
Dynamic Memory Management

Dynamic Memory Management

298

Dynamic Memory Management Process Memory Layout

Process Memory Layout (1)

Each Linux process runs within its own virtual address space
• The kernel pretends that each process has access to a (huge) continuous

range of addresses (≈ 256 TiB on x86-64)
• Virtual addresses are mapped to physical addresses by the kernel using page

tables and the MMU (if available)
• Greatly simplifies memory management code in the kernel and improves

security due to memory isolation
• Allows for useful “tricks” such as memory-mapping files

299

Dynamic Memory Management Process Memory Layout

Process Memory Layout (2)

The kernel also uses virtual memory
• Part of the address space has to be

reserved for kernel memory
• This kernel-space memory is

mapped to the same physical
addresses for each process

• Access to this memory is restricted

Most of the address space is unused
• MMUs on x86-64 platforms only

support 48 bit pointers at the
moment

• Might change in the future (Linux
already supports 56 bit pointers)

0xffffffffffffffff

0xffff800000000000

0x0000800000000000

0x0000000000000000

kernel-space
(128 TiB)

user-space
(128 TiB)

unused
(16 EiB)

300

Dynamic Memory Management Process Memory Layout

Process Memory Layout (3)

User-space memory is organized in seg-
ments
• Stack segment
• Memory mapping segment
• Heap segment
• BSS, data and text segments

Segments can grow
• Stack and memory mapping

segments usually grow down (i.e.
addresses decrease)

• Heap segment usually grows up (i.e.
addresses increase)

stack

text
data
bss

heap

mmap

100s of GiB

10s of TiB

up to some GiB

0x0000800000000000

0x0000000000000000

301

Dynamic Memory Management Process Memory Layout

Stack Segment (1)

Stack memory is typically used for objects with automatic storage duration
• The compiler can statically decide when allocations and deallocations must

happen
• The memory layout is known at compile-time
• Allows for highly optimized code (allocations and deallocations simply

increase/decrease a pointer)

Fast, but inflexible memory
• Array sizes must be known at compile-time
• No dynamic data structures are possible (trees, graphs, etc.)

302

Dynamic Memory Management Process Memory Layout

Stack Segment (2)

Example
foo.cpp

int foo() {
int c = 2;
int d = 21;

return c * d;
}

int main() {
int a[100];
int b = foo();

return b;
}

foo.o
foo():

pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $21, -8(%rbp)
movl -4(%rbp), %eax
imull -8(%rbp), %eax
popq %rbp
ret

main:
pushq %rbp
movq %rsp, %rbp
subq $416, %rsp
call foo()
movl %eax, -4(%rbp)
movl -4(%rbp), %eax
leave
ret

303

Dynamic Memory Management Process Memory Layout

Heap Segment

The heap is typically used for objects with dynamic storage duration
• The programmer must explicitly manage allocations and deallocations
• Allows much more flexible programs

Disadvantages
• Performance impact due to non-trivial implementation of heap-based memory

allocation
• Memory fragmentation
• Dynamic memory allocation is error-prone

• Memory leaks
• Double free (deallocation)
• Make use of debugging tools (GDB, ASAN (!))

304

Dynamic Memory Management Dynamic Memory Management in C++

Dynamic Memory Management in C++

C++ provides several mechanisms for dynamic memory management
• Through new and delete expressions (discouraged)
• Through the C functions malloc and free (discouraged)
• Through smart pointers and ownership semantics (preferred)

Mechanisms give control over the storage duration and possibly lifetime of objects
• Level of control varies by method
• In all cases: Manual intervention required

305

Dynamic Memory Management Dynamic Memory Management in C++

The new Expression

Creates and initializes objects with dynamic storage duration
• Syntax: new type initializer
• type must be a type
• type can be an array type
• initializer can be omitted

Explanation
• Allocates heap storage for a single object or an array of objects
• Constructs and initializes a single object or an array of objects in the newly

allocated storage
• If initializer is absent, the object is default-initialized
• Returns a pointer to the object or the initial element of the array

306

https://en.cppreference.com/w/cpp/language/new

Dynamic Memory Management Dynamic Memory Management in C++

The delete Expression

Every object allocated through new must be destroyed through delete
• Syntax (single object): delete expression
• expression must be a pointer created by the single-object form of the new

expression
• Syntax (array): delete[] expression
• expression must be a pointer created by the array form of the new

expression
• In both cases expression may be nullptr

Explanation
• If expression is nullptr nothing is done
• Invokes the destructor of the object that is being destroyed, or of every object

in the array that is being destroyed
• Deallocates the memory previously occupied by the object(s)

307

https://en.cppreference.com/w/cpp/language/delete

Dynamic Memory Management Dynamic Memory Management in C++

new & delete Example
class IntList {

struct Node {
int value;
Node* next;

};

Node* first;
Node* last;

public:
~IntList() {

while (first != nullptr) {
Node* next = first->next;
delete first;
first = next;

}
}

void push_back(int i) {
Node* node = new Node{i, nullptr};
if (!last)

first = node;
else

last->next = node;
last = node;

}
};

308

Dynamic Memory Management Dynamic Memory Management in C++

Memory Leaks

Memory leaks can happen easily

int foo(unsigned length) {
int* buffer = new int[length];

/* ... do something ... */

if (condition)
return 42; // MEMORY LEAK

/* ... do something else ... */

delete[] buffer;
return 123;

}

Avoid explicit memory management through new and delete whenever possible

309

https://en.cppreference.com/w/cpp/language/new#Memory_leaks

Dynamic Memory Management Dynamic Memory Management in C++

Placement new (1)

Constructs objects in already allocated storage
• Syntax: new (placement_params) type initializer
• placement_params must be a pointer to a region of storage large enough

to hold an object of type type
• The strict aliasing rule must not be violated
• Alignment must be ensured manually
• Only rarely required (e.g. for custom memory management)
• Requires that the <new> standard header is included

310

https://en.cppreference.com/w/cpp/language/new#Placement_new

Dynamic Memory Management Dynamic Memory Management in C++

Placement new (2)

Example

#include <cstddef>
#include <new>

struct A { };

int main() {
std::byte* buffer = new std::byte[sizeof(A)];
A* a = new (buffer) A();
/* ... do something with a ... */
a->~A(); // we must explicitly call the destructor
delete[] buffer;

}

311

Dynamic Memory Management Dynamic Memory Management in C++

Lifetimes and Storage Duration (1)

The lifetime of an object is equal to or nested within the lifetime of its storage
• Equal for regular new and delete
• Possibly nested for placement new

Example

struct A { };

int main() {
A* a1 = new A(); // lifetime of a1 begins, storage begins
a1->~A(); // lifetime of a1 ends
A* a2 = new (a1) A(); // lifetime of a2 begins
delete a2; // lifetime of a2 ends, storage ends

}

312

https://en.cppreference.com/w/cpp/language/lifetime

Dynamic Memory Management Dynamic Memory Management in C++

Lifetimes and Storage Duration (2)

Lifetime and storage duration of objects have real-world implications
• Accessing objects outside of their lifetime is undefined behavior and will often

lead to segmentation faults
• Important to always keep track of lifetimes (if necessary through suitable

comments)
• Use debugging tools (in particular ASAN) to find such bugs!

Examples of common bugs
• Returning pointers/references to local variables from functions
• Using a pointer/reference to access memory that has already been freed
• Using a pointer/reference to access an object that has already been

destructed
• Maintaining pointers/references to objects in an std::vector after its

internal storage has been reallocated (e.g. through a call to push_back)
• ...

313

https://en.cppreference.com/w/cpp/language/lifetime

Dynamic Memory Management Memory Manipulation Primitives

std::memcpy (1)

std::memcpy copies bytes between non-overlapping memory regions
• Defined in <cstring> standard header
• Syntax: void* memcpy(void* dest, const void* src, std::size_t count);

• Copies count bytes from the object pointed to by src to the object pointed
to by dest

• Can be used to work around strict aliasing rules without causing undefined
behavior

Restrictions (undefined behavior if violated)
• Objects must not overlap
• src and dest must not be nullptr
• Objects must be trivially copyable
• dest must be aligned suitably

314

https://en.cppreference.com/w/cpp/string/byte/memcpy

Dynamic Memory Management Memory Manipulation Primitives

std::memcpy (2)
Example (straightforward copy)

#include <cstring>
#include <vector>

int main() {
std::vector<int> buffer = {1, 2, 3, 4};
buffer.resize(8);
std::memcpy(&buffer[4], &buffer[0], 4 * sizeof(int));

}

Example (work around strict aliasing)

#include <cstring>
#include <cstdint>

int main() {
int64_t i = 42;
double j;
std::memcpy(&j, &i, sizeof(double)); // OK

}

315

Dynamic Memory Management Memory Manipulation Primitives

std::memmove (1)

std::memmove copies bytes between possibly overlapping memory regions
• Defined in <cstring> standard header
• Syntax: void* memmove(void* dest, const void* src, std::size_t count);

• Copies count bytes from the object pointed to by src to the object pointed
to by dest

• Acts as if the bytes were copied to a temporary buffer

Restrictions (undefined behavior if violated)
• src and dest must not be nullptr
• Objects must be trivially copyable
• dest must be suitably aligned

316

https://en.cppreference.com/w/cpp/string/byte/memmove

Dynamic Memory Management Memory Manipulation Primitives

std::memmove (2)

Example (straightforward copy)

#include <cstring>
#include <vector>

int main() {
std::vector<int> buffer = {1, 2, 3, 4};
buffer.resize(6);
std::memmove(&buffer[2], &buffer[0], 4 * sizeof(int));
// buffer is now {1, 2, 1, 2, 3, 4}

}

317

Copy and Move Semantics

Copy and Move Semantics

318

Copy and Move Semantics Copy Semantics

Copy Semantics

Assignment and construction of classes employs copy semantics in most cases
• By default, a shallow copy is created
• Usually not particularly relevant for fundamental types
• Very relevant for user-defined class types

Considerations for user-defined class types
• Copying may be expensive
• Copying may be unnecessary or even unwanted
• An object on the left-hand side of an assignment might manage dynamic

resources

319

Copy and Move Semantics Copy Semantics

Copy Constructor (1)

Invoked whenever an object is initialized from an object of the same type
• Syntax: class_name (const class_name&)
• class_name must be the name of the current class

For a class type T and objects a, b, the copy constructor is invoked on
• Copy initialization: T a = b;
• Direct initialization: T a(b);
• Function argument passing: f(a); where f is void f(T t);
• Function return: return a; inside a function T f(); if T has no move

constructor (more details next)

320

https://en.cppreference.com/w/cpp/language/copy_constructor

Copy and Move Semantics Copy Semantics

Copy Constructor (2)

Example

class A {
private:
int v;

public:
explicit A(int v) : v(v) { }
A(const A& other) : v(other.v) { }

};

int main() {
A a1(42); // calls A(int)

A a2(a1); // calls copy constructor
A a3 = a2; // calls copy constructor

}

321

Copy and Move Semantics Copy Semantics

Copy Assignment (1)

Typically invoked if an object appears on the left-hand side of an assignment with
an lvalue on the right-hand side
• Syntax (1): class_name& operator=(class_name)
• Syntax (2): class_name& operator=(const class_name&)
• class_name must be the name of the current class
• Usually, option (2) is preferred unless the copy-and-swap idiom is used (more

details next)

Explanation
• Called whenever selected by overload resolution
• Returns a reference to the object itself (i.e. *this) to allow for chaining

assignments

322

https://en.cppreference.com/w/cpp/language/copy_assignment

Copy and Move Semantics Copy Semantics

Copy Assignment (2)
Example

class A {
private:
int v;

public:
explicit A(int v) : v(v) { }
A(const A& other) : v(other.v) { }

A& operator=(const A& other) {
v = other.v;
return *this;

}
};

int main() {
A a1(42); // calls A(int)
A a2 = a1; // calls copy constructor

a1 = a2; // calls copy assignment operator
}

323

Copy and Move Semantics Copy Semantics

Implicit Declaration (1)

The compiler will implicitly declare a copy constructor if no user-defined copy
constructor is provided
• The implicitly declared copy constructor will be a public member of the

class
• The implicitly declared copy constructor may or may not be defined

The implicitly declared copy constructor is defined as deleted if one of the
following is true
• The class has non-static data members that cannot be copy-constructed
• The class has a base class which cannot be copy-constructed
• The class has a base class with a deleted or inaccessible destructor
• The class has a user-defined move constructor or assignment operator
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the constructor.

324

https://en.cppreference.com/w/cpp/language/copy_constructor#Implicitly-declared_copy_constructor

Copy and Move Semantics Copy Semantics

Implicit Declaration (2)

The compiler will implicitly declare a copy assignment operator if no user-defined
copy assignment operator is provided
• The implicitly declared copy assignment operator will be a public member

of the class
• The implicitly declared copy assignment operator may or may not be defined

The implicitly declared copy assignment operator is defined as deleted if one of
the following is true
• The class has non-static data members that cannot be copy-assigned
• The class has a base class which cannot be copy-assigned
• The class has a non-static data member of reference type
• The class has a user-defined move constructor or assignment operator
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the assignment
operator.

325

https://en.cppreference.com/w/cpp/language/copy_assignment#Implicitly-declared_copy_assignment_operator

Copy and Move Semantics Copy Semantics

Implicit Definition

If it is not deleted, the compiler defines the implicitly-declared copy constructor
• Only if it is actually used (odr-used)
• Performs a full member-wise copy of the object’s bases and members in their

initialization order
• Uses direct initialization

If it is not deleted, the compiler defines the implicitly-declared copy assignment
operator
• Only if it is actually used (odr-used)
• Performs a full member-wise copy assignment of the object’s bases and

members in their initialization order
• Uses built-in assignment for scalar types and copy assignment for class types

326

https://en.cppreference.com/w/cpp/language/copy_constructor#Implicitly-defined_copy_constructor

Copy and Move Semantics Copy Semantics

Example: Implicit Declaration & Definition

Example

struct A {
const int v;

explicit A(int v) : v(v) { }
};

int main() {
A a1(42);

A a2(a1); // OK: calls the generated copy constructor
a1 = a2; // ERROR: the implicitly-declared copy assignment

// operator is deleted
}

327

Copy and Move Semantics Copy Semantics

Trivial Copy Constructor and Assignment Operator (1)

The copy constructor/assignment operator may be trivial
• It must not be user-provided (explicitily defaulting does not count as

user-provided)
• The class has no virtual member functions
• The copy constructor/assignment operator for all direct bases and non-static

data members of class type is trivial

A trivial copy constructor/assignment operator behaves similar to std::memcpy
• Every scalar subobject is copied recursively and no further action is performed
• The object representation of the copied object is not necessarily identical to

the source object
• Trivially copyable objects may legally be copied using std::memcpy
• All data types compatible with C are trivially copyable

328

https://en.cppreference.com/w/cpp/language/copy_constructor#Trivial_copy_constructor

Copy and Move Semantics Copy Semantics

Trivial Copy Constructor and Assignment Operator (2)

Example

#include <vector>

struct A {
int b;
double c;

};

int main() {
std::vector<A> buffer1;
buffer1.resize(10);

std::vector<A> buffer2; // copy buffer1 using copy-constructor
for (const A& a : buffer1)

buffer2.push_back(a);

std::vector<A> buffer3; // copy buffer1 using memcpy
buffer3.resize(10);
std::memcpy(&buffer3[0], &buffer1[0], 10 * sizeof(A));

}

329

Copy and Move Semantics Copy Semantics

Implementing Custom Copy Operations (1)

Custom copy constructors/assignment operators are only occasionally necessary
• Often, a class should not be copyable anyway if the implicitly generated

versions do not make sense
• Exceptions include classes which manage some kind of resource (e.g. dynamic

memory)

Guidelines for implementing custom copy operations
• The programmer should either provide neither a copy constructor nor a copy

assignment operator, or both
• The copy assignment operator should usually include a check to detect

self-assignment
• If possible, resources should be reused
• If resources cannot be reused, they have to be cleaned up properly

330

Copy and Move Semantics Copy Semantics

Implementing Custom Copy Operations (2)
Example
struct A {

unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(const A& other) : A(other.capacity) {

std::memcpy(memory, other.memory, capacity * sizeof(int));
}
~A() { delete[] memory; }

A& operator=(const A& other) {
if (this == &other) // check for self-assignment

return *this;

if (capacity != other.capacity) { // attempt to reuse resources
delete[] memory;
capacity = other.capacity;
memory = new int[capacity];

}

std::memcpy(memory, other.memory, capacity * sizeof(int));

return *this;
}

};

331

Copy and Move Semantics Move Semantics

Move Semantics

Copy semantics often incur unnecessary overhead or are unwanted
• An object may be immediately destroyed after it is copied
• An object might not want to share a resource it is holding

Move semantics provide a solution to such issues
• Move constructors/assignment operators typically “steal” the resources of the

argument
• Leave the argument in a valid but indeterminate state
• Greatly enhances performance in some cases

332

Copy and Move Semantics Move Semantics

Move Construction (1)

Typically called when an object is initialized from an rvalue of the same type
• Syntax: class_name (class_name&&) noexcept
• class_name must be the name of the current class
• The noexcept keyword should be added to indicate that the constructor

never throws an exception

Explanation
• Overload resolution decides if the copy or move constructor of an object

should be called
• Temporary values and calls to functions that return an object are rvalues
• The std::move function in the <utility> header may be used to convert

an lvalue to an rvalue
• We know that the argument does not need its resources anymore, so we can

simply steal them

333

https://en.cppreference.com/w/cpp/language/move_constructor

Copy and Move Semantics Move Semantics

Move Construction (2)
For a class type T and objects a, b, the move constructor is invoked on
• Direct initialization: T a(std::move(b));
• Copy initialization: T a = std::move(b);
• Function argument passing: f(std::move(b)); with void f(T t);
• Function return: return a; inside T f();

Example

struct A {
A(const A& other);
A(A&& other);

};
A getA();
int main() {

A a1;
A a2(a1); // calls copy constructor
A a3(std::move(a1)); // calls move constructor
A a4(getA()); // calls move constructor

}

334

Copy and Move Semantics Move Semantics

Move Assignment (1)

Typically called if an object appears on the left-hand side of an assignment with
an rvalue on the right-hand side
• Syntax: class_name& operator=(class_name&&) noexcept
• class_name must be the name of the current class
• The noexcept keyword should be added to indicate that the assignment

operator never throws an exception

Explanation
• Overload resolution decides if the copy or move assignment operator of an

object should be called
• We know that the argument does not need its resources anymore, so we can

simply steal them
• The move assignment operator returns a reference to the object itself (i.e.
*this) to allow for chaining

335

https://en.cppreference.com/w/cpp/language/move_assignment

Copy and Move Semantics Move Semantics

Move Assignment (2)
Example

struct A {
A();
A(const A&);
A(A&&) noexcept;

A& operator=(const A&);
A& operator=(A&&) noexcept;

};

int main() {
A a1;
A a2 = a1; // calls copy-constructor
A a3 = std::move(a1); // calls move-constructor

a3 = a2; // calls copy-assignment
a2 = std::move(a3); // calls move-assignment

}

336

Copy and Move Semantics Move Semantics

Implicit Declaration (1)

The compiler will implicitly declare a public move constructor if all the following
conditions hold
• There are no user-declared copy constructors
• There are no user-declared copy assignment operators
• There are no user-declared move assignment operators
• There are no user-declared destructors

The implicitly declared move constructor is defined as deleted if one of the
following is true
• The class has non-static data members that cannot be moved
• The class has a base class which cannot be moved
• The class has a base class with a deleted or inaccessible destructor
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the constructor.

337

https://en.cppreference.com/w/cpp/language/move_constructor#Implicitly-declared_move_constructor

Copy and Move Semantics Move Semantics

Implicit Declaration (2)
The compiler will implicitly declare a public move assignment operator if all the
following conditions hold
• There are no user-declared copy constructors
• There are no user-declared copy assignment operators
• There are no user-declared move constructors
• There are no user-declared destructors

The implicitly declared move assignment operator is defined as deleted if one of
the following is true
• The class has non-static data members that cannot be moved
• The class has non-static data members of reference type
• The class has a base class which cannot be moved
• The class has a base class with a deleted or inaccessible destructor
• See the reference documentation for more details

In some cases, this can be circumvented by explicitly defaulting the assignment
operator.

338

https://en.cppreference.com/w/cpp/language/move_assignment#Implicitly-declared_move_assignment

Copy and Move Semantics Move Semantics

Implicit Definition

If it is not deleted, the compiler defines the implicitly-declared move constructor
• Only if it is actually used (odr-used)
• Performs a full member-wise move of the object’s bases and members in their

initialization order
• Uses direct initialization

If it is not deleted, the compiler defines the implicitly-declared move assignment
operator
• Only if it is actually used (odr-used)
• Performs a full member-wise move assignment of the object’s bases and

members in their initialization order
• Uses built-in assignment for scalar types and move assignment for class types

339

https://en.cppreference.com/w/cpp/language/copy_constructor#Implicitly-defined_copy_constructor

Copy and Move Semantics Move Semantics

Example: Implicit Declaration & Definition

Example

struct A {
const int v;

explicit A(int v) : v(v) { }
};

int main() {
A a1(42);

A a2(std::move(a1)); // OK: calls the generated move constructor
a1 = std::move(a2); // ERROR: the implicitly-declared move

// assignment operator is deleted
}

340

Copy and Move Semantics Move Semantics

Trivial Move Constructor and Assignment Operator

The move constructor/assignment operator may be trivial
• It must not be user-provided (explicitily defaulting does not count as

user-provided)
• The class has no virtual member functions
• The move constructor/assignment operator for all direct bases and non-static

data members of class type is trivial

A trivial move constructor/assignment operator acts similar to std::memcpy
• Every scalar subobject is copied recursively and no further action is performed
• The object representation of the copied object is not necessarily identical to

the source object
• Trivially movable objects may legally be moved using std::memcpy
• All data types compatible with C are trivially movable

341

https://en.cppreference.com/w/cpp/language/move_constructor#Trivial_move_constructor

Copy and Move Semantics Move Semantics

Implementing Custom Move Operations (1)

Custom move constructors/assignment operators are often necessary
• A class that manages some kind of resource almost always requires custom

move constructors and assignment operators

Guidelines for implementing custom move operations
• The programmer should either provide neither a move constructor nor a move

assignment operator, or both
• The move assignment operator should usually include a check to detect

self-assignment
• The move operations should typically not allocate new resources, but steal

the resources from the argument
• The move operations should leave the argument in a valid state
• Any previously held resources must be cleaned up properly

342

Copy and Move Semantics Move Semantics

Implementing Custom Move Operations (2)
Example
struct A {

unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(A&& other) noexcept : capacity(other.capacity), memory(other.memory) {

other.capacity = 0;
other.memory = nullptr;

}
~A() { delete[] memory; }

A& operator=(A&& other) noexcept {
if (this == &other) // check for self-assignment

return *this;

delete[] memory;
capacity = other.capacity;
memory = other.memory;

other.capacity = 0;
other.memory = nullptr;

return *this;
}

};

343

Copy and Move Semantics Move Semantics

Copy Elision (1)

Compilers must omit copy and move constructors under certain circumstances
• Objects are instead directly constructed in the storage into which they would

be copied/moved
• Results in zero-copy pass-by-value semantics
• Most importantly in return statements and variable initialization from a

temporary
• More optimizations allowed, but not required

This is one of very few optimizations which is allowed to change observable
side-effects
• Not all compilers perform the same optional optimizations
• Programs that rely on side-effects of copy/move constructors and destructors

are not portable

344

https://en.cppreference.com/w/cpp/language/copy_elision

Copy and Move Semantics Move Semantics

Copy Elision (2)
Example
#include <iostream>

struct A {
int a;

A(int a) : a(a) {
std::cout << "constructed" << std::endl;

}

A(const A& other) : a(other.a) {
std::cout << "copy-constructed" << std::endl;

}
};

A foo() {
return A(42);

}

int main() {
A a = foo(); // prints only "constructed"

}

345

Copy and Move Semantics Move Semantics

Value Categories

Move semantics and copy elision require a more sophisticated taxonomy of
expressions

• glvalues identify objects
• xvalues identify an object whose

resources can be reused
• prvalues compute the value of an

operand or initialize an object

glvalue

rv
alu

e can
m

ove
cannot
m

ove

has
identity

no
identity

lvalue

xvalue prvalue

In particular, std::move just converts its argument to an xvalue expression
• std::move is exactly equivalent to a static_cast to an rvalue reference
• std::move is exclusively syntactic sugar (to guide overload resolution)

346

https://en.cppreference.com/w/cpp/language/value_category

Copy and Move Semantics Idioms

Copy-And-Swap (1)

The copy-and-swap idiom is convenient if copy assignment cannot benefit from
resource reuse
• The class defines only the class_type& operator=(class_type)

copy-and-swap assignment operator
• Acts both as copy and move assignment operator depending on the value

category of the argument

Implementation
• Exchange the resources between the argument and *this;
• Let the destructor clean up the resources of the argument

347

https://en.cppreference.com/w/cpp/language/operators#Assignment_operator

Copy and Move Semantics Idioms

Copy-And-Swap (2)

Example

#include <algorithm>
#include <cstring>

struct A {
unsigned capacity;
int* memory;

explicit A(unsigned capacity) : capacity(capacity), memory(new int[capacity]) { }
A(const A& other) : A(other.capacity) {

std::memcpy(memory, other.memory, capacity * sizeof(int));
}
~A() { delete[] memory; }

A& operator=(A other) { // copy/move constructor is called to create other
std::swap(capacity, other.capacity);
std::swap(memory, other.memory);

return *this;
} // destructor cleans up resources formerly held by *this

};

Temporarily uses more resources than strictly required

348

Copy and Move Semantics Idioms

The Rule of Three

If a class requires one of the following, it almost certainly requires all three
• A user-defined destructor
• A user-defined copy constructor
• A user-defined copy assignment operator

Explanation
• Having a user-defined copy constructor usually implies some custom setup

logic which needs to be executed by copy assignment and vice-versa
• Having a user-defined destructor usually implies some custom cleanup logic

which needs to be executed by copy assignment and vice-versa
• The implicitly-defined versions are usually incorrect if a class manages a

resource of non-class type (e.g. a raw pointer, POSIX file descriptor, etc.)

349

https://en.cppreference.com/w/cpp/language/rule_of_three

Copy and Move Semantics Idioms

The Rule of Five

If a class follows the rule of three, move operations are defined as deleted
• If move semantics are desired for a class, it has to define all five special

member functions
• If only move semantics are desired for a class, it still has to define all five

special member functions, but define the copy operations as deleted

Explanation
• Not adhering to the rule of five usually does not lead to incorrect code
• However, many optimization opportunities may be inaccessible to the

compiler if no move operations are defined

350

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (1)

Bind the lifetime of a resource that has to be allocated to the lifetime of an object
• Resources can be allocated heap memory, sockets, files, mutexes, disk space,

database connections, etc.
• Guarantees availability of the resource during the lifetime of the object
• Guarantees that resources are released when the lifetime of the object ends
• Object should have automatic storage duration
• Known as the Resource Acquisition is Initialization (RAII) idiom

One of the most important and powerful idioms in C++!
• One consequence: Never use new and delete outside of an RAII class
• C++ already defines smart pointers that are RAII wrappers for new and
delete

• Thus we almost never need to use new and delete in our code

351

https://en.cppreference.com/w/cpp/language/raii

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (2)

Implementation of RAII
• Encapsulate each resource into a class whose sole responsibility is managing

the resource
• The constructor acquires the resource and establishes all class invariants
• The destructor releases the resource
• Typically, copy operations should be deleted and custom move operations

need to be implemented

Usage of RAII classes
• RAII classes should only be used with automatic or temporary storage

duration
• Ensures that the compiler manages the lifetime of the RAII object and thus

indirectly manages the lifetime of the resource

352

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (3)
Example

class CustomIntBuffer {
private:

int* memory;
public:

explicit CustomIntBuffer(unsigned size) : memory(new int[size]) { }
CustomIntBuffer(const CustomIntBuffer&) = delete;
CustomIntBuffer(CustomIntBuffer&& other) noexcept : memory(other.memory) {

other.memory = nullptr;
}
~CustomIntBuffer() { delete[] memory; }

CustomIntBuffer& operator=(const CustomIntBuffer&) = delete;
CustomIntBuffer& operator=(CustomIntBuffer&& other) noexcept {

if (this != &other) {
delete[] memory;
memory = other.memory;
other.memory = nullptr;

}
return *this;

}

int* getMemory() { return memory; }
const int* getMemory() const { return memory; }

};

353

Copy and Move Semantics Idioms

Resource Acquisition is Initialization (4)
Example usage of the CustomIntBuffer class

#include <utility>

bool foo(CustomIntBuffer buffer) {
/* do something */

if (condition)
return false; // no worries about forgetting to free memory

/* do something more */

return true; // no worries about forgetting to free memory
}

int main() {
CustomIntBuffer buffer(5);

return foo(std::move(buffer));
}

354

Ownership

Ownership

355

Ownership

Ownership Semantics

One of the main challenges in manual memory management is tracking ownership
• Traditionally, owners can be, e.g., functions or classes
• Only the owner of some dynamically allocated memory may safely free it
• Multiple objects may have a pointer to the same dynamically allocated

memory

The RAII idiom and move semantics together enable ownership semantics
• A resource should be “owned”, i.e. encapsulated, by exactly one C++ object

at all times
• Ownership can only be transferred explicitly by moving the respective object
• E.g., the CustomIntBuffer class implements ownership semantics for a

dynamically allocated int-array

356

Ownership Smart Pointers

std::unique_ptr (1)

std::unique_ptr is a so-called smart pointer
• Essentially implements RAII/ownership semantics for arbitrary pointers
• Assumes unique ownership of another C++ object through a pointer
• Automatically disposes of that object when the std::unique_ptr goes out

of scope
• A std::unique_ptr may own no object, in which case it is empty
• Can be used (almost) exactly like a raw pointer
• But: std::unique_ptr can only be moved, not copied

std::unique_ptr is defined in the <memory> standard header
• It is a template class, and can be used for arbitrary types
• Syntax: std::unique_ptr< type > where one would otherwise

use type*

std::unique_ptr should always be preferred over raw pointers!

357

https://en.cppreference.com/w/cpp/memory/unique_ptr

Ownership Smart Pointers

std::unique_ptr (2)
Usage of std::unique_ptr (for details: see reference documentation)

Creation
• std::make_unique<type>(arg0, ..., argN), where arg0, ...,
argN are passed to the constructor of type

Indirection, subscript, and member access
• The indirection, subscript, and member access operators *, [] and -> can be

used in the same way as for raw pointers

Conversion to bool
• std::unique_ptr is contextually convertible to bool, i.e. it can be used in
if statements in the same way as raw pointers

Accessing the raw pointer
• The get() member function returns the raw pointer
• The release() member function returns the raw pointer and releases

ownership
358

https://en.cppreference.com/w/cpp/memory/unique_ptr

Ownership Smart Pointers

std::unique_ptr (3)
Example

#include <memory>

struct A {
int a;
int b;

A(int a, int b) : a(a), b(b) { }
};
void foo(std::unique_ptr<A> aptr) { // assumes ownership

/* do something */
}
void bar(const A& a) { // does not assume ownership

/* do something */
}
int main() {

std::unique_ptr<A> aptr = std::make_unique<A>(42, 123);
int a = aptr->a;
bar(*aptr); // retain ownership
foo(std::move(aptr)); // transfer ownership

}

359

Ownership Smart Pointers

std::unique_ptr (4)

std::unique_ptr can also be used for heap-based arrays

std::unique_ptr<int[]> foo(unsigned size) {
std::unique_ptr<int[]> buffer = std::make_unique<int[]>(size);

for (unsigned i = 0; i < size; ++i)
buffer[i] = i;

return buffer; // transfer ownership to caller
}

int main() {
std::unique_ptr<int[]> buffer = foo(42);

/* do something */
}

360

Ownership Smart Pointers

std::shared_ptr (1)

Rarely, true shared ownership is desired
• A resource may be simultaneously have several owners
• The resource should only be released once the last owner releases it
• std::shared_ptr defined in the <memory> standard header can be used

for this
• Multiple std::shared_ptr objects may own the same raw pointer

(implemented through reference counting)
• std::shared_ptr may be copied and moved

Usage of std::shared_ptr
• Use std::make_shared for creation
• Remaining operations analogous to std::unique_ptr
• For details: See the reference documentation

std::shared_ptr is rather expensive and should be avoided when possible

361

Ownership Smart Pointers

std::shared_ptr (2)

Example

#include <memory>
#include <vector>

struct Node {
std::vector<std::shared_ptr<Node>> children;

void addChild(std::shared_ptr<Node> child);
void removeChild(unsigned index);

};

int main() {
Node root;
root.addChild(std::make_shared<Node>());
root.addChild(std::make_shared<Node>());
root.children[0]->addChild(root.children[1]);

root.removeChild(1); // does not free memory yet
root.removeChild(0); // frees memory of both children

}

362

Ownership Smart Pointers

Usage Guidelines: Pointers (1)

std::unique_ptr represents ownership
• Used for dynamically allocated objects

• Frequently required for polymorphic objects
• Useful to obtain a movable handle to an immovable object

• std::unique_ptr as a function parameter or return type indicates a
transfer of ownership

• std::unique_ptr should almost always be passed by value

Raw pointers represent resources
• Should almost always be encapsulated in RAII classes (mostly
std::unique_ptr)

• Very occasionally, raw pointers are desired as function parameters or return
types

• If ownership is not transferred, but there might be no object (i.e. nullptr)
• If ownership is not transferred, but pointer arithmetic is required

363

Ownership Smart Pointers

Usage Guidelines: References (2)

References grant temporary access to an object without assuming ownership
• If necessary, a reference can be obtained from a smart pointer through the

indirection operator *

Ownership can also be relevant for other types (e.g. std::vector)
• Moving (i.e. transferring ownership) should always be preferred over copying
• Should be passed by lvalue-reference if ownership is not transferred
• Should be passed by rvalue-reference if ownership is transferred
• Should be passed by value if they should be copied

Rules can be relaxed if an object is not copyable
• Should be passed by lvalue-reference if ownership is not transferred
• Should be passed by value if ownership is transferred

364

Ownership Smart Pointers

Usage Guidelines (3)

Example

struct A { };

// reads a without assuming ownership
void readA(const A& a);
// may read and modify a but doesn't assme ownership
void readWriteA(A& a);
// assumes ownership of A
void consumeA(A&& a);
// works on a copy of A
void workOnCopyOfA(A a);

int main() {
A a;

readA(a);
readWriteA(a);
workOnCopyOfA(a);
consumeA(std::move(a)); // cannot call without std::move

}

365

Ownership Smart Pointers

Usage Guidelines: Function Arguments (1)

When dealing with an object of type T use the following rough guidelines to
decide which type to use when passing it as function argument:

Situation Type to Use
•Ownership of object should be transferred to
callee
•Potential copies are acceptable or T is not copy-
able
•Object is relatively small (at most ≈ one cache
line)

T

•Ownership of object should be transferred to
callee
•Object is relatively large (more than ≈ one cache
line), so it should live on the heap

std::unique_ptr<T>

366

Ownership Smart Pointers

Usage Guidelines: Function Arguments (2)

Situation Type to Use
•Ownership of object should not be transferred
to callee
•Callee should not modify object
•Object is larger than a pointer

const T&

•Ownership of object should not be transferred
to callee
•Callee is expected to modify the object

T&

•Same as const T&, but should be nullable const T*

•Same as T&, but should be nullable T*

367

	Dynamic Memory Management
	Process Memory Layout
	Dynamic Memory Management in C++
	Memory Manipulation Primitives

	Copy and Move Semantics
	Copy Semantics
	Move Semantics
	Idioms

	Ownership
	Smart Pointers

