allocates new, larger chunk of memory and moves elements when memory is

exhausted
• Memory for a given amount of elements can be reserved with reserve()
• Time complexity:

• Random access: O(1)
• Insertion and removal at the end: Typically O(1), worst case: O(n) due to

possible reallocation
• Insertion and removal at any other position: O(n)

• Access to the underlying C-style data array with data() member function

460

https://en.cppreference.com/w/cpp/container/vector


Standard Library I Containers

std::vector: Accessing Elements
Vectors are constructed just like arrays:
std::vector<int> fib = {1,1,2,3};

Access elements via C-style array notation, via at(), or through a raw pointer:
fib.at(0) // == 1;
fib[1] // == 1;

int* fib_ptr = fib.data();
fib_ptr[2] // == 3;

Update elements via C-style array notation, via at(), or through a raw pointer:
fib[3] = 43;
fib.at(2) = 42;
fib.data()[1] = 41; // fib is now 1, 41, 42, 43

Note: It is not possible to insert new elements this way! You can only update
existing ones.

461

https://en.cppreference.com/w/cpp/container/vector


Standard Library I Containers

std::vector: Inserting and Removing Elements
Insert or remove elements at the end in constant time:
fib.push_back(5); // fib is now 1, 1, 2, 3, 5
int my_fib = fib.back(); // my_fib is 5
fib.pop_back(); // fib is 1, 1, 2, 3

Inserted or remove elements anywhere with an iterator pointing at the element
after insertion, or the element to be erased respectively:
auto it = fib.begin(); it += 2;
fib.insert(it, 42); // fib is now 1, 1, 42, 2, 3

// insertion invalidated the iterator, get a new one
it = fib.begin(); it +=2;
fib.erase(it); // fib is now again 1, 1, 2, 3

Empty the whole vector with clear:
fib.clear();
fib.empty(); // true
fib.size(); // == 0

462

https://en.cppreference.com/w/cpp/container/vector


Standard Library I Containers

std::vector: Emplacing elements
Construct elements in place to avoid expensive moving around of data:
struct ExpensiveToCopy {

ExpensiveToCopy(int id, std::string comment) :
id(id), comment(std::move(comment)) {}

int id;
std::string comment;

};

std::vector<ExpensiveToCopy> vec;

// The expensive way:
ExpensiveToCopy e1(1,"my comment 1");
vec.push_back(e1); // need to copy e1!
// Better way, use std::move:
vec.push_back(std::move(e1));

// The best way:
vec.emplace_back(2,"my comment 2");

// Also works at any other position:
auto it = vec.begin(); it++;
vec.emplace(it, 3, "my comment 3");

463

https://en.cppreference.com/w/cpp/container/vector


Standard Library I Containers

std::vector: Reserving memory
If the final size of a vector is already known, give the vector a hint to avoid
unnecessary reallocations:
std::vector<int> vec;
vec.reserve(1000000); //enough space for 1000000 elements is allocated
vec.capacity(); // == 1000000
vec.size(); // == 0, do not mix this up with capacity!

for (int i = 0; i < 1000000; i++) {
vec.push_back(i); // no reallocations in this loop!

}

If the vector won’t grow in the future, reduce its capacity to save unused space:
std::vector<int> vec;
vec.reserve(100); // Reserve some space to be sure

// Turns out, we only needed a capacity of 10
for (int i = 0; i < 10; i++) {

vec.push_back(i);
}

// Free the space for the other 90 elements we reserved but didn't need
vec.shrink_to_fit();

464

https://en.cppreference.com/w/cpp/container/vector


Standard Library I Containers

std::unordered_map

Maps are associative containers consisting of key-value pairs
• Defined in the header <unordered_map>
• Keys are required to be unique
• At least two template parameters: Key and T (type of the values)
• Is internally a hash table
• Amortized O(1) complexity for random access, search, insertion, and removal
• No way to access keys or values in order (use std::map for that!)
• Accepts custom hash- and comparison functions through third and fourth

template parameter
Use std::unordered_map if you need a hash table, but don’t need ordering

465

https://en.cppreference.com/w/cpp/container/unordered_map


Standard Library I Containers

std::unordered_map: Accessing Elements
Maps can be constructed pairwise:
std::unordered_map<std::string,double>

name_to_grade {{"maier", 1.3}, {"huber", 2.7}, {"schmidt", 5.0}};

Lookup the value to a key with C-style array notation, or with at():
name_to_grade["huber"]; // == 2.7
name_to_grade.at("schmidt"); // == 5.0

A pair can also be searched for with find:
auto search = name_to_grade.find("schmidt");

if (search != name_to_grade.end()) {
// Returns an iterator pointing to a pair!
search->first; // == "schmidt"
search->second; // == 5.0

}

To check if a key exists, use count:
name_to_grade.count("schmidt"); // == 1
name_to_grade.count("blafasel"); // == 0

count() either returns 0 or 1.
466

https://en.cppreference.com/w/cpp/container/unordered_map


Standard Library I Containers

std::unordered_map: Insertion and Removal
Update or insert elements like this:
name_to_grade["musterfrau"] = 3.0;

In contrast to vectors, the array-notation also allows the insertion of new KV-pairs!
Maps also allow the direct insertion of pairs:
std::pair<std::string, double> pair("mueller", 1.0);
name_to_grade.insert(pair);

// Or simpler:
name_to_grade.insert({"mustermann", 3.7});

// Emplace also works:
name_to_grade.emplace("gruber", 1.7);

Erase elements with erase() or empty the container with clear():
auto search = name_to_grade.find("schmidt");
name_to_grade.erase(search); // removes the pair with "schmidt" as key

name_to_grade.clear(); // removes all elements of name_to_grade

467

https://en.cppreference.com/w/cpp/container/unordered_map


Standard Library I Containers

std::map

In contrast to unordered maps, the keys of std::map are sorted
• Defined in the header <map>
• Interface largely the same to std::unordered_map
• Optionally accepts a custom comparison function as template parameter
• Is internally a tree (usually AVL- or R/B-Tree)
• O(log n) complexity for random access, search, insertion, and removal

std:map also allows to search for ranges:
upper_bound() returns an iterator pointing to the first greater element:
std::map<int, int> x_to_y = {{1, 1}, {3, 9}, {7, 49}};
auto gt3 = x_to_y.upper_bound(3);

while (gt3 != x_to_y.end()) {
std::cout << gt3->first << "->" << gt3->second << ","; // 7->49,

}

lower_bound() returns an iterator pointing to the first element not lower :
auto geq3 = x_to_y.lower_bound(3);

while (geq3 != x_to_y.end()) {
std::cout << geq3->first << "->" << geq3->second << ","; // 3->9, 7->49,

}
468

https://en.cppreference.com/w/cpp/container/map


Standard Library I Containers

std::unordered_set

Sets are associative containers consisting of keys
• Defined in the header <unordered_set>
• Keys are required to be unique (as is expected of a set)
• Template parameter Key for the type of the elements
• Is internally a hash table
• Amortized O(1) complexity for random access, search, insertion, and removal
• No way to access keys in order (use std::set for that!)
• Elements must not be modified! If an element’s hash changes, the container

might get corrupted
• Accepts custom hash- and comparison functions through second and third

template parameter

469

https://en.cppreference.com/w/cpp/container/unordered_set


Standard Library I Containers

std::unordered_set: Checking for Elements
Sets can be constructed just like arrays:
std::unordered_set<std::string>

shopping_list {"milk", "bread", "butter"};

Look for an element with find():
auto search = shopping_list.find("milk");

if (search != shopping_list.end()) {
// Returns an iterator pointing to the element!
*search; // == "milk"

}

Or with count() (returning either 0 or 1):
shopping_list.count("bread"); // == 1
shopping_list.count("blafasel"); // == 0

Check the number of the elements with size():
shopping_list.size(); // == 3
shopping_list.empty(); // false

470

https://en.cppreference.com/w/cpp/container/unordered_set


Standard Library I Containers

std::unordered_set: Insertion and Removal
Update or insert elements like this:
shopping_list.insert("lettuce");

//Emplace also works:
shopping_list.emplace("milk");

insert returns a std::pair<iterator,bool> indicating if insertion succeeded:
auto result = shopping_list.insert("milk");

result.second; // false, as "milk" is already an element of shopping_list
*result.first; // "milk", iterator points to element preventing insertion

result = shopping_list.insert("broccoli");
result.second; // true, "broccoli" was added
*result.first; // "broccoli", iterator points to newly inserted element

Erase elements with erase() or empty it with clear:
auto search = shopping_list.find("milk");
shopping_list.erase(search); // "milk" is no longer an element of shopping_list

shopping_list.clear(); // removes all elements of shopping_list

471

https://en.cppreference.com/w/cpp/container/unordered_set


Standard Library I Containers

std::set

In contrast to unordered sets, the elements of std::set are sorted
• Defined in the header <set>
• Interface largely the same to std::unordered_set
• Optionally accepts a custom comparison function as template parameter
• Is internally a tree (usually AVL- or R/B-Tree)
• O(log n) complexity for random access, search, insertion, and removal

std:set also allows to search for ranges:
upper_bound() returns an iterator pointing to the first greater element:
std::set<int> x = {1, 3, 7};
auto gt3 = x.upper_bound(3);

while (gt3 != x.end()) {
std::cout << x << ","; // 7,

}

lower_bound() returns an iterator pointing to the first element not lower :
std::set<int> x = {1, 3, 7};
auto geq = x.lower_bound(3);

while (geq != x.end()) {
std::cout << x << ","; // 3, 7,

} 472

https://en.cppreference.com/w/cpp/container/set


Standard Library I Containers

Containers: Thread Safety

Containers give some thread safety guarantees:
• Two different containers: All member functions can be called concurrently by

different threads (i.e. different containers don’t share state)
• The same container: All const member functions can be called concurrently.
at(), [] (expect in associative containers), data(), front()/back(),
begin()/end(), find() also count as const

• Iterator operations that only read (e.g. incrementing or dereferencing an
iterator) can be run concurrently with reads of other iterators and const
member functions

• Different elements of the same container can be modified concurrently
• Be careful: As long as the standard does not explicitly require a member

function to be sequential, the standard library implementation is allowed to
parallelize it interally (see e.g. std::transform vs. std::for_each)

Rule of thumb: Simultaneous reads on the same container are always okay,
simultaneous read/writes on different containers are also okay. Everything else
requires synchronization.

473

https://en.cppreference.com/w/cpp/container


Standard Library I Iterators

Iterators: A Short Overview

Iterators are objects that can be thought of as pointer abstractions
• Problem: Different element access methods for each container
• Therefore: Container types not easily exchangable in code
• Solution: Iterators abstract over element access and provide pointer-like

interface
• Allow for easy exchange of underlying container type
• The standard library defines multiple iterator types as containers have varying

capabilities (random access, traversable in both directions, …)

Be careful: When writing to a container, all existing iterators are invalidated and
can no longer be used (some exceptions apply)!

474

https://en.cppreference.com/w/cpp/iterator


Standard Library I Iterators

Iterators: An Example (1)

All containers have a begin and an end iterator:
std::vector<std::string> vec = {"one", "two", "three", "four"};
auto it = vec.begin();
auto end = vec.end();

The begin iterator points to the first element of the container:
std::cout << *it; // prints "one"
std::cout << it->size(); // prints 3

The end iterator points to the first element after the container. Dereferencing it
results in undefined behavior:
*end; // undefined behavior

An iterator can be incremented (just like a pointer) to point at the next element:
++it; // Prefer to use pre-increment
std::cout << *it; // prints "two"

475

https://en.cppreference.com/w/cpp/iterator


Standard Library I Iterators

Iterators: An Example (2)

Iterators can be checked for equality. Comparing to the end iterator is used to
check whether iteration is done:
// prints "three,four,"

while (it != end) {
std::cout << *it << ",";
it++;

}

This can be streamlined with a range-based for loop:
for (auto elem : vec) {

std::cout << elem << ","; // prints "one,two,three,four,"
}

Such a loop requires the range expression (here: vec) to have a begin() and
end() member.
vec.begin() is assigned to an internal iterator which is dereferenced, assigned to
the range declaration (here: auto elem), and then incremented until it equals
vec.end().

476

https://en.cppreference.com/w/cpp/iterator


Standard Library I Iterators

Iterators: An Example (3)
Iterators can also simplify dynamic insertion and deletion:
for (it = vec.begin(); it != vec.end(); ++it) {

if (it->size == 3) {
it = vec.insert(it,"foo");
// it now points to the newly inserted element
++it;

}
}
//vec == {"foo", "one", "foo", "two", "three", "four"}

for (it = vec.begin(); it != vec.end(); ++it) {
if (it->size == 3) {

it = vec.erase(it);
// erase returns a new, valid iterator
// pointing at the next element

}
}
//vec == {"three", "four"}

477

https://en.cppreference.com/w/cpp/iterator


Standard Library I Iterators

InputIterator and OutputIterator

Input- and OutputIterator are the most basic iterators. They have the following
features:
• Equality comparison: Checks if two iterators point to the same position
• Dereferencable with the * and -> operators
• Incrementable, to point at the next element in sequence
• A dereferenced InputIterator can only by read
• A dereferenced OutputIterator can only be written to

As the most restrictive iterators, they have a few limitations:
• Single-pass only: They cannot be decremented
• Only allow equality comparison, <, >=, etc. not supported
• Can only be incremented by one (i.e. it + 2 does not work)

Used in single-pass algorithms such as find() (InputIterator) or copy()
(Copying from an InputIterator to an OutputIterator)

478

https://en.cppreference.com/w/cpp/named_req/InputIterator


Standard Library I Iterators

ForwardIterator and BidirectionalIterator

ForwardIterator combines InputIterator and OutputIterator
• All the features and restrictions shared between input- and output iterator

apply
• Dereferenced iterator can be read and written to

BidirectionalIterator generalizes ForwardIterator
• Additionally allows decrementing (walking backwards)
• Therefore supports multi-pass algorithms traversing the container multiple

times
• All other restrictions of ForwardIterator still apply

479

https://en.cppreference.com/w/cpp/named_req/ForwardIterator


Standard Library I Iterators

RandomAccessIterator and ContiguousIterator

RandomAccessIterator generalizes BidirectionalIterator
• Additionally allows random access with operator[]
• Supports relational operators, such as < or >=
• Can be incremented or decremented by any amount (i.e. it + 2 does work)

ContiguousIterator
• Introduced with C++17
• Guarantees that elements are stored in memory contiguously
• Formally: For every iterator it and integral value n: if it+ n is a valid

iterator, then ∗(it+ n) ⇔ ∗(std::addressof(∗it) + n)
• Orthogonal to all other iterators (i.e. a ContiguousIterator is not

necessarily a RandomAccessIterator)
• Code predating C++17 often treats RandomAccessIterators of
std::string, std::vector, and std::array as if they were
ContiguousIterators

480

https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator


Standard Library I Streams and I/O

Streams and I/O
The standard library has an entire library for I/O operations. The main concept of
the I/O library is a stream.
• Streams are organized in a class hierarchy
• std::istream is the base class for input operations (e.g. operator>>)
• std::ostream is the base class for output operations (e.g. operator<<)
• std::iostream is a subclass of std::istream and std::ostream
• std::cin is an instance of std::istream that represents stdin
• std::cout is an instance of std::ostream that represent stdout

As for strings, streams are actually templates parametrized with a character type.
• std::istream is an alias for std::basic_istream<char>
• std::ostream is an alias for std::basic_ostream<char>
• std::wistream also exists and is an alias for
std::basic_istream<wchar_t>

• std::wcin is an instance of std::wistream that also represent stdin
• Same for std::wostream and std::wcout

481

https://en.cppreference.com/w/cpp/io


Standard Library I Streams and I/O

Common Operations on Streams

All streams are subclasses of std::basic_ios and have the following member
functions:
• good(), fail(), bad(): Checks if the stream is in a specific error state
• eof(): Checks if the stream has reached end-of-file
• operator bool(): Returns true if stream has no errors

int value;
if (std::cin >> value) {

std::cout << "value = " << value << std::endl;
} else {

std::cout << "error" << std::endl;
}

482

https://en.cppreference.com/w/cpp/io/basic_ios


Standard Library I Streams and I/O

Input Streams

Input streams (std::istream) support several input functions:
• operator>>(): Reads a value of a given type from the stream, skips leading

whitespace
• operator>>() can be overloaded for own types as second argument to

support being read from a stream
• get(): Reads single or multiple characters until a delimiter is found
• read(): Reads given number of characters

// Defined by the standard library:
std::istream& operator>>(std::istream&, int&);
int value;
std::cin >> value;

// Read (up to) 1024 chars from cin:
std::vector<char> buffer(1024);
std::cin.read(buffer.data(), 1024);

483

https://en.cppreference.com/w/cpp/io/basic_istream


Standard Library I Streams and I/O

Output Streams

Output streams (std::ostream) support several output functions:
• operator<<(): Writes a value to the stream
• operator<<() can be overloaded for own types as second argument to

support being written to a stream
• put(): Writes a single character
• write(): Writes multiple characters

// Defined by the standard library:
std::ostream& operator<<(std::ostream&, int);
std::cout << 123;

// Write 1024 chars to cout:
std::vector<char> buffer(1024);
std::cout.write(buffer.data(), 1024);

484

https://en.cppreference.com/w/cpp/io/basic_ostream


Standard Library I Streams and I/O

String Streams

std::stringstream can be used when input and output should be written and
read from a std::string.
• Defined in the header <sstream>
• Is a subclass of std::istream and std::ostream
• Initial contents can be given in the constructor
• Contents can be extracted and set with str()

std::stringstream stream("1 2 3");
int value;
stream >> value; // value == 1
stream.str("4"); // Set stream contents
stream >> value; // value == 4
stream << "foo";
stream << 123;
stream.str(); // == "foo123"

485

https://en.cppreference.com/w/cpp/io/basic_stringstream


Standard Library I Streams and I/O

File Streams
The standard library defines several streams for file I/O in the <fstream> header:
• std::ifstream: Input file stream to read to a file
• std::ofstream: Output file stream to write to a file
• std::fstream: File stream to read and write to a file

std::ifstream input("input_file");
if (!input) { std::cout << "couldn't open input_file\n"; }
std::ofstream output("output_file");
if (!output) { std::cout << "couldn't open output_file\n"; }
// Read an int from input_file and write it to output_file
int value = -1;
if (!(input >> value)) {

std::cout << "couldn't read from file\n";
}
if (!(output << value)) {

std::cout << "couldn't write to file\n";
}

486

https://en.cppreference.com/w/cpp/header/fstream


Standard Library I Streams and I/O

Disadvantage of Streams

Even though streams are nice to use, they should be avoided in many cases:
• Streams make have use of virtual functions and virtual inheritance which by

itself can sometimes be a significant performance overhead
• Streams respect the system’s locale settings (e.g. whether to use a period or

a comma for floating point numbers) which also makes them slow
• Especially parsing of integers is very inefficient

General rule: When input is typed in by a user, using streams is fine. When input
is read from files or generated automatically, better use OS-specific functions.

487


	Standard Library I
	Introduction
	Strings
	Optional, Pair, Tuple
	Containers
	Iterators
	Streams and I/O


