
Offloading Compute-
intensive Tasks to FPGAs in 

the Datacenter
Zsolt István

IMDEA Software Institute, Madrid

zsolt.istvan@imdea.org



2

History Lesson

CPU Scaling Commodity in Cloud
Specialized 

Hardware 

Revival



3

FPGAs as a middle ground

ASICsFPGAsCPUs



Field Programmable Gate Array (FPGA)

▪ Free choice of architecture

▪ Fine-grained pipelining, 
communication, distributed memory

▪ Tradeoff: all “code” occupies chip 
space

▪ Running in the 100-600MHz range

▪ <25W power consumption 

4

FPGAs in Research and Datacenter

Op 1

Op 2

Op 3



5

Integration Options

Accel.

1) On the side 2) In data-path 3) Co-processor

Data

Data Data

Accel.

Accel.



▪ Accelerator
▪ Amazon F1

▪ For compute-intensive tasks

▪ In data path
▪ Microsoft Catapult

▪ For reducing data movement

▪ Co-processor
▪ Intel Xeon+FPGA

▪ For compute tasks

6

In the Cloud Today

Socket1 Socket2

CPU FPGA

Socket1

CPU FPGA
CPU

FPGA

Intel Xeon+FPGA Gen.1 Intel Xeon+FPGA Gen.2



▪ Challenge: adapting algorithms to the parallelism of the FPGA

▪ Coding: Hardware definition languages, high level languages 

▪ Synthesis: Produce a logic-gate level representation (any FPGA)

▪ Place & route: Circuit that gets mapped onto specific FPGA

7

Programming FPGAs

Code 
Synthesized 

Circuit

Placed & 

Routed 



8

From code to circuit

loop forever:
if (a==b) then
d <= c+1

else 
d <= c+2

end if

= +1 +2

a b c

d

t=1

t=2

Fmax depends on 

“most expensive” 

step

Fmax = 100MHz

Latency = 1 cycle

t=3

▪ All code is turned into registers and gates mapped to logic blocks

▪ Organize into modules – fmodule(inputs) → outputs

▪ Execution synchronous to a clock 
Programming in HDL 

(Verilog, VHDL): low level of 

abstraction, but full control



Modified HDL

9

From code to circuit

loop forever:
if (a==b) then
x <= 0

else 
x <= 1

end if

c’ <= c
i <= c+1

if (x==0) then
d <= c’+1 

else 
d <= i+1

end if

=

+1

a b c

d

+1

+1

ix

t=1

t=2

t=3

t=4

Fmax = 150MHz

Latency = 2 cycles
c’

▪ All code is turned into registers and gates mapped to logic blocks

▪ Organize into modules – fmodule(inputs) → outputs

▪ Execution synchronous to a clock 
If programming the 

FPGA in HLS, the 

compiler can 

(sometimes) help



▪ Regular expression matching:
▪ Constant throughput regardless of the expression

▪ K-means:
▪ Flexible use of resources (throughput / exploration)

10

Two examples



▪ Regular expression → search pattern in text
▪ Address in Cluj:   Cluj(( |-)Napoca)?

▪ Filter rows in databases (map to regex)
SELECT … FROM customer 

WHERE  age<35 AND purchases>2 

AND address LIKE “%Cluj%Napoca%”

▪ Feature engineering in machine learning pipelines

11

Regular Expressions in Data Analytics



12

Regular Expression Matching – Challenges

Intel Hyperscan library (Xeon E5-2680 v2)

▪ Compute intensive & Performance depends on complexity

2.8x



13

Finite State Automaton

▪ a.*(b|c)d

▪ NFA vs. DFA
▪ Nondeterministic – Multiple states active at the 

same time (more compute per input character)

▪ Deterministic – State “explosion” (large footprint 
of state machine in memory)

d

c

a

c

b

d

-c & -b

-c & -b

b

-

d

-

d

D

F

A

S0

S2

S1 S4

d

c

a

*

b

S3
d

Input: acbd



▪ CPUs turn NFAs into iterative instructions

▪ FPGAs good with NFAs
▪ Typically in networking scenarios (SNORT rules, etc.)

▪ The automaton can be compiled to actual circuitry → no flexibility!

14

Implementing NFAs

S0

S2

S1 S4

d

c

a

*

b

S3

d



▪ Deconstruct the NFA:
▪ Characters

▪ Transitions

▪ States

15

Towards a Parameterizable Design

a

b

a

d

*

a

c



State Trans.Triggers

16

Pipelined and parameterized design

a

b

c

d

StatesCharacter Matchers

Input

Choose 

characters at 

run-time



State Trans.Triggers

17

Pipelined and parameterized design

X

Y

9

2

P

StatesCharacter Matchers

Input

Select what 

connections to 

use at run-time

Select what 

connections to 

use at run-time

Choose 

characters at 

run-time



State Trans.Triggers

18

Pipelined and parameterized design

X

Y

9

2

P

StatesCharacter Matchers

Input

Select what 

connections to 

use at run-time

Select what 

connections to 

use at run-time

Choose 

characters at 

run-time

Pipelined design turns the problem into bandwidth-bound regardless of complexity



19

Skeleton of an NFA

▪ To be able to implement any expression we need the equivalent 
of a fully connected graph

▪ Resources limited on the FPGA 
▪ All “code” occupies space.

▪ Find a way to compress NFAs
▪ Less states & Less character matchers?



20

Decoupling Characters from States

•Linear resource cost for “Tokens”

•Much smaller fully connected graph for “States”

0

1

2

3 4 5 6 7 8 9 10 11

“ “

\t

J

J

o h n S m i t h*

“ “

\t

Token C Token D

3’ 4’Smith
John

*
0’

1’

2’

“ “

\t

“ “

\t

John



▪ One Regex Engine can 
process 1B/cycle

▪ Split input across multiple 
units in parallel
▪ No overhead in on-chip 

communication

21

Data parallel execution –a “Regex Processor”

“a.*b”

“a.*b”

“a.*b”

“a.*b”

Config.

Tuple1

Tuple2

Tuple3

Tuple4

Tuple5Tuple6



22

Scale the design to desired bandwidth

Fmax

Input Rate 

(Main 

memory)

x16

x32

x64

x128

x64

x32

x16
x8

Input Rate

(Flash drive)

Deployed on Altera Stratix V 5SGXEACan use chip-space to add other types of computation



23

From expression to execution

foo.*bar+(123|abc)

Transform to 

NFA
Extract 

sequences

foo, bar, 

123, abc

Encode

Matcher 
Circuit

Config. 
Bit-vectors

Run-time 

parameterization

#states

#characters

parallelism

Circuit “template”
Program the 

FPGA once



▪ As an accelerator card – high latency, far from 
main memory
▪ Amazon EC2, Microsoft Catapult (>1M devices deployed)

▪ As a co-processor – low latency, high bandwidth
▪ Intel Xeon+FPGA machines

24

Deployment of FPGAs



25

Changing the execution model pays off

▪ Software can be competitive, but needs many cores

▪ Throughput not dependent on complexity

▪ Matching can be combined with other processing on FPGA

HW throughput: 5GB/s for all patterns 

(limited by communication to memory)

CPU used: Intel Xeon E5-2680v2

HW used: Intel Xeon+FPGA 1st Gen

Intel Hyperscan

Google RE2



K-means – Algorithm 

◼ Goal: partition unlabeled data into several 

clusters, where the number of clusters is 

the “k” in the k-means.

◼ Two steps in each iteration: 

◼ Assignment: assign data points to 

closet centroid according to distance 

metric

◼ Centroid update: the centroids are re-

calculated by averaging all the data 

points within each cluster

◼ Long process if the data set and number of 

iterations are large

26



DRAM 

(DB Tables)

Design – Execution Walk-Through

Receives K-Means parameters1

Fetch the initial centroids and 

the data

2

3 Calculates the distance between 

a data point and all the centroids 

and assign it to closest centroid

4 Accumulates data points per cluster and 

counts how many data points are assigned to 

each cluster

Collect partial results from each pipeline5

Division for updating new centroid6

Writes back the final results7

1

2

3 4

56

7

Zhenhao He, David Sidler, Zsolt István, Gustavo Alonso: A Flexible K-Means Operator for Hybrid Databases. FPL 2018
27



28

Uses of Parallelism

K is known / 

Centroids 

known

Need to determine K

(Elbow method)

▪ K-Means algorithm
▪ FPGA outperforms several cores of the CPU

▪ Can use parallelism in two ways – cover more queries



▪ Specialized hardware allows breaking traditional tradeoffs
▪ Convert from compute-bound to bandwidth-bound

▪ Adding a “spatial element” to the design tradeoffs

▪ Looking ahead: Datacenters are becoming more heterogenous
▪ Need to think about how we split functionality across processor types

▪ Programming non-CPU devices

We’re hiring at IMDEA Software! If you are looking for an internship or PhD position, 
contact me!

zsolt.istvan@imdea.org
29

Closing Remarks


