
Multi-Threading

Multi-Threading

614



Multi-Threading

Multi-Threading in C++

In C++ it is allowed to run multiple threads simultaneously that use the same
memory.
• Multiple threads may read from the same memory location
• All other accesses (i.e. read-write, write-read, write-write) are called conflicts
• Conflicting operations are only allowed when threads are synchronized
• This can be done with mutexes or atomic operations
• Unsynchronized accesses (also called data races), deadlocks, and other

potential issues when using threads are undefined behavior!

615



Multi-Threading Threads Library

Threads Library (1)

The header <thread> defines the class std::thread that can be used to start
new threads.
• Using this class is the best way to use threads platform-independently
• May require additional compiler flags: -pthread for gcc and clang

void foo(int a, int b);
// Starts a thread that calls foo(123, 456)
std::thread t1(foo, 123, 456);
// Also works with lambdas
std::thread t2([] { foo(123, 456); });
// Creates an object that does not refer to a thread
std::thread t3;

616

https://en.cppreference.com/w/cpp/thread/thread


Multi-Threading Threads Library

Threads Library (2)

The member function join() can be used to wait for a thread to finish.
• join() must be called exactly once for each thread
• When the destructor of an std::thread is called, the program is

terminated if it has an associated thread that was not joined

std::thread t1([] { std::cout << "Hi\n"; });
t1.join();
{

std::thread t2([] {});
}
// Program terminated because t2.join() was not called

617

https://en.cppreference.com/w/cpp/thread/thread/join


Multi-Threading Threads Library

Threads Library (3)

std::threads are not copyable, but movable, so they can be used in containers.
Moving an std::thread transfers all resources associated with the running
thread. Only the moved-to thread can be joined.

std::thread t1([] { std::cout << "Hi\n"; });
std::thread t2 = std::move(t1); // t1 is now empty
t2.join(); // OK, thread originally started in t1 is joined

std::vector<std::thread> threadPool;
for (int i = 1; i <= 9; ++i) {

threadPool.emplace_back([i] { safe_print(i); });
}
// Digits 1 to 9 are printed (unordered)
for (auto& t : threadPool) {

t.join();
}

618



Multi-Threading Threads Library

Other Functions of the Thread Library

The thread library also contains other useful functions that are closely related to
starting and stopping threads:
• std::this_thread::sleep_for(): Stop the current thread for a given

amount of time
• std::this_thread::sleep_until(): Stop the current thread until a

given point in time
• std::this_thread::yield(): Let the operating system schedule another

thread
• std::this_thread::get_id(): Get the (operating-system-specific) id of

the current thread

619

https://en.cppreference.com/w/cpp/thread


Multi-Threading Mutual Exclusion

Mutual Exclusion

When working with threads, mutual exclusion is a central concept to synchronize
threads.
The standard library defines several useful classes for this in <mutex> and
<shared_mutex>:
• std::mutex (mutual exclusion)
• std::recursive_mutex (recursive mutual exclusion)
• std::shared_mutex (mutual exclusion with shared locks)
• std::unique_lock (RAII wrapper for std::mutex)
• std::shared_lock (RAII wrapper for std::shared_mutex)

Note: Mutexes are usually inefficient as they are used very coarse-grained and
sometimes require communication with the operating system.

620



Multi-Threading Mutual Exclusion

Mutexes

A mutex is the most basic synchronization primitive which can be locked and
unlocked by exactly one thread at a time.
• std::mutex has the member functions lock() and unlock() that lock

and unlock the mutex
• try_lock() is a member function that tries to lock the mutex and returns
true if it was successful

• All three functions may be called simultaneously by different threads
• For each call to lock() the same thread must call unlock() exactly once

std::mutex printMutex;
void safe_print(int i) {

printMutex.lock();
std::cout << i;
printMutex.unlock();

}

621

https://en.cppreference.com/w/cpp/thread/mutex


Multi-Threading Mutual Exclusion

Recursive Mutexes
Recursive mutexes are regular mutexes that additionally allow a thread that
currently holds the mutex to lock it again.
• Implemented in the class std::recursive_mutex
• Has the same member functions as std::mutex
• unlock() must still be called once for each lock()
• Useful for functions that call each other and use the same mutex

std::recursive_mutex m;
void foo() {

m.lock();
std::cout << "foo\n";
m.unlock();

}
void bar() {

m.lock();
std::cout << "bar\n";
foo(); // This will not deadlock
m.unlock();

}

622

https://en.cppreference.com/w/cpp/thread/recursive_mutex


Multi-Threading Mutual Exclusion

Shared Mutexes (1)

A shared mutex is a mutex that differentiates between shared and exclusive locks.
• Implemented in the class std::shared_mutex
• A shared mutex can either be locked exclusively by one thread or have

multiple shared locks
• The member functions lock() and unlock() are exclusive
• The member functions lock_shared() and unlock_shared() are shared
• The member functions try_lock() and try_lock_shared() try to get

an exclusive or shared lock and return true on success

623

https://en.cppreference.com/w/cpp/thread/shared_mutex


Multi-Threading Mutual Exclusion

Shared Mutexes (2)
• Shared mutexes are mostly used to implement read/write-locks
• Readers use shared locks, writers use exclusive locks

int value = 0; std::shared_mutex m;
std::vector<std::thread> threadPool;
// Add readers
for (int i = 0; i < 5; ++i)

threadPool.emplace_back([&] {
m.lock_shared();
safe_print(value);
m.unlock_shared();

}
// Add writers
for (int i = 0; i < 5; ++i)

threadPool.emplace_back([&] {
m.lock();
++value;
m.unlock();

}

624



Multi-Threading Mutual Exclusion

Working with Mutexes

Mutexes have several requirements on how they must be used:
• For each call to lock(), unlock() must be called exactly once
• unlock() must only be called by the thread that called lock()
• The above also holds for unlock_shared() and lock_shared()
• A thread A should not wait for a mutex from thread B to be unlocked if B

needs to lock a mutex that A is currently holding (i.e. avoid deadlocks)

Note the following when using mutexes to make data structures thread-safe:
• The member functions lock() and unlock() are non-const
• If const member functions of the data structure should also use the mutex, it

should be mutable
• If a member function that locks the mutex calls other member functions, this

can lead to deadlocks
• recursive_mutex can be used to avoid this

625



Multi-Threading Mutual Exclusion

Mutex RAII Wrappers (1)

Mutexes can be thought of resources that must be acquired and freed with
lock() and unlock().
• The RAII pattern should be used
• std::unique_lock is an RAII wrapper for Mutexes that calls lock() in its

constructor and unlock() in its destructor
• std::unique_lock is movable to “transfer ownership” of the locked mutex
• It also has the member functions lock() and unlock() to manually control

the mutex

std::mutex m;
int i = 0;
std::thread t{[&] {

std::unique_lock l{m}; // m.lock() is called
++i;
// m.unlock() is called

}};

626

https://en.cppreference.com/w/cpp/thread/unique_lock


Multi-Threading Mutual Exclusion

Mutex RAII Wrappers (2)

• Shared mutexes additionally need an RAII wrapper that calls
lock_shared() and unlock_shared()

• For this std::shared_lock can be used
• Note: std::shared_lock is only movable and not copyable (unlike
std::shared_ptr)

std::shared_mutex m;
int i = 0;
std::thread t{[&] {

std::shared_lock l{m}; // m.lock_shared() is called
std::cout << i;
// m.unlock_shared() is called

}};

627

https://en.cppreference.com/w/cpp/thread/shared_lock


Multi-Threading Mutual Exclusion

Avoiding Deadlocks (1)

• Deadlocks can occur when using multiple mutexes
• In particular, when two different threads each succeed to lock a subset of the

mutexes and then try to lock the rest
• Can be avoided by always locking mutexes in a consistent order

std::mutex m1, m2, m3;
void threadA() {

std::unique_lock l1{m1}, l2{m2}, l3{m3};
}
void threadB() {

std::unique_lock l3{m3}, l2{m2}, l1{m1};
// DANGER: order not consistent with threadA()

}

Concurrent calls to threadA() and threadB() can lead to deadlocks. E.g., A
could get the locks for m1 and m2 while B gets a lock for m3.

628



Multi-Threading Mutual Exclusion

Avoiding Deadlocks (2)

• Sometimes, it is not possible to always guarantee a consistent order
• The function std::lock() takes any number of mutexes and locks them all

by using a deadlock-avoiding algorithm
• std::scoped_lock is an RAII wrapper for std::lock()

std::mutex m1, m2, m3;
void threadA() {

std::scoped_lock l{m1, m2, m3};
}
void threadB() {

std::scoped_lock l{m3, m2, m1};
}

Here, calling threadA() and threadB() concurrently will not lead to deadlocks.
Note: This should only be used if there is no other way as it is generally very
inefficient!

629

https://en.cppreference.com/w/cpp/thread/lock


Multi-Threading Mutual Exclusion

Condition Variables (1)

A condition variable is a synchronization primitive that allows multiple threads to
wait until an (arbitrary) condition becomes true.
• A condition variable uses a mutex to synchronize threads
• Threads can wait on or notify the condition variable
• When a thread waits on the condition variable, it blocks until another thread

notifies it
• If a thread waited on the condition variable and is notified, it holds the mutex
• A notified thread must check the condition explicitly because spurious

wake-ups can occur

630



Multi-Threading Mutual Exclusion

Condition Variables (2)

The standard library defines the class std::condition_variable in the header
<condition_variable> which has the following member functions:
• wait(): Takes a reference to a std::unique_lock that must be locked by

the caller as an argument, unlocks the mutex and waits for the condition
variable

• notify_one(): Notify a single waiting thread, mutex does not need to be
held by the caller

• notify_all(): Notify all waiting threads, mutex does not need to be held
by the caller

631

https://en.cppreference.com/w/cpp/thread/condition_variable


Multi-Threading Mutual Exclusion

Condition Variables Example

One use case for condition variables are worker queues: Tasks are inserted into a
queue and then worker threads are notified to do the task.

std::mutex m;
std::condition_variable cv;
std::vector<int> taskQueue;

void pushWork(int task) {
{
std::unique_lock l{m};
taskQueue.push_back(task);

}
cv.notify_one();

}

void workerThread() {
std::unique_lock l{m};
while (true) {
if (!taskQueue.empty()) {

int task = taskQueue.back();
taskQueue.pop_back();
l.unlock();
// [...] do actual work here
l.lock();

}
cv.wait(l);

}
}

632



Multi-Threading Atomic Operations

Atomic Operations

Modern hardware also supports atomic operations for synchronization.
• The memory order of a CPU determines how non-atomic memory operations

are allowed to be reordered
• In C++ all non-atomic conflicting operations have undefined behavior even if

the memory order of the CPU would allow it!
• There is one exception: Special atomic functions are allowed to have conflicts
• The compiler usually knows your CPU and generates “real” atomic

instructions only if necessary

633



Multi-Threading Atomic Operations

Atomic Operations Library

• All classes and functions related to atomic operations can be found in the
<atomic> header

• std::atomic<T> is a class that represents an atomic version of the type T
• This class has several member functions that implement atomic operations:

• T load(): Loads the value (allows concurrent writes)
• void store(T desired): Stores desired in the object
• T exchange(T desired): Stores desired in the object and returns the old

value
• bool compare_exchange_weak(...) and
bool compare_exchange_strong(...): Performs a compare-and-swap
(CAS) operation

• If T is a integral type, the following operations also exist:
• T fetch_add(T arg): Adds arg to the value and returns the old value
• T fetch_sub(T arg): Same for subtraction
• T fetch_and(T arg): Same for bitwise and
• T fetch_or(T arg): Same for bitwise or
• T fetch_xor(T arg): Same for bitwise xor

634

https://en.cppreference.com/w/cpp/atomic/atomic


Multi-Threading Atomic Operations

Semantics of Atomic Operations

The C++ Standard defines precise semantics for atomic operations which may or
may not be equal to what a modern CPU would guarantee:
• std::atomic<T> can be used with any trivially copyable type
• In particular also for types that are much larger than one cache line!
• To guarantee atomicity, compilers are allowed to fall back to mutexes
• Every atomic object has a totally ordered modification order
• There are several memory orders that define how operations on different

atomic objects may be reordered
• The C++ memory orders do not necessarily map precisely to memory orders

defined by a CPU!

635



Multi-Threading Atomic Operations

Modification Order
All modifications of a single atomic object are totally ordered in the so-called
modification order.
• The modification order is consistent between threads (i.e. all threads see the

same order)
• The modification order is only total for individual atomic objects

std::atomic<int> i = 0;
void workerThread() {

i.fetch_add(1); // (A)
i.fetch_sub(1); // (B)

}
void readerThread() {

int iLocal = i.load();
assert(iLocal == 0 || iLocal == 1); // always true

}

Because the memory order is consistent between threads, the reader thread will
never see a execution order of (A), (B), (B), (A), for example.

636



Multi-Threading Atomic Operations

Memory Order

The atomics library defines several memory orders. All atomic functions take a
memory order as last parameter. The two most important ones are:
std::memory_order_relaxed:
• Roughly maps to a CPU with weak memory order
• Only consistent modification order is guaranteed
• Atomic operations of different objects may be reordered arbitrarily

std::memory_order_seq_cst:
• Roughly maps to a CPU with strong memory order
• Strongest memory order
• Guarantees that all threads see all atomic operations in one globally

consistent order
You should use std::memory_order_seq_cst per default unless you identified
the atomic operation to be a performance bottleneck.

637

https://en.cppreference.com/w/cpp/atomic/memory_order


Multi-Threading Atomic Operations

Compare-And-Swap Operations

The basic signature (leaving out memory orders) of CAS operations is:
bool compare_exchange_weak(T& expected, T desired)
• Returns true if the CAS was successful
• If not, updates expected to contain the current value of the atomic object

An insert into a lock-free singly linked list could be implemented like this:
void insert(const T& value) {

auto* entry = allocateEntry();
entry->value = value;
entry->next = listHead.load();
while (!listHead.compare_exchange_weak(entry->next, entry)) {

// Do nothing here, entry->next is updated if CAS fails
}

}

638

https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange


Multi-Threading Atomic Operations

Weak and Strong Compare-And-Swap Operations

The std::atomic class actually has two member functions for CAS operations:
compare_exchange_weak() and compare_exchange_strong().
• The weak version is allowed to return false, even when no other thread

modified the value
• This is called “spurious failure”
• The strong version may use a loop internally to avoid this
• General rule: If you use a CAS operation in a loop, always use the weak

version

639


	Multi-Threading
	Threads Library
	Mutual Exclusion
	Atomic Operations


