
1

Data Processing on Modern Hardware

Jana Giceva

Lecture 10: Rack-scale data processing

What is a rack?

Rack-scale

2

Rack-scale

3

42 RU

What is a rack?

 The rack is the new unit of

deployment in data centers

 Sweet spot between a single-server

and cluster deployments

 It has 42 units (rack-units – RU)

that host the compute resources

Rack-scale computer (pre-packaged)

Compute:

 standard compute

 accelerators

Storage:

 hot / warm / cold disks

Networking:

 interconnect

 software defined networking

What’s in a Rack-scale computer?

4

img src: Supermicro RSD

Server-centric:

From server- to resource-centric datacentre design

5

Datacentre network

server

Intra-server

network

Towards resource-centric

Past: physical aggregation

 shared power, cooling,

rack-management

Now: fabric integration

 fast rack-wide interconnect

Future goal: resource disaggregation

 pooled compute, storage, memory

resources

6

Datacentre network

From server- to resource-centric datacentre design

 We already have scale within a rack itself.

 And increasing heterogeneity of resources

Today’s scale within a rack computer

7

Machine #cores

AMD SeaMicro SM15000-64 2’048

HP Moonshot Redstone 11’520

Boston Viridis 7’680

Machine Memory

AMD SeaMicro SM15000-XE 8 TB

HP Moonshot Redstone 11.25 TB

Machine Network

EDR Mellanox 100 Gbps

Intel silicon photonics 100-400 Gbps

CPU GPU Memory Network

20x AMD EPYC

7601

80x Radeon

Instinct

10 TB

DDR4

2x36 port EDR switch (100

Gbps)

AMD Rack P47 – 1 PetaFLOP of compute at FP32 single precision

How do we implement applications for a rack computer?

How do we manage these resources?

What is the failure model? How do we achieve fault tolerance?

Rack-scale computing

8

Data appliances – among the first rack-scale apps

9

Oracle’s Exadata

rack-scale data analytics

engine since 2008

img src: netsoftmate.blogspot.com

Exadata X8M offers:

• RDMA over RoCE enabling

100Gb/s

• Persistant memory for new

shared storage acceleration tier

10

IBM Netezza

Heterogeneous appliance

incorporating FPGA blades

Figure from 2011

Data appliances – among the first rack-scale apps

How do we program with remote memory?

11

Parallel architectures

12

DRAM

Uniform memory access (UMA)

cache cache cache cache

core core core core

T
o
d
a
y
’s

 L
a
p
to

p
s

DRAM

Non-uniform memory access (NUMA)

cache cache

core core core core

T
o
d
a
y
’s

 S
e
rv

e
rs

Time-division multiplexing

cache cache cache cache

core core core core

DRAM DRAM

network

Y
e
s
te

rd
a
y
’s

 c
lu

s
te

rs

Remote direct-memory access

core core core core

DRAM DRAM DRAM DRAM

network
cache

DMA

T
o
d
a
y
’s

c
lu

s
te

rs
DRAM DRAM

Shared memory programming

 shared address space

 implicit communication

 cache-coherent NUMA

 e.g., pthreads or OpenMP

(Partitioned) global address space

 Remote Memory Access

 Remote vs. local memory (e.g., ncc NUMA)

Distributed memory programming

 Explicit communication (e.g., with messages)

 Message passing

Programming models

13

memory

memory

memory

 Shared memory programming abstraction

 Access to remote memory region through explicit read and write operations.

 Similar to programming non-cache-coherent machines:

 data needs to be explicitly loaded into the cache-coherency domain before it can be used

 e.g., loaded in a register

 changes to data have to explicitly flushed back to the source

 so that the modifications become visible in the remote machine.

 The one-sided operations can optionally notify the remote process of an RMA access.

 Some implementations support atomic operations:

 fetch-and-add and

 compare-and-swap

 RMA has been adopted by many libraries such as ibVerbs and MPI-3.

Remote Memory Access (RMA)

14

 PL concept for writing parallel applications for large distributed memory machines.

 Assumes a single global memory address space, partitioned across all the processes.

 The programming model differentiates between local and remote memory.

 The compiler adds the necessary code to implement a remote variable access.

 From a programming perspective, a remote variable can be assigned to a local variable or register.

 The developer needs to be aware of the implicit data movement when accessing shared variable.

 Careful NUMA-like optimizations are required for high-performance.

Partitioned Global Address Space (PGAS)

15

 Remote Direct Memory Access

 RDMA is a HW mechanism through which the network card can directly access

all or parts of the main memory of a remote node without involving the CPU.

A popular approach – RDMA

16

RDMA properties

17

 Bypass the CPU → low CPU utilization

 Bypass the OS kernel → no interrupts, no context switching

 Zero-copy data → low memory bus contention

 Message based transactions

 Asynchronous operations → overlapping communication and computation

Traditional TCP/IP sockets vs RDMA

Your Application

Socket Layer

TCP UDP

IP

RDMA-enabled Channel Adapter network card

Adapter Driver

Ethernet Driver

U
s
e
r

s
p

a
c
e

K
e
rn

e
l

uverbs

Kernel mod

Verbs API

Command

channel

Data

channel

src: InfiniBand Trade Association: Introduction to IB for end users

uverbs

TCP UDP

“Expanding” the Memory hierarchy

19

SSD / HDD

Remote memory

Local memory

CPU cache

registers

10’000 Gbps, 1ns

500 Gbps, 50 ns

100 Gbps, 5’000 ns

1-10 Gbps, 50’000 ns

Access remote memory

as another layer of the

memory hierarchy.

Microsoft Research showed that using Remote Memory (and RDMA)

improves the latency of TPC-H and TPC-DS queries by 2-100x

Li et al. [SIGMOD 2016]

High Performance Computing is the home research domain for RDMA

Databases

 Distributed transactions

FaSST [OSDI’16], FaRM [NSDI’14, SOSP’15], DrTM [SOSP’15], Tell [SIGMOD’15], NAM-DB

[VLDB’17]

 RDMA KV-stores

RAMCloud [FAST’11, SOSP’11, SOSP’15], HERD [SIGCOMM’14], Pilaf [ATC’13]

 Distributed query processing

Barthels et al. [SIGMOD’15], Frey et al. [ICDCS’10], Rödiger et al. [ICDE’16]

 Accelerating RDBMS with RDMA

Li et al. [SIGMOD’16], BatchDB [SIGMOD’17]

Operating Systems

 Data-centres / Rack-scale computing: LITE [OSDI’17]

RDMA in research

20

D
R

A
M

Traditionally:

 Accessing remote storage

requires traversing the

whole system stack.

 But, hardware and

software latencies are

additive.

Future:

 Intelligent storage

 BlueDBM [ISCA’15]

 Ibex [VLDB’14]

What about remote storage?

21

CPU D
R

A
M

F
la

s
h

N
IC

F
P

G
A

CPU

F
la

s
h

N
IC

F
P

G
A

CPU D
R

A
M F

la
s
h

N
IC

FPGA

Motherboard

CPU D
R

A
M F

la
s
h

N
IC

FPGA

Motherboard

MotherboardMotherboard

RDMA basics

22

Buffers need to be registered with the network card before used

During the registration process:

 Pin memory so that it cannot be swapped by the Operating System.

 Store the address translation information in the NIC.

 Set permissions for the memory region.

 Return a remote and local key, which are used by the adapters when

executing the RDMA operations.

Setting up the RDMA data channels

23

RDMA communication is based on a set of three queues

 Send

 Receive

 Completion

The send and receive queues are there to schedule the work to be done.

A completion queue is used to notify when the work has been completed.

Work Queues

24

work queues, always created as a Queue Pair (QP)

Applications issue a job using a work request or a work queue element

A work request is a small struct with a pointer to a buffer:

 In a send queue – it’s a pointer to a message to be sent.

 In a receive queue – it’s shows where an incoming message should be placed.

Once a work request has been completed, the adapter creates a

completion queue element and enqueues it in the completion queue.

Queue Elements

25

RDMA’s network stack overview

26

Application

RDMA adapter

driver

RDMA-supporting

NIC and

network protocols

 Posts work requests to a queue

 Each work request is a message, a unit of work

 Verbs interface – allows the application to request services

 Maintains the work queues

 Manages address translation

 Provides completion and even mechanisms

 Transport layer: reliable/unreliable, datagram, etc.

 Packetizes messages

 Implements the RDMA protocol

 Implements end-to-end reliability

 Assures reliable delivery

src: InfiniBand Trade Association: Introduction to IB for end users

InfiniBand (IB)

 QDR 4x – 32 Gbps

 FDR 4x – 54 Gbps

 EDR 4x – 100 Gbps

RoCE – RDMA over Converged Ethernet

 10 Gbps

 40 Gbps

iWARP – internet Wide Area RDMA Protocol

Network protocols supporting RDMA

27

Does not specify the semantics of a data transfer

RDMA networks support two types of memory access models:

One sided – RDMA read and write + atomic operations

Two sided – RDMA send and receive

RDMA is just a mechanism

28

Traditional message passing where both the source and the destination

processes are actively involved in the communication.

Both need to have created their queues:

 A queue pair of a send and a receive queue.

 A completion queue for the queue pair.

Sender’s work request has a pointer to a buffer that it wants to send. The WQE is enqueued

in the send queue.

Receiver’s work request has a pointer to an empty buffer for receiving the message. The

WQE is enqueued in the receive queue.

RDMA Send and Receive

29

Example RDMA send

30

System B

Host Memory

Registered Memory

Buffer to Place Data

send queue

receive queue

compl. queue

send queue

receive queue

compl. queue

Host Memory

Registered Memory

Buffer to Transfer

System A

Example RDMA send

31

System A System B

Host Memory

Registered Memory

send queue

receive queue

compl. queue

Host Memory

Registered Memory

send queue

receive queue

compl. queue

Example RDMA send

32

Host Memory

Registered Memory

System A System B

Host Memory

Registered Memory

send queue

receive queue

compl. queue

send queue

receive queue

compl. queue

Example RDMA send

33

Host Memory

Registered Memory

System A System B

Host Memory

Registered Memory

send queue

receive queue

compl. queue

send queue

receive queue

compl. queue

Only the sender side is active; the receiver is passive.

The passive side issues no operation, uses no CPU cycles, gets no indication that a

“read” or a “write” happened.

To issue an RDMA read or a write, the work request must include:

1. the remote side’s virtual memory address and

2. the remote side’s memory registration key.

The active side must obtain the passive side’s address and key beforehand.

Typically, the traditional RDMA send/receive mechanisms are used.

RDMA Read and Write

34

Using the verbs API

35src: https://blog.zhaw.ch/icclab/infiniband-an-introduction-simple-ib-verbs-program-with-rdma-write/

https://blog.zhaw.ch/icclab/infiniband-an-introduction-simple-ib-verbs-program-with-rdma-write/

Added extra complexity for the developer to use the Verbs API

Challenges of using RDMA

36

Application

RDMA adapter driver

IB Fabric Interconnect

Upper Layer

Protocols

Sockets

File Systems

IP-based Apps

Block storage

MPI NFS RDMA

Cluster File Systems

VNIC

SDP

SRP

RDS

src: InfiniBand Trade Association: Introduction to IB for end users

MPI : Message Passing Interface

 Widely used in HPC

 Example: OpenMPI, MVAPICH,

Intel MPI, etc.

File Systems:

 Lustre – parallel distributed FS

for Linux

 NFS_RDMA – Network FS over

RDMA

 IB trade introduction https://cw.infinibandta.org/document/dl/7268

 First steps for programming with IB verbs

https://thegeekinthecorner.wordpress.com/2010/08/13/building-an-rdma-capable-application-with-ib-

verbs-part-1-basics/

 Figures from https://zcopy.wordpress.com/category/getting-started/

 More details at http://www.mellanox.com/related-

docs/prod_software/RDMA_Aware_Programming_user_manual.pdf

RDMA References

37

https://cw.infinibandta.org/document/dl/7268
https://thegeekinthecorner.wordpress.com/2010/08/13/building-an-rdma-capable-application-with-ib-verbs-part-1-basics/
https://zcopy.wordpress.com/category/getting-started/
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf

 EDR InfiniBand

 36-port Mellanox switch

 18 nodes cluster (EDR NICs)

 1 server with 4 Xeon E5-5660 v4 processors:

 64 cores (128 with HT enabled)

 512 GB RAM

 2 EDR NICs, 1 x 10G NIC, 1 x 1G NIC

 8 servers with 2 Xeon E5-2630 v4 processors:

 20 cores (40 with HT enabled)

 32 GB RAM

 2 EDR NICs

Overview of our EDR cluster

38

RDMA-based joins

39

 Memory region registration cost increases with the number of registered pages

 To avoid pinning large parts of main memory, we need efficient buffer management

 The algorithm should reuse existing RDMA-enabled buffers as much as possible

 RDMA requires asynchronous communication:

 to prevent processor cores from becoming idle, we need to overlap computation with communication.

 Accessing remote memory is slower than local memory, even with RDMA

 Again, it is important to hide the network latency, by interleaving computation and communication

 Watch out for NUMA effects in RDMA-based algorithms

 Only threads local to the NUMA node where the buffers are registered should communicate

Good practices

1. Histogram computation phase

 All threads within the same machine compute a histogram over the input data

 They exchange their histograms and combine them into one machine-level histogram providing an

overview of the data residing on a particular machine

 The machine-level histograms are then exchanged over the network compute the global histogram

 Global overview of the partition sizes

 Necessary size of the buffers to be allocated to store the data to be sent/received over the network

RDMA-version of the Radix Join

41Src: Barthels et al. Rack-scale In-memory Join Processing using RDMA. SIGMOD 2015

2. Partitioning phase

 Distinguish between two types of partitioning passes:

 Network partitioning pass, which interleaves

computation of the partitions with network transfer

 Local partitioning pass, which partitions the data

locally to ensure that the partitions fit in the caches

 Network partitioning pass:

 Pool of RDMA-enabled buffers

 While the content of one buffer is transmitted over

the network, populate another one.

 All buffers are private to each thread, to avoid the

need of synchronization

RDMA-version of the Radix Join

42Src: Barthels et al. Rack-scale In-memory Join Processing using RDMA. SIGMOD 2015

3. Build and Probe

 The matching partitions of both relations should by now be on the same machine and cache-size resident.

 The build phase populates a hash table and the corresponding partition of the output relation probes it

 The matching results are either written out to a local buffer or to an RDMA-enabled buffers, depending on

the location where the results will be further processed.

 The RDMA-enabled buffer is transmitted over the network once it is full. The buffer can be reused once

the network operation has completed.

RDMA-version of the Radix Join

43Src: Barthels et al. Rack-scale In-memory Join Processing using RDMA. SIGMOD 2015

RDMA performance intrinsics

44

The best performance can

only be achieved after a

certain message size!

Src: Barthels et al. Rack-scale In-memory Join Processing using RDMA. SIGMOD 2015

RDMA-based join performance

45

 Set-up: Joining 2x2048M tuples. Running on 4

machines with 32 CPUs (FDR cluster).

 Just using RDMA already brings significant

performance improvements over a traditional

IP-based network stack.

 Interleaving computation with communication

brings additional 20% improvement.

 The network- and local- partitioning are the

most expensive operations.

Src: Barthels et al. Rack-scale In-memory Join Processing using RDMA. SIGMOD 2015

 Set-up: speed-up experiment, measuring

the execution time for a 2048x2038M tuples

on a variable number of machines (QDR

cluster).

 With the increasing number of machines,

the network-partitioning phase becomes

the dominant performance bottleneck.

 Speed-up of only 2.9 when scaling from 2

to 10 machines.

 A larger fraction of the data needs to be

transmitted over the network.

 Additional congestion over the network.

RDMA-based join performance

46Src: Barthels et al. Rack-scale In-memory Join Processing using RDMA. SIGMOD 2015

