
1

Data Processing on Modern Hardware

Jana Giceva

Lecture 8: Multicore CPUs

NUMA, interference and isolation

Non-uniform memory access (NUMA)

 Single processor scalability (with shared memory) has limitations

 Idea: distribute memory

Distributed Shared Memory

3

 Almost all mid-range and enterprise servers today are multi-socket

 Each server typically contains between 2-8 sockets

 Each socket contains:

 between 4 and 24 cores (up to 64 cores on AMD EPYC)

 a few memory DIMM modules attached through memory channels

 An interconnect network among the sockets allows each core to access non-local memory

NUMA hardware

4
src. Li et al. “NUMA-aware algorithsm: the case of data shuffling” CIDR 2013

Effects of NUMA Hardware

5

 Example multi-socket server:

 four 8-core Nehalem-EX processors, fully connected

with 4 bi-directional 3.2 GHz QuickPath Interconnect (QPI)

 Measure performance for reading local vs. remote memory

 Flow 1: read locally (from socket 0)

 max. aggregate bandwidth (12 threads) is 24.7 GB/s

 latency is 340 CPU cycles (~ 150ns)

 Flow 2: read remote (over 1 QPI link, from socket 3)

 max. aggregate bandwidth is 10.9 GB/s

 latency is 420 CPU cycles (~185ns)

 Flow 3: read remote (over 2 QPI links, from socket 1)

 max. aggregate bandwidth is 10.9 GB/s

 latency is 520 CPU cycles (~230ns)

 Flow 4: read remote (over 2 QPI links) with cross traffic

 max. aggregate bandwidth is 5.3 GB/s

 latency is 530 CPU cycles (~235ns)

src. Li et al. “NUMA-aware algorithsm: the case of data shuffling” CIDR 2013

 Designing algorithms and data structures

 Need to differentiate between local and remote memory

 Local memory is faster and has higher bandwidth

 Concurrency

 Synchronization within a socket / NUMA node is significantly faster

 Concurrent data structures needs to scale across NUMA nodes

 NUMA effects in systems and databases

What does that mean for data processing?

6

 Modern operating systems are aware of NUMA architectures.

 Linux partitions memory into NUMA zones, one for each socket.

 For each NUMA zone, the kernel maintains separate management data structures.

 By default the Linux kernel allocates memory on the local NUMA node

 The socket of the core on which the current thread is scheduled on.

 Unless explicitly bound to a specified socket (NUMA zone) through the mbind() system call

System‘s support for NUMA

7

 Watch out for default OS

 First touch allocation policy (static and in place until kernel version 2.6)

 Today there are two options:

 Transparent NUMA awareness:

 Allocate locally

 Migrate thread or data to achieve good NUMA performance and balancing

 Explicit memory allocation policy

 Allocate memory (and do not migrate) based on the selected policy

 NUMA memory policy

 System default policy

 local (general), interleaved (during boot-up)

 Task/Process policy – controls all page allocations made by or on behalf of the task

 VMA policy – to a range of a task’s virtual address space

Memory allocation

8

 Allocation modes

 Local – memory from the local NUMA node

 Bind – memory from the set of nodes specified by the policy

 Preferred – memory from the set of nodes specified by the policy, if available

 Interleaved – memory interleaved across all the NUMA nodes in the set provided by the policy

 Invoked from the process / thread itself or via the numactl library

 Memory policy APIs

 long set_mempolicy(int mode, const unsigned long *nmask, unsigned long maxnode)

 long get_mempolicy(int *mode, const unsigned long *nmask, unsigned long maxnode, void *addr, int flags);

 long mbind(void *start, unsigned long len, int mode, const unsigned long *nmask, unsigned long maxnode,

unsigned flags)

Memory allocation

9

 Example 1: Sorting and NUMA

Where does it matter?

10

Step 1: Operate on local data as much

as possible.

Step 2: Exchange data to gather local

partitions on a local place.

Step 3: Merge the results locally.

src. Balkesen et al. “Multi-core, Main-Memory Joins: Sort vs Hash Revisited” VLDB 2014

Sorting and NUMA

11

Even though NUMA-aware, the algorithm

does not scale well.

Step 2 is very memory-bandwidth

intensive and saturates the system‘s

resources.

src. Balkesen et al. “Multi-core, Main-Memory Joins: Sort vs Hash Revisited” VLDB 2014

Multi-way merging as an alternative

12

Step 1: Operate on local data as much

as possible. (similar to before)

Step 2: Gather data in a cache- and

NUMA-conscous way. Recall the multi-

way sort when we did SIMD?

src. Balkesen et al. “Multi-core, Main-Memory Joins: Sort vs Hash Revisited” VLDB 2014

Sorting and NUMA

13

Performance speed-up much better than

before because of NUMA-awareness.

src. Balkesen et al. “Multi-core, Main-Memory Joins: Sort vs Hash Revisited” VLDB 2014

Radix-join and NUMA

14

S
rc

:
S

c
h

u
l
e

t
a

l.
 “

A
n

 E
x
p

e
ri

m
e

n
ta

l C
o

m
p

a
ri

s
o

n
 o

f
T

h
ir

te
e

n

R
e

la
ti
o

n
a

l
E

q
u

i-
J
o

in
s
 i
n

 M
a

in
 M

e
m

o
ry

.”
 S

IG
M

O
D

 2
0

1
6

Radix-join and NUMA

15

radix join (basic)

no partitioned hash join with prefetching

radix join (with chain hashing) with optimizations

radix join (with linear hashing) with optimizations

radix join (with LH) with optimizations and NUMA awareness

NUMA-awareness brings

additional 20-30% improvement.

S
rc

:
S

c
h

u
l
e

t
a

l.
 “

A
n

 E
x
p

e
ri

m
e

n
ta

l C
o

m
p

a
ri

s
o

n
 o

f
T

h
ir

te
e

n

R
e

la
ti
o

n
a

l
E

q
u

i-
J
o

in
s
 i
n

 M
a

in
 M

e
m

o
ry

.”
 S

IG
M

O
D

 2
0

1
6

NUMA-awareness engine-wide

16

 Relation T is interleaved “morsel-wise” across the NUMA nodes

 The scheduler assigns a morsel located on the same NUMA

node where the thread is executed.

 In the first phase the filtered tuples are inserted into NUMA-local

storage areas, i.e., for each core there is a separate storage

area in order to avoid synchronization.

 The global HT is probed by threads located on various sockets

of a NUMA system.

 To avoid contention, it is interleaved across all sockets.

src. Leis et al. “Morse-Driven Parallelism: A NUMA-aware query evaluation framework for the many-core age” SIGMOD 2014

Engine-wide NUMA awareness

17
src. Leis et al. “Morse-Driven Parallelism: A NUMA-aware query evaluation framework for the many-core age” SIGMOD 2014

 Performance implications for synchronization and concurrency

Impact of NUMA on DB synchronization

18

 Goal: check the impact of NUMA latencies on OLTP

transactions and the overall throughput.

 OLTP workload: TPC-C payment transaction

 Machine: 4 CPUs with 6 cores earch

 Test: Run the database with 4 worker threads, either

using the default OS scheduling or pinning them to

different cores.

 Insights:

 DB threads collocated on the same NUMA node

exhibit much better performance than alternatives.

 Communication over the interconnect is expensive.

 OS-scheduling can be unpredictable.

src. Porobic et al. “Analyzing the impact of system architecture on the scalability of OLTP engines for high-contention workloads” VLDB 2017

 Synchronization within the processor is cheaper than to synchronization over the interconnect

 due to latency concerns, but also for increased memory traffic.

 Two main approaches to make locks NUMA-aware locks (and concurrent data structures):

 Cohort locks (hierarchical locks) [1]

 Combining + remote core execution (select a leader, etc.) [2]

 Recent black box approach allows any linear data structure to be made NUMA-aware [3]

 Parking lock (e.g., optimized futex from last week) can be made a scalable and NUMA-aware blocking

synchronization primitive: CST [4]

Locks and NUMA

19

[1] Chabbi et al. High Performance Locks for Multi-Level NUMA Systems. PPoPP 2015

[2] Lozi et al. Fast and Portable Locking for Multicore Architectures. ACM Trans. Computing Systems 2016

[3] Calciu et al. Black-box Concurrent Data Structures for NUMA Architectures. ASPLOS 2017

[4] Kashyap et al. Scalable NUMA-aware Blocking Synchronization Primitives. USENIX ATC 2017

https://taesoo.kim/pubs/2017/kashyap:cst-slides.pdf

 Intel scalable with UltraPath interconnect

 Succeeds Intel QuickPath Interconnect (QPI)

 Can connect each processor with up to 3 UPI

links for connecting to other Intel Xeon

processor.

 UPI uses a directory-based home snoop

coherency protocol, operational speed of up to

10.4 GT/s

 Between 2- and 8-socket configurations

Latest generation hardware

20

 AMD Infinity Fabric

 https://www.nextplatform.com/2019/08/15/a-

deep-dive-into-amds-rome-epyc-architecture/

Performance isolation

21

 Concurrency does not only affect correctness and hence the need for efficient synchronization.

 The impact of resource sharing must not be overlooked:

 e.g., OLAP + OLAP or OLAP + OLTP

 Challenges of multi-programming (concurrency) due to interference:

1. Restructuring the algorithm (less sensitive to noisy environment)

2. Careful co-scheduling (victim and noisy neighbors)

3. Isolation through pinning and running on a separate NUMA node

4. Isolation with cache partitioning

Execution on Multiple cores

 Recall the example that we presented in the introductory lecture

 Task: run parallel instances of the query

 To implement the join use either

 a hash join or

 an index nested loops join

 Co-execute the independent instances on different CPUs and compare the performance to baseline

when they are run in isolation.

Execution on Multiple cores

SELECT SUM(lo_revenue)

FROM part, lineorder

WHERE p_partkey = lo_partkey

AND p_category <= 5

 Concurrent queries may seriously affect each other’s performance

Execution on independent CPU cores

24

Some algorithms are more

sensitive to noisy environments

(victims) and their performance

can be significantly affected if

collocated with a bad neighbor.

Src: “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

 More cores share the last-level cache (LLC)

 The problem we saw in the previous slide is cache pollution

 How can we avoid it?

Shared caches

25

CPU CPU CPU CPU

main memory

L1 cache L1 cache L1 cache L1 cache

L2 cache L2 cache L2 cache L2 cache

Last-Level Cache (LLC)

CPU CPU CPU CPU

L1 cache L1 cache L1 cache L1 cache

L2 cache L2 cache L2 cache L2 cache

Last-Level Cache (LLC)

 Dependence on cache sizes for some TPC-H queries

 Some queries are more sensitive to cache sizes than others:

 For example:

 Cache sensitive: hash joins

 Cache insensitive: index nested loop joins, hash joins with very small or very large hash tables

Cache sensitivity

26Src: “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

This behavior is related to the locality strength of execution plans:

 Strong locality

 Small data structure; reused very frequently

 e.g., a small hash table

 Moderate locality

 Frequently reused data structure; data structure ~ cache size

 e.g., moderate-sized hash table

 Weak locality

 Data not reused frequently or data structure >> cache size

 e.g., large hash table, index lookups

Locality strength

27

 Locality effects how caches are used:

 Plans with weak locality have most severe impact on co-running queries.

 Impact of co-runner on query:

Execution plan characteristics

28

Cache pollution strong moderate weak

amount of cache used small large large

amount of cache needed small large small

query / co-runner strong moderate weak

strong low moderate high

moderate moderate high high

weak low low low

Experiments: locality strength

29
Lee et al. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases. VLDB 2009

Hash join is the only algorithm

sensitive to sharing the caches.

The index join is not affected,

regardless of the co-runner query.

An optimizer could use knowledge about localities to schedule queries:

 Estimate locality during query analysis

 Index nested loop join → weak locality

 Hash join:

 Hash table ≪ cache size → strong locality

 Hash table ≈ cache size → moderate locality

 Hash table ≫ cache size → weak locality

 Co-schedule queries to minimize (the impact of) cache pollution

 Which queries should be co-scheduled, which ones not?

 Only run weak-locality queries alongside other weak-locality queries.

→ They cause high pollution, but are not affected by pollution.

 Try to co-schedule queries with small hash tables.

Locality-aware scheduling

30

Locality-aware scheduling

31

 PostgreSQL

 4 queries (different p_categorys);

for each query:

 2 x hash join,

 2 x INLJ;

 Performance impact reported

for the hash joins

Src: “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

 Weak-locality plans cause cache pollution, because they use much cache space even though they do not

strictly need it or benefit from it.

 By partitioning the cache we could reduce the pollution with little impact on the weak locality plan.

Cache pollution

32

moderate-locality plan weak-locality plan

shared cache

 In the past, people had to rely on page coloring to achieve cache partitioning from the software side

 The address <-> cache set relationship inspired the idea of page colors

 Today, Intel provides the Resource Directory Technology (RDT)

 Cache Monitoring and Allocation Technology (CMT and CAT)

 CAT is a software programmable control over the space that can be consumed

by a given thread, application, virtual machine (VM), or a container.

Cache partitioning

33

Each memory page is assigned a color.

Pages that map to the same cache sets

get the same color with OS support.

 Class of service (CLOS) or an application priority class

 resource control tag that allows us to group threads or applications.

 Associate the CLOS with resource capacity bitmasks (CBMs) indicating how much of the cache can be

used by a given CLOS.

 The CBMs indicate the relative amount of cache available, the degree of overlap or isolation.

 Can be further refied with code and data- prioritization (CDP) technology

Intel Cache Allocation Technology (CAT)

34

CLOS[1] has less cache available than CLOS[3],

even though it has higher priority

CLOS[2] and CLOS[3] have overlapping bitmasks,

can achieve higher throughput than in isolation,

but relative priorities will be preserved.

src: Intel

 PostgreSQL

 4 queries (different p_categorys);

for each query:

 2 x hash join,

 2 x INLJ;

 Performance impact reported

for the hash joins

Experiments: MCC-DB with page coloring

35
Src: “Lee, Ding, Chen, Lu, and Zhang. MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

But, it is not only the cache is shared

36

Maybe Tang or Lo’s paper and their observations

Src: Lo et al. “Heracles: Improving Resource Efficiency at Scale” ISCA 2015

Impact of interference on transactions

37

 Goal: Measure the performance impact that a local NUMA scan can have on an OLTP workload.

 No explicit sharing of resources

 the scan runs on a separate dataset and in a separate process from the OLTP workload.

 Set-up: 5/10 cores allocated to the OLTP process and measure its performance when:

 runs alone (in isolation, no interference)

 runs co-located with the bandwidth intensive scan running on the other 5 cores (i.e., local NUMA scan)

 the scan runs on 5 cores on another CPU and reads data locally (i.e., remote NUMA scan)

src: Makreshanski et al. “BatchDB: Efficient Isolated Execution of Hybrid OLTP and OLAP workloads for Interactive Applications” SIGMOD’17

 In concurrent data processing workloads (and

complex data center and enterprise deployments),

we can easily get memory-bound

(e.g., bottlenecked on the memory bandwidth).

 Need to ensure that the performance critical tasks

(e.g., OLTP transactions) still meet their SLAs.

 New addition to Intel’s RDT is Memory

Bandwidth Allocation (in Intel Xeon Scalable

processors), which extends the CAT

 Also groups threads and applications into CLOS

 Throttles them based on priorities

Bandwidth allocation and partitioning

38src: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-memory-bandwidth-allocation.html

 Various papers cross-referenced in the slides

 Li et al. “NUMA-aware algorithsm: the case of data shuffling” CIDR 2013

 Balkesen et al. “Multi-core, Main-Memory Joins: Sort vs Hash Revisited” VLDB 2014

 Schul et al. “An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory.” SIGMOD 2016

 Leis et al. “Morse-Driven Parallelism: A NUMA-aware query evaluation framework for the many-core age” SIGMOD 2014

 Porobic et al. “Analyzing the impact of system architecture on the scalability of OLTP engines for high-contention workloads” VLDB 2017

 Lee et al. “MCC-DB: Minimizing Cache Conflicts in Multi-core Processors for Databases” VLDB 2009

 Lo et al. “Heracles: Improving Resource Efficiency at Scale” ISCA 2015

 Makreshanski et al. “BatchDB: Efficient Isolated Execution of Hybrid OLTP and OLAP workloads for Interactive Applications” SIGMOD’17

 Lecture: Data Processing on Modern Hardware by Prof. Jens Teubner (TU Dortmund, past ETH)

 Book: What every programmer should know about memory? by Ulrich Drepper

 Chapters 5 and 6.5

 Intel Architectures Software Developer Manuals

 Optimizing Applications for NUMA (https://software.intel.com/content/dam/develop/external/us/en/documents/3-5-

memmgt-optimizing-applications-for-numa-184398.pdf)

 Volume 3b: chapters 17.16 and 17.16 (for Intel RDT)

References

39

https://software.intel.com/content/dam/develop/external/us/en/documents/3-5-memmgt-optimizing-applications-for-numa-184398.pdf

