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Process Memory Layout (1)

Each Linux process runs within its own virtual address space
• The kernel pretends that each process has access to a (huge) continuous

range of addresses (≈ 256 TiB on x86-64)
• Virtual addresses are mapped to physical addresses by the kernel using page

tables and the MMU (if available)
• Greatly simplifies memory management code in the kernel and improves

security due to memory isolation
• Allows for useful “tricks” such as memory-mapping files
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Process Memory Layout (2)

The kernel also uses virtual memory
• Part of the address space has to be

reserved for kernel memory
• This kernel-space memory is

mapped to the same physical
addresses for each process

• Access to this memory is restricted

Most of the address space is unused
• MMUs on x86-64 platforms only

support 48 bit pointers at the
moment

• Might change in the future (Linux
already supports 56 bit pointers)

0xffffffffffffffff

0xffff800000000000

0x0000800000000000

0x0000000000000000

kernel-space 
(128 TiB)

user-space 
(128 TiB)

unused
(16 EiB)
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Process Memory Layout (3)

User-space memory is organized in seg-
ments
• Stack segment
• Memory mapping segment
• Heap segment
• BSS, data and text segments

Segments can grow
• Stack and memory mapping

segments usually grow down (i.e.
addresses decrease)

• Heap segment usually grows up (i.e.
addresses increase)

stack

text
data
bss

heap

mmap

100s of GiB

10s of TiB

up to some GiB

0x0000800000000000

0x0000000000000000
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Stack Segment (1)

Stack memory is typically used for objects with automatic storage duration
• The compiler can statically decide when allocations and deallocations must

happen
• The memory layout is known at compile-time
• Allows for highly optimized code (allocations and deallocations simply

increase/decrease a pointer)

Fast, but inflexible memory
• Array sizes must be known at compile-time
• No dynamic data structures are possible (trees, graphs, etc.)
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Stack Segment (2)

Example
foo.cpp

int foo() {
int c = 2;
int d = 21;

return c * d;
}

int main() {
int a[100];
int b = foo();

return b;
}

foo.o
foo():

pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $21, -8(%rbp)
movl -4(%rbp), %eax
imull -8(%rbp), %eax
popq %rbp
ret

main:
pushq %rbp
movq %rsp, %rbp
subq $416, %rsp
call foo()
movl %eax, -4(%rbp)
movl -4(%rbp), %eax
leave
ret

303



Dynamic Memory Management Process Memory Layout

Heap Segment

The heap is typically used for objects with dynamic storage duration
• The programmer must explicitly manage allocations and deallocations
• Allows much more flexible programs

Disadvantages
• Performance impact due to non-trivial implementation of heap-based memory

allocation
• Memory fragmentation
• Dynamic memory allocation is error-prone

• Memory leaks
• Double free (deallocation)
• Make use of debugging tools (GDB, ASAN (!))
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Dynamic Memory Management in C++

C++ provides several mechanisms for dynamic memory management
• Through new and delete expressions (discouraged)
• Through the C functions malloc and free (discouraged)
• Through smart pointers and ownership semantics (preferred)

Mechanisms give control over the storage duration and possibly lifetime of objects
• Level of control varies by method
• In all cases: Manual intervention required
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The new Expression

Creates and initializes objects with dynamic storage duration
• Syntax: new type initializer
• type must be a type
• type can be an array type
• initializer can be omitted

Explanation
• Allocates heap storage for a single object or an array of objects
• Constructs and initializes a single object or an array of objects in the newly

allocated storage
• If initializer is absent, the object is default-initialized
• Returns a pointer to the object or the initial element of the array
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The delete Expression

Every object allocated through new must be destroyed through delete
• Syntax (single object): delete expression
• expression must be a pointer created by the single-object form of the new

expression
• Syntax (array): delete[] expression
• expression must be a pointer created by the array form of the new

expression
• In both cases expression may be nullptr

Explanation
• If expression is nullptr nothing is done
• Invokes the destructor of the object that is being destroyed, or of every object

in the array that is being destroyed
• Deallocates the memory previously occupied by the object(s)
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new & delete Example
class IntList {

struct Node {
int value;
Node* next;

};

Node* first;
Node* last;

public:
~IntList() {

while (first != nullptr) {
Node* next = first->next;
delete first;
first = next;

}
}

void push_back(int i) {
Node* node = new Node{i, nullptr};
if (!last)

first = node;
else

last->next = node;
last = node;

}
};
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Memory Leaks

Memory leaks can happen easily

int foo(unsigned length) {
int* buffer = new int[length];

/* ... do something ... */

if (condition)
return 42; // MEMORY LEAK

/* ... do something else ... */

delete[] buffer;
return 123;

}

Avoid explicit memory management through new and delete whenever possible

309

https://en.cppreference.com/w/cpp/language/new#Memory_leaks


Dynamic Memory Management Dynamic Memory Management in C++

Placement new (1)

Constructs objects in already allocated storage
• Syntax: new (placement_params) type initializer
• placement_params must be a pointer to a region of storage large enough

to hold an object of type type
• The strict aliasing rule must not be violated
• Alignment must be ensured manually
• Only rarely required (e.g. for custom memory management)
• Requires that the <new> standard header is included
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Placement new (2)

Example

#include <cstddef>
#include <new>

struct A { };

int main() {
std::byte* buffer = new std::byte[sizeof(A)];
A* a = new (buffer) A();
/* ... do something with a ... */
a->~A(); // we must explicitly call the destructor
delete[] buffer;

}
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Lifetimes and Storage Duration (1)

The lifetime of an object is equal to or nested within the lifetime of its storage
• Equal for regular new and delete
• Possibly nested for placement new

Example

struct A { };

int main() {
A* a1 = new A(); // lifetime of a1 begins, storage begins
a1->~A(); // lifetime of a1 ends
A* a2 = new (a1) A(); // lifetime of a2 begins
delete a2; // lifetime of a2 ends, storage ends

}
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Lifetimes and Storage Duration (2)

Lifetime and storage duration of objects have real-world implications
• Accessing objects outside of their lifetime is undefined behavior and will often

lead to segmentation faults
• Important to always keep track of lifetimes (if necessary through suitable

comments)
• Use debugging tools (in particular ASAN) to find such bugs!

Examples of common bugs
• Returning pointers/references to local variables from functions
• Using a pointer/reference to access memory that has already been freed
• Using a pointer/reference to access an object that has already been

destructed
• Maintaining pointers/references to objects in an std::vector after its

internal storage has been reallocated (e.g. through a call to push_back)
• ...

313

https://en.cppreference.com/w/cpp/language/lifetime


Dynamic Memory Management Memory Manipulation Primitives

std::memcpy (1)

std::memcpy copies bytes between non-overlapping memory regions
• Defined in <cstring> standard header
• Syntax: void* memcpy(void* dest, const void* src, std::size_t count);

• Copies count bytes from the object pointed to by src to the object pointed
to by dest

• Can be used to work around strict aliasing rules without causing undefined
behavior

Restrictions (undefined behavior if violated)
• Objects must not overlap
• src and dest must not be nullptr
• Objects must be trivially copyable
• dest must be aligned suitably
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std::memcpy (2)
Example (straightforward copy)

#include <cstring>
#include <vector>

int main() {
std::vector<int> buffer = {1, 2, 3, 4};
buffer.resize(8);
std::memcpy(&buffer[4], &buffer[0], 4 * sizeof(int));

}

Example (work around strict aliasing)

#include <cstring>
#include <cstdint>

int main() {
int64_t i = 42;
double j;
std::memcpy(&j, &i, sizeof(double)); // OK

}
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std::memmove (1)

std::memmove copies bytes between possibly overlapping memory regions
• Defined in <cstring> standard header
• Syntax: void* memmove(void* dest, const void* src, std::size_t count);

• Copies count bytes from the object pointed to by src to the object pointed
to by dest

• Acts as if the bytes were copied to a temporary buffer

Restrictions (undefined behavior if violated)
• src and dest must not be nullptr
• Objects must be trivially copyable
• dest must be suitably aligned
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std::memmove (2)

Example (straightforward copy)

#include <cstring>
#include <vector>

int main() {
std::vector<int> buffer = {1, 2, 3, 4};
buffer.resize(6);
std::memmove(&buffer[2], &buffer[0], 4 * sizeof(int));
// buffer is now {1, 2, 1, 2, 3, 4}

}
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Copy and Move Semantics
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Copy Semantics

Assignment and construction of classes employs copy semantics in most cases
• By default, a shallow copy is created
• Usually not particularly relevant for fundamental types
• Very relevant for user-defined class types

Considerations for user-defined class types
• Copying may be expensive
• Copying may be unnecessary or even unwanted
• An object on the left-hand side of an assignment might manage dynamic

resources
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Copy Constructor (1)

Invoked whenever an object is initialized from an object of the same type
• Syntax: class_name ( const class_name& )
• class_name must be the name of the current class

For a class type T and objects a, b, the copy constructor is invoked on
• Copy initialization: T a = b;
• Direct initialization: T a(b);
• Function argument passing: f(a); where f is void f(T t);
• Function return: return a; inside a function T f(); if T has no move

constructor (more details next)
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Copy Constructor (2)

Example

class A {
private:
int v;

public:
explicit A(int v) : v(v) { }
A(const A& other) : v(other.v) { }

};

int main() {
A a1(42); // calls A(int)

A a2(a1); // calls copy constructor
A a3 = a2; // calls copy constructor

}
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Copy Assignment (1)

Typically invoked if an object appears on the left-hand side of an assignment with
an lvalue on the right-hand side
• Syntax (1): class_name& operator=( class_name )
• Syntax (2): class_name& operator=( const class_name& )
• class_name must be the name of the current class
• Usually, option (2) is preferred unless the copy-and-swap idiom is used (more

details next)

Explanation
• Called whenever selected by overload resolution
• Returns a reference to the object itself (i.e. *this) to allow for chaining

assignments
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Copy Assignment (2)
Example

class A {
private:
int v;

public:
explicit A(int v) : v(v) { }
A(const A& other) : v(other.v) { }

A& operator=(const A& other) {
v = other.v;
return *this;

}
};

int main() {
A a1(42); // calls A(int)
A a2 = a1; // calls copy constructor

a1 = a2; // calls copy assignment operator
}
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Implicit Declaration (1)

The compiler will implicitly declare a copy constructor if no user-defined copy
constructor is provided
• The implicitly declared copy constructor will be a public member of the

class
• The implicitly declared copy constructor may or may not be defined

The implicitly declared copy constructor is defined as deleted if one of the
following is true
• The class has non-static data members that cannot be copy-constructed
• The class has a base class which cannot be copy-constructed
• The class has a base class with a deleted or inaccessible destructor
• The class has a user-defined move constructor or assignment operator
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the constructor.
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Implicit Declaration (2)

The compiler will implicitly declare a copy assignment operator if no user-defined
copy assignment operator is provided
• The implicitly declared copy assignment operator will be a public member

of the class
• The implicitly declared copy assignment operator may or may not be defined

The implicitly declared copy assignment operator is defined as deleted if one of
the following is true
• The class has non-static data members that cannot be copy-assigned
• The class has a base class which cannot be copy-assigned
• The class has a non-static data member of reference type
• The class has a user-defined move constructor or assignment operator
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the assignment
operator.
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Implicit Definition

If it is not deleted, the compiler defines the implicitly-declared copy constructor
• Only if it is actually used (odr-used)
• Performs a full member-wise copy of the object’s bases and members in their

initialization order
• Uses direct initialization

If it is not deleted, the compiler defines the implicitly-declared copy assignment
operator
• Only if it is actually used (odr-used)
• Performs a full member-wise copy assignment of the object’s bases and

members in their initialization order
• Uses built-in assignment for scalar types and copy assignment for class types
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Example: Implicit Declaration & Definition

Example

struct A {
const int v;

explicit A(int v) : v(v) { }
};

int main() {
A a1(42);

A a2(a1); // OK: calls the generated copy constructor
a1 = a2; // ERROR: the implicitly-declared copy assignment

// operator is deleted
}
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Trivial Copy Constructor and Assignment Operator (1)

The copy constructor/assignment operator may be trivial
• It must not be user-provided (explicitily defaulting does not count as

user-provided)
• The class has no virtual member functions
• The copy constructor/assignment operator for all direct bases and non-static

data members of class type is trivial

A trivial copy constructor/assignment operator behaves similar to std::memcpy
• Every scalar subobject is copied recursively and no further action is performed
• The object representation of the copied object is not necessarily identical to

the source object
• Trivially copyable objects may legally be copied using std::memcpy
• All data types compatible with C are trivially copyable
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Trivial Copy Constructor and Assignment Operator (2)

Example

#include <vector>

struct A {
int b;
double c;

};

int main() {
std::vector<A> buffer1;
buffer1.resize(10);

std::vector<A> buffer2; // copy buffer1 using copy-constructor
for (const A& a : buffer1)

buffer2.push_back(a);

std::vector<A> buffer3; // copy buffer1 using memcpy
buffer3.resize(10);
std::memcpy(&buffer3[0], &buffer1[0], 10 * sizeof(A));

}
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Implementing Custom Copy Operations (1)

Custom copy constructors/assignment operators are only occasionally necessary
• Often, a class should not be copyable anyway if the implicitly generated

versions do not make sense
• Exceptions include classes which manage some kind of resource (e.g. dynamic

memory)

Guidelines for implementing custom copy operations
• The programmer should either provide neither a copy constructor nor a copy

assignment operator, or both
• The copy assignment operator should usually include a check to detect

self-assignment
• If possible, resources should be reused
• If resources cannot be reused, they have to be cleaned up properly

330



Copy and Move Semantics Copy Semantics

Implementing Custom Copy Operations (2)
Example
struct A {

unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(const A& other) : A(other.capacity) {

std::memcpy(memory, other.memory, capacity * sizeof(int));
}
~A() { delete[] memory; }

A& operator=(const A& other) {
if (this == &other) // check for self-assignment

return *this;

if (capacity != other.capacity) { // attempt to reuse resources
delete[] memory;
capacity = other.capacity;
memory = new int[capacity];

}

std::memcpy(memory, other.memory, capacity * sizeof(int));

return *this;
}

};
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Move Semantics

Copy semantics often incur unnecessary overhead or are unwanted
• An object may be immediately destroyed after it is copied
• An object might not want to share a resource it is holding

Move semantics provide a solution to such issues
• Move constructors/assignment operators typically “steal” the resources of the

argument
• Leave the argument in a valid but indeterminate state
• Greatly enhances performance in some cases
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Move Construction (1)

Typically called when an object is initialized from an rvalue of the same type
• Syntax: class_name ( class_name&& ) noexcept
• class_name must be the name of the current class
• The noexcept keyword should be added to indicate that the constructor

never throws an exception

Explanation
• Overload resolution decides if the copy or move constructor of an object

should be called
• Temporary values and calls to functions that return an object are rvalues
• The std::move function in the <utility> header may be used to convert

an lvalue to an rvalue
• We know that the argument does not need its resources anymore, so we can

simply steal them
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Move Construction (2)
For a class type T and objects a, b, the move constructor is invoked on
• Direct initialization: T a(std::move(b));
• Copy initialization: T a = std::move(b);
• Function argument passing: f(std::move(b)); with void f(T t);
• Function return: return a; inside T f();

Example

struct A {
A(const A& other);
A(A&& other);

};
A getA();
int main() {

A a1;
A a2(a1); // calls copy constructor
A a3(std::move(a1)); // calls move constructor
A a4(getA()); // calls move constructor

}
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Move Assignment (1)

Typically called if an object appears on the left-hand side of an assignment with
an rvalue on the right-hand side
• Syntax: class_name& operator=( class_name&& ) noexcept
• class_name must be the name of the current class
• The noexcept keyword should be added to indicate that the assignment

operator never throws an exception

Explanation
• Overload resolution decides if the copy or move assignment operator of an

object should be called
• We know that the argument does not need its resources anymore, so we can

simply steal them
• The move assignment operator returns a reference to the object itself (i.e.
*this) to allow for chaining
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Move Assignment (2)
Example

struct A {
A();
A(const A&);
A(A&&) noexcept;

A& operator=(const A&);
A& operator=(A&&) noexcept;

};

int main() {
A a1;
A a2 = a1; // calls copy-constructor
A a3 = std::move(a1); // calls move-constructor

a3 = a2; // calls copy-assignment
a2 = std::move(a3); // calls move-assignment

}
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Implicit Declaration (1)

The compiler will implicitly declare a public move constructor if all the following
conditions hold
• There are no user-declared copy constructors
• There are no user-declared copy assignment operators
• There are no user-declared move assignment operators
• There are no user-declared destructors

The implicitly declared move constructor is defined as deleted if one of the
following is true
• The class has non-static data members that cannot be moved
• The class has a base class which cannot be moved
• The class has a base class with a deleted or inaccessible destructor
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the constructor.
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Implicit Declaration (2)
The compiler will implicitly declare a public move assignment operator if all the
following conditions hold
• There are no user-declared copy constructors
• There are no user-declared copy assignment operators
• There are no user-declared move constructors
• There are no user-declared destructors

The implicitly declared move assignment operator is defined as deleted if one of
the following is true
• The class has non-static data members that cannot be moved
• The class has non-static data members of reference type
• The class has a base class which cannot be moved
• The class has a base class with a deleted or inaccessible destructor
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the assignment
operator.
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Implicit Definition

If it is not deleted, the compiler defines the implicitly-declared move constructor
• Only if it is actually used (odr-used)
• Performs a full member-wise move of the object’s bases and members in their

initialization order
• Uses direct initialization

If it is not deleted, the compiler defines the implicitly-declared move assignment
operator
• Only if it is actually used (odr-used)
• Performs a full member-wise move assignment of the object’s bases and

members in their initialization order
• Uses built-in assignment for scalar types and move assignment for class types
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Example: Implicit Declaration & Definition

Example

struct A {
const int v;

explicit A(int v) : v(v) { }
};

int main() {
A a1(42);

A a2(std::move(a1)); // OK: calls the generated move constructor
a1 = std::move(a2); // ERROR: the implicitly-declared move

// assignment operator is deleted
}
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Trivial Move Constructor and Assignment Operator

The move constructor/assignment operator may be trivial
• It must not be user-provided (explicitily defaulting does not count as

user-provided)
• The class has no virtual member functions
• The move constructor/assignment operator for all direct bases and non-static

data members of class type is trivial

A trivial move constructor/assignment operator acts similar to std::memcpy
• Every scalar subobject is copied recursively and no further action is performed
• The object representation of the copied object is not necessarily identical to

the source object
• Trivially movable objects may legally be moved using std::memcpy
• All data types compatible with C are trivially movable
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Implementing Custom Move Operations (1)

Custom move constructors/assignment operators are often necessary
• A class that manages some kind of resource almost always requires custom

move constructors and assignment operators

Guidelines for implementing custom move operations
• The programmer should either provide neither a move constructor nor a move

assignment operator, or both
• The move assignment operator should usually include a check to detect

self-assignment
• The move operations should typically not allocate new resources, but steal

the resources from the argument
• The move operations should leave the argument in a valid state
• Any previously held resources must be cleaned up properly
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Implementing Custom Move Operations (2)
Example
struct A {

unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(A&& other) noexcept : capacity(other.capacity), memory(other.memory) {

other.capacity = 0;
other.memory = nullptr;

}
~A() { delete[] memory; }

A& operator=(A&& other) noexcept {
if (this == &other) // check for self-assignment

return *this;

delete[] memory;
capacity = other.capacity;
memory = other.memory;

other.capacity = 0;
other.memory = nullptr;

return *this;
}

};
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Copy Elision (1)

Compilers must omit copy and move constructors under certain circumstances
• Objects are instead directly constructed in the storage into which they would

be copied/moved
• Results in zero-copy pass-by-value semantics
• Most importantly in return statements and variable initialization from a

temporary
• More optimizations allowed, but not required

This is one of very few optimizations which is allowed to change observable
side-effects
• Not all compilers perform the same optional optimizations
• Programs that rely on side-effects of copy/move constructors and destructors

are not portable
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Copy Elision (2)
Example
#include <iostream>

struct A {
int a;

A(int a) : a(a) {
std::cout << "constructed" << std::endl;

}

A(const A& other) : a(other.a) {
std::cout << "copy-constructed" << std::endl;

}
};

A foo() {
return A(42);

}

int main() {
A a = foo(); // prints only "constructed"

}
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Value Categories

Move semantics and copy elision require a more sophisticated taxonomy of
expressions

• glvalues identify objects
• xvalues identify an object whose

resources can be reused
• prvalues compute the value of an

operand or initialize an object

glvalue

rv
alu

e can
m

ove
cannot
m

ove

has
identity

no
identity

lvalue

xvalue prvalue

In particular, std::move just converts its argument to an xvalue expression
• std::move is exactly equivalent to a static_cast to an rvalue reference
• std::move is exclusively syntactic sugar (to guide overload resolution)
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Copy-And-Swap (1)

The copy-and-swap idiom is convenient if copy assignment cannot benefit from
resource reuse
• The class defines only the class_type& operator=( class_type )

copy-and-swap assignment operator
• Acts both as copy and move assignment operator depending on the value

category of the argument

Implementation
• Exchange the resources between the argument and *this;
• Let the destructor clean up the resources of the argument
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Copy-And-Swap (2)

Example

#include <algorithm>
#include <cstring>

struct A {
unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(const A& other) : A(other.capacity) {

std::memcpy(memory, other.memory, capacity * sizeof(int));
}
~A() { delete[] memory; }

A& operator=(A other) { // copy/move constructor is called to create other
std::swap(capacity, other.capacity);
std::swap(memory, other.memory);

return *this;
} // destructor cleans up resources formerly held by *this

};

Temporarily uses more resources than strictly required
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The Rule of Three

If a class requires one of the following, it almost certainly requires all three
• A user-defined destructor
• A user-defined copy constructor
• A user-defined copy assignment operator

Explanation
• Having a user-defined copy constructor usually implies some custom setup

logic which needs to be executed by copy assignment and vice-versa
• Having a user-defined destructor usually implies some custom cleanup logic

which needs to be executed by copy assignment and vice-versa
• The implicitly-defined versions are usually incorrect if a class manages a

resource of non-class type (e.g. a raw pointer, POSIX file descriptor, etc.)
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Copy and Move Semantics Idioms

The Rule of Five

If a class follows the rule of three, move operations are defined as deleted
• If move semantics are desired for a class, it has to define all five special

member functions
• If only move semantics are desired for a class, it still has to define all five

special member functions, but define the copy operations as deleted

Explanation
• Not adhering to the rule of five usually does not lead to incorrect code
• However, many optimization opportunities may be inaccessible to the

compiler if no move operations are defined

350

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five


Copy and Move Semantics Idioms

Resource Acquisition is Initialization (1)

Bind the lifetime of a resource that has to be allocated to the lifetime of an object
• Resources can be allocated heap memory, sockets, files, mutexes, disk space,

database connections, etc.
• Guarantees availability of the resource during the lifetime of the object
• Guarantees that resources are released when the lifetime of the object ends
• Object should have automatic storage duration
• Known as the Resource Acquisition is Initialization (RAII) idiom

One of the most important and powerful idioms in C++!
• One consequence: Never use new and delete outside of an RAII class
• C++ already defines smart pointers that are RAII wrappers for new and
delete

• Thus we almost never need to use new and delete in our code
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Copy and Move Semantics Idioms

Resource Acquisition is Initialization (2)

Implementation of RAII
• Encapsulate each resource into a class whose sole responsibility is managing

the resource
• The constructor acquires the resource and establishes all class invariants
• The destructor releases the resource
• Typically, copy operations should be deleted and custom move operations

need to be implemented

Usage of RAII classes
• RAII classes should only be used with automatic or temporary storage

duration
• Ensures that the compiler manages the lifetime of the RAII object and thus

indirectly manages the lifetime of the resource
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Copy and Move Semantics Idioms

Resource Acquisition is Initialization (3)
Example

class CustomIntBuffer {
private:

int* memory;
public:

explicit CustomIntBuffer(unsigned size) : memory(new int[size]) { }
CustomIntBuffer(const CustomIntBuffer&) = delete;
CustomIntBuffer(CustomIntBuffer&& other) noexcept : memory(other.memory) {

other.memory = nullptr;
}
~CustomIntBuffer() { delete[] memory; }

CustomIntBuffer& operator=(const CustomIntBuffer&) = delete;
CustomIntBuffer& operator=(CustomIntBuffer&& other) noexcept {

if (this != &other) {
delete[] memory;
memory = other.memory;
other.memory = nullptr;

}
return *this;

}

int* getMemory() { return memory; }
const int* getMemory() const { return memory; }

};
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Copy and Move Semantics Idioms

Resource Acquisition is Initialization (4)
Example usage of the CustomIntBuffer class

#include <utility>

bool foo(CustomIntBuffer buffer) {
/* do something */

if (condition)
return false; // no worries about forgetting to free memory

/* do something more */

return true; // no worries about forgetting to free memory
}

int main() {
CustomIntBuffer buffer(5);

return foo(std::move(buffer));
}
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Ownership
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Ownership

Ownership Semantics

One of the main challenges in manual memory management is tracking ownership
• Traditionally, owners can be, e.g., functions or classes
• Only the owner of some dynamically allocated memory may safely free it
• Multiple objects may have a pointer to the same dynamically allocated

memory

The RAII idiom and move semantics together enable ownership semantics
• A resource should be “owned”, i.e. encapsulated, by exactly one C++ object

at all times
• Ownership can only be transferred explicitly by moving the respective object
• E.g., the CustomIntBuffer class implements ownership semantics for a

dynamically allocated int-array
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Ownership Smart Pointers

std::unique_ptr (1)

std::unique_ptr is a so-called smart pointer
• Essentially implements RAII/ownership semantics for arbitrary pointers
• Assumes unique ownership of another C++ object through a pointer
• Automatically disposes of that object when the std::unique_ptr goes out

of scope
• A std::unique_ptr may own no object, in which case it is empty
• Can be used (almost) exactly like a raw pointer
• But: std::unique_ptr can only be moved, not copied

std::unique_ptr is defined in the <memory> standard header
• It is a template class, and can be used for arbitrary types
• Syntax: std::unique_ptr< type > where one would otherwise

use type*

std::unique_ptr should always be preferred over raw pointers!
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Ownership Smart Pointers

std::unique_ptr (2)
Usage of std::unique_ptr (for details: see reference documentation)

Creation
• std::make_unique<type>(arg0, ..., argN), where arg0, ...,
argN are passed to the constructor of type

Indirection, subscript, and member access
• The indirection, subscript, and member access operators *, [] and -> can be

used in the same way as for raw pointers

Conversion to bool
• std::unique_ptr is contextually convertible to bool, i.e. it can be used in
if statements in the same way as raw pointers

Accessing the raw pointer
• The get() member function returns the raw pointer
• The release() member function returns the raw pointer and releases

ownership
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Ownership Smart Pointers

std::unique_ptr (3)
Example

#include <memory>

struct A {
int a;
int b;

A(int a, int b) : a(a), b(b) { }
};
void foo(std::unique_ptr<A> aptr) { // assumes ownership

/* do something */
}
void bar(const A& a) { // does not assume ownership

/* do something */
}
int main() {

std::unique_ptr<A> aptr = std::make_unique<A>(42, 123);
int a = aptr->a;
bar(*aptr); // retain ownership
foo(std::move(aptr)); // transfer ownership

}
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std::unique_ptr (4)

std::unique_ptr can also be used for heap-based arrays

std::unique_ptr<int[]> foo(unsigned size) {
std::unique_ptr<int[]> buffer = std::make_unique<int[]>(size);

for (unsigned i = 0; i < size; ++i)
buffer[i] = i;

return buffer; // transfer ownership to caller
}

int main() {
std::unique_ptr<int[]> buffer = foo(42);

/* do something */
}
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std::shared_ptr (1)

Rarely, true shared ownership is desired
• A resource may be simultaneously have several owners
• The resource should only be released once the last owner releases it
• std::shared_ptr defined in the <memory> standard header can be used

for this
• Multiple std::shared_ptr objects may own the same raw pointer

(implemented through reference counting)
• std::shared_ptr may be copied and moved

Usage of std::shared_ptr
• Use std::make_shared for creation
• Remaining operations analogous to std::unique_ptr
• For details: See the reference documentation

std::shared_ptr is rather expensive and should be avoided when possible
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std::shared_ptr (2)

Example

#include <memory>
#include <vector>

struct Node {
std::vector<std::shared_ptr<Node>> children;

void addChild(std::shared_ptr<Node> child);
void removeChild(unsigned index);

};

int main() {
Node root;
root.addChild(std::make_shared<Node>());
root.addChild(std::make_shared<Node>());
root.children[0]->addChild(root.children[1]);

root.removeChild(1); // does not free memory yet
root.removeChild(0); // frees memory of both children

}

362



Ownership Smart Pointers

Usage Guidelines: Pointers (1)

std::unique_ptr represents ownership
• Used for dynamically allocated objects

• Frequently required for polymorphic objects
• Useful to obtain a movable handle to an immovable object

• std::unique_ptr as a function parameter or return type indicates a
transfer of ownership

• std::unique_ptr should almost always be passed by value

Raw pointers represent resources
• Should almost always be encapsulated in RAII classes (mostly
std::unique_ptr)

• Very occasionally, raw pointers are desired as function parameters or return
types

• If ownership is not transferred, but there might be no object (i.e. nullptr)
• If ownership is not transferred, but pointer arithmetic is required
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Ownership Smart Pointers

Usage Guidelines: References (2)

References grant temporary access to an object without assuming ownership
• If necessary, a reference can be obtained from a smart pointer through the

indirection operator *

Ownership can also be relevant for other types (e.g. std::vector)
• Moving (i.e. transferring ownership) should always be preferred over copying
• Should be passed by lvalue-reference if ownership is not transferred
• Should be passed by rvalue-reference if ownership is transferred
• Should be passed by value if they should be copied

Rules can be relaxed if an object is not copyable
• Should be passed by lvalue-reference if ownership is not transferred
• Should be passed by value if ownership is transferred
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Usage Guidelines (3)

Example

struct A { };

// reads a without assuming ownership
void readA(const A& a);
// may read and modify a but doesn't assme ownership
void readWriteA(A& a);
// assumes ownership of A
void consumeA(A&& a);
// works on a copy of A
void workOnCopyOfA(A a);

int main() {
A a;

readA(a);
readWriteA(a);
workOnCopyOfA(a);
consumeA(std::move(a)); // cannot call without std::move

}
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Usage Guidelines: Function Arguments (1)

When dealing with an object of type T use the following rough guidelines to
decide which type to use when passing it as function argument:

Situation Type to Use
•Ownership of object should be transferred to
callee
•Potential copies are acceptable or T is not copy-
able
•Object is relatively small (at most ≈ one cache
line)

T

•Ownership of object should be transferred to
callee
•Object is relatively large (more than ≈ one cache
line), so it should live on the heap

std::unique_ptr<T>
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Usage Guidelines: Function Arguments (2)

Situation Type to Use
•Ownership of object should not be transferred
to callee
•Callee should not modify object
•Object is larger than a pointer

const T&

•Ownership of object should not be transferred
to callee
•Callee is expected to modify the object

T&

•Same as const T&, but should be nullable const T*

•Same as T&, but should be nullable T*
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