
Basic C++ Syntax

Basic C++ Syntax

78

Basic C++ Syntax

Overview

Common set of basic features shared by a wide range of programming languages
• Built-in types (integers, characters, floating point numbers, etc.)
• Variables (“names” for entities)
• Expressions and statements to manipulate values of variables
• Control-flow constructs (if, for, etc.)
• Functions, i.e. units of computation

Supplemented by additional functionality
• Programmer-defined types (struct, class, etc.)
• Library functions

79

Basic C++ Syntax

The C++ Reference Documentation

C++ is in essence a simple language
• Limited number of basic features and rules
• But: There is a corner case to most features and an exception to most rules
• But: Some features and rules are rather obscure

These slides will necessarily be inaccurate or incomplete at times
• https://en.cppreference.com/w/cpp provides an excellent and complete

reference documentation of C++

• Every C++ programmer should be able to read and understand the reference
documentation

• Slides that directly relate to the reference documentation contain the
symbol with a link to the relevant webpage in the slide header

Look at these links and familiarize yourself with the reference documentation!

80

https://en.cppreference.com/w/cpp

Basic C++ Syntax Comments

Comments

C++ supports two types of comments
• “C-style” or “multi-line” comments: /* comment */
• “C++-style” or “single-line” comments: // comment

Example

/* This comment is unnecessarily
split over two lines */

int a = 42;

// This comment is also split
// over two lines
int b = 123;

81

https://en.cppreference.com/w/cpp/comment

Basic C++ Syntax Basic Types and Variables

Fundamental Types

C++ defines a set of primitive types
• Void type
• Boolean type
• Integer types
• Character types
• Floating point types

All other types are composed of these fundamental types in some way

82

https://en.cppreference.com/w/cpp/language/types

Basic C++ Syntax Basic Types and Variables

Void Type

The void type has no values
• Identified by the C++ keyword void
• No objects of type void are allowed
• Mainly used as a return type for functions that do not return any value
• Pointers to void are also permitted

void* pointer; // OK: pointer to void
void object; // ERROR: object of type void
void doSomething() { // OK: void return type

// do something important
}

83

https://en.cppreference.com/w/cpp/language/types#Void_type

Basic C++ Syntax Basic Types and Variables

Boolean Type

The boolean type can hold two values
• Identified by the C++ keyword bool
• Represents the truth values true and false
• Quite frequently obtained from implicit automatic type conversion

bool condition = true;
// ...
if (condition) {

// ...
}

84

https://en.cppreference.com/w/cpp/language/types#Boolean_type

Basic C++ Syntax Basic Types and Variables

Integer Types (1)

The integer types represent integral values
• Identified by the C++ keyword int
• Some properties of integer types can be changed through modifiers
• int keyword may be omitted if at least one modifier is used

Signedness modifiers
• signed integers will have signed representation (i.e. they can represent

negative numbers)
• Since C++20 signed integers must use two’s complement representation
• unsigned integers will have unsigned representation (i.e. they can only

represent non-negative numbers)

Size modifiers
• short integers will be optimized for space (at least 16 bits wide)
• long integers will be at least 32 bits wide
• long long integers will be at least 64 bits wide

85

https://en.cppreference.com/w/cpp/language/types#Integer_types

Basic C++ Syntax Basic Types and Variables

Integer Types (2)
Modifiers and the int keyword can be specified in any order
// a, b, c and d all have the same type
unsigned long long int a;
unsigned long long b;
long unsigned int long c;
long long unsigned d;

By default integers are signed, thus the signed keyword can be omitted
// e and f have the same type
signed int e;
int f;

By convention modifiers are ordered as follows
1. Signedness modifier
2. Size modifier
3. (int)

86

https://en.cppreference.com/w/cpp/language/types#Integer_types

Basic C++ Syntax Basic Types and Variables

Integer Type Overview

Overview of the integer types as specified by the C++ standard

Canonical Type Specifier Minimum Width Minimum Range
short 16 bit −215 to 215 − 1
unsigned short 0 to 216 − 1

int 16 bit −215 to 215 − 1
unsigned 0 to 216 − 1

long 32 bit −231 to 231 − 1
unsigned long 0 to 232 − 1

long long 64 bit −263 to 263 − 1
unsigned long long 0 to 264 − 1

The exact width of integer types is not specified by the standard!

87

https://en.cppreference.com/w/cpp/language/types#Integer_types

Basic C++ Syntax Basic Types and Variables

Fixed-Width Integer Types

Sometimes we need integer types with a guaranteed width
• Use fixed-width integer types defined in <cstdint> header
• int8_t, int16_t, int32_t and int64_t for signed integers of width 8,

16, 32 or 64 bit, respectively
• uint8_t, uint16_t, uint32_t and uint64_t for unsigned integers of

width 8, 16, 32 or 64 bit, respectively

Only defined if the C++ implementation directly supports the type

#include <cstdint>

long a; // may be 32 or 64 bits wide
int32_t b; // guaranteed to be 32 bits wide
int64_t c; // guaranteed to be 64 bits wide

88

https://en.cppreference.com/w/cpp/types/integer

Basic C++ Syntax Basic Types and Variables

Integer Type Guidelines

Use basic (i.e. non-fixed-width) integer types by default
• They guarantee a minimum range that can be supported
• Most of the time we do not need to know an exact maximum value
• Usually (unsigned) int or long are a reasonable choice

Only use fixed-width integer types where absolutely required
• E.g. in data structures that need to have deterministic fixed size
• E.g. in library calls
• E.g. for bitwise operations that rely on masks, shifts etc.

Do not prematurely optimize for space consumption
• Registers on modern CPUs are likely to be 64 bit wide anyway
• Most of the time a program only becomes susceptible to overflow bugs if

narrow integer types are used without good reason

89

Basic C++ Syntax Basic Types and Variables

Character Types

Character types represent character codes and (to some extent) integral values
• Identified by C++ keywords signed char and unsigned char
• Minimum width is 8 bit, large enough to represent UTF-8 eight-bit code units
• The C++ type char may either be equivalent to signed char or
unsigned char, depending on the implementation

• Nevertheless char is always a distinct type
• signed char and unsigned char are sometimes used to represent small

integral values

Larger UTF characters are supported as well
• char16_t for UTF-16 character representation
• char32_t for UTF-32 character representation

90

https://en.cppreference.com/w/cpp/language/types#Character_types

Basic C++ Syntax Basic Types and Variables

Floating Point Types

Floating point types of varying precision
• float usually represents IEEE-754 32 bit floating point numbers
• double usually represents IEEE-754 64 bit floating point numbers
• long double is a floating point type with extended precision (varying width

depending on platform and OS, usually between 64 bit and 128 bit)

Floating point types may support special values
• Infinity
• Negative zero
• Not-a-number

91

https://en.cppreference.com/w/cpp/language/types#Floating_point_types

Basic C++ Syntax Basic Types and Variables

Implicit Conversions (1)

Type conversions may happen automatically
• If we use an object of type A where an object of type B is expected
• Exact conversion rules are highly complex (full details in the reference

documentation)

Some common examples
• If one assigns an integral type to bool the result is false if the integral

value is 0 and true otherwise
• If one assigns bool to an integral type the result is 1 if the value is true and
0 otherwise

• If one assigns a floating point type to an integral type the value is truncated
• If one assigns an out-of-range value to an unsigned integral type of width w ,

the result is the original value modulo 2w

92

https://en.cppreference.com/w/cpp/language/implicit_conversion

Basic C++ Syntax Basic Types and Variables

Implicit Conversions (2)

Example

uint16_t i = 257;
uint8_t j = i; // j is 1

if (j) {
/* executed if j is not zero */

}

93

Basic C++ Syntax Basic Types and Variables

Undefined Behavior (1)

In some situations the behavior of a program is not well-defined
• E.g. overflow of an unsigned integer is well-defined (see previous slide)
• But: Signed integer overflow results in undefined behavior
• We will encounter undefined behavior every once in a while

Undefined behavior falls outside the specification of the C++ standard
• The compiler is allowed to do anything when it encounters undefined behavior
• Fall back to some sensible default behavior
• Do nothing
• Print 42
• Do anything else you can think of

A C++ program must never contain undefined behavior!

94

https://en.cppreference.com/w/cpp/language/ub

Basic C++ Syntax Basic Types and Variables

Undefined Behavior (2)

Example
foo.cpp

int foo(int i) {
if ((i + 1) > i)

return 42;

return 123;
}

foo.o
foo(int):

movl $42, %eax
retq

95

Basic C++ Syntax Basic Types and Variables

Undefined Behavior (3)

Undefined behavior differs from unspecified or implementation-defined behavior
• Unspecified or implementation-defined behavior is still valid C++

• However its effects may be different across compilers
• Only implementation-defined behavior is required to be documented

Undefined behavior gives compilers more freedom for optimization
• They can assume that programs contain no undefined behavior
• E.g. makes it possible for the compiler to omit some checks

Example
• Out-of-bounds array accesses are undefined behavior
• Therefore, the compiler does not need to generate range checks for each

array access

96

https://en.cppreference.com/w/cpp/language/ub

Basic C++ Syntax Basic Types and Variables

Variables

Variables need to be defined before they can be used
• Simple declaration: Type specifier followed by comma-separated list of

declarators (variable names) followed by semicolon
• Variable names in a simple declaration may optionally be followed by an

initializer

void foo() {
unsigned i = 0, j;
unsigned meaningOfLife = 42;

}

97

https://en.cppreference.com/w/cpp/language/declarations

Basic C++ Syntax Basic Types and Variables

Variable Initializers (1)

Initialization provides an initial value at the time of object construction
1. variableName(<expression>)
2. variableName = <expression>
3. variableName{<expression>}

Important differences
• Options 1 and 2 simply assign the value of the expression to the variable,

possibly invoking implicit type conversions
• Option 3 results in a compile error if implicit type conversions potentially

result in loss of information

A declaration may contain no initializer
• Non-local variables are default-initialized (to zero for built-in types)
• Local variables are usually not default-initialized

Accessing an uninitialized variable is undefined behavior

98

https://en.cppreference.com/w/cpp/language/initialization

Basic C++ Syntax Basic Types and Variables

Variable Initializers (2)

double a = 3.1415926;
double b(42);
unsigned c = a; // OK: c == 3
unsigned d(b); // OK: d == 42
unsigned e{a}; // ERROR: potential information loss
unsigned f{b}; // ERROR: potential information loss

Initializers may be arbitrarily complex expressions

double pi = 3.1415926, z = 0.30, a = 0.5;
double volume(pi * z * z * a);

99

Basic C++ Syntax Basic Types and Variables

Integer Literals

Integer literals represent constant values embedded in the source code
• Decimal: 42
• Octal: 052
• Hexadecimal: 0x2a
• Binary: 0b101010

The following suffixes may be appended to a literal to specify its type
• unsigned suffix: 42u or 42U
• Long suffixes:

• long suffix: 42l or 42L
• long long suffix: 42ll or 42LL

• Both suffixes can be combined, e.g. 42ul, 42ull

Single quotes may be inserted between digits as a separator
• e.g. 1'000'000'000'000ull
• e.g. 0b0010'1010

100

https://en.cppreference.com/w/cpp/language/integer_literal

Basic C++ Syntax Basic Types and Variables

Floating-point literals

Floating-point literals represent constant values embedded in the source code
• Without exponent: 3.1415926, .5
• With exponent: 1e9, 3.2e20, .5e-6

One of the following suffixes may be appended to a literal to specify its type
• float suffix: 1.0f or 1.0F
• long double suffix: 1.0l or 1.0L

Single quotes may be inserted between digits as a separator
• e.g. 1'000.000'001
• e.g. .141'592e12

101

https://en.cppreference.com/w/cpp/language/floating_literal

Basic C++ Syntax Basic Types and Variables

Character Literals

Character literals represent constant values embedded in the source code
• Any character from the source character set except single quote, backslash

and newline, e.g. 'a', 'b', '€'
• Escape sequences, e.g. '\'', '\\', '\n', '\u1234'

One of the following prefixes may be prepended to a literal to specify its type
• UTF-8 prefix: u8'a', u8'b'
• UTF-16 prefix: u'a', u'b'
• UTF-32 prefix: U'a', U'b'

102

https://en.cppreference.com/w/cpp/language/character_literal

Basic C++ Syntax Basic Types and Variables

Const & Volatile Qualifiers (1)

Any type T in C++ (except function and reference types) can be cv-qualified
• const-qualified: const T
• volatile-qualified: volatile T
• cv-qualifiers can appear in any order, before or after the type

Semantics
• const objects cannot be modified
• Any read or write access to a volatile object is treated as a visible side

effect for the purposes of optimization
• volatile should be avoided in most cases (it is likely to be deprecated in

future versions of C++)
• Use atomics instead

103

https://en.cppreference.com/w/cpp/language/cv

Basic C++ Syntax Basic Types and Variables

Const & Volatile Qualifiers (2)

Only code that contributes to observable side-effects is emitted

int main() {
int a = 1; // will be optimized out
int b = 2; // will be optimized out
volatile int c = 42;
volatile int d = c + b;

}

Possible x86-64 assembly (compiled with -O1)

main:
movl $42, -4(%rsp) # volatile int c = 42
movl -4(%rsp), %eax # volatile int d = c + b;
addl $2, %eax # volatile int d = c + b;
movl %eax, -8(%rsp) # volatile int d = c + b;
movl $0, %eax # implicit return 0;
ret

104

Basic C++ Syntax Expressions

Expression Fundamentals

C++ provides a rich set of operators
• Operators and operands can be composed into expressions
• Most operators can be overloaded for custom types

Fundamental expressions
• Variable names
• Literals

Operators act on a number of operands
• Unary operators: E.g. negation (-), address-of (&), dereference (*)
• Binary operators: E.g. equality (==), multiplication (*)
• Ternary operator: a ? b : c

105

https://en.cppreference.com/w/cpp/language/expressions

Basic C++ Syntax Expressions

Value Categories

Each expression in C++ is characterized by two independent properties
• Its type (e.g. unsigned, float)
• Its value category
• Operators may require operands of certain value categories
• Operators result in expressions of certain value categories

Broadly (and inaccurately) there are two value categories: lvalues and rvalues
• lvalues refer to the identity of an object
• rvalues refer to the value of an object
• Modifiable lvalues can appear on the left-hand side of an assignment
• lvalues and rvalues can appear on the right-hand side of an assignment

C++ actually has a much more sophisticated taxonomy of expressions
• Will (to some extent) become relevant later during the course

106

https://en.cppreference.com/w/cpp/language/value_category

Basic C++ Syntax Expressions

Arithmetic Operators (1)

Operator Explanation
+a Unary plus
-a Unary minus
a + b Addition
a - b Subtraction
a * b Multiplication
a / b Division
a % b Modulo
~a Bitwise NOT
a & b Bitwise AND
a | b Bitwise OR
a ^ b Bitwise XOR
a << b Bitwise left shift
a >> b Bitwise right shift

C++ arithmetic operators have the usual semantics

107

https://en.cppreference.com/w/cpp/language/expressions

Basic C++ Syntax Expressions

Arithmetic Operators (2)

Incorrectly using the arithmetic operators can lead to undefined behavior, e.g.
• Signed overflow (see above)
• Division by zero
• Shift by a negative offset
• Shift by an offset larger than the width of the type

108

https://en.cppreference.com/w/cpp/language/ub

Basic C++ Syntax Expressions

Logical and Relational Operators (1)

Operator Explanation
!a Logical NOT
a && b Logical AND (short-circuiting)
a || b Logical OR (short-circuiting)
a == b Equal to
a != b Not equal to
a < b Less than
a > b Greater than
a <= b Less than or equal to
a >= b Greater than or equal to
a <=> b Three-way comparison

Most C++ logical and relational operators have the usual semantics

109

https://en.cppreference.com/w/cpp/language/expressions

Basic C++ Syntax Expressions

Logical and Relational Operators (2)

The three-way comparison (or spaceship) operator is a useful addition in C++20
• (a <=> b) < 0 if a < b
• (a <=> b) == 0 if a == b
• (a <=> b) > 0 if a > b
• Can be generated by the compiler automatically in some cases
• Facilitates, for example, sorting values

110

Basic C++ Syntax Expressions

Assignment Operators (1)

Operator Explanation
a = b Simple assignment
a += b Addition assignment
a -= b Subtraction assignment
a *= b Multiplication assignment
a /= b Division assignment
a %= b Modulo assignment
a &= b Bitwise AND assignment
a |= b Bitwise OR assignment
a ^= b Bitwise XOR assignment
a <<= b Bitwise left shift assignment
a >>= b Bitwise right shift assignment

Notes
• The left-hand side of an assignment operator must be a modifiable lvalue
• For built-in types a OP= b is equivalent to a = a OP b except that a is

only evaluated once
111

https://en.cppreference.com/w/cpp/language/operator_assignment

Basic C++ Syntax Expressions

Assignment Operators (2)

The assignment operators return a reference to the left-hand side

unsigned a, b, c;
a = b = c = 42; // a, b, and c have value 42

Usually rarely used, with one exception

unsigned d;
if (d = computeValue()) {

// executed if d is not zero
} else {

// executed if d is zero
}

// unconditionally do something with d

112

Basic C++ Syntax Expressions

Increment and Decrement Operators

Operator Explanation
++a Prefix increment
--a Prefix decrement
a++ Postfix increment
a-- Postfix decrement

Return value differs between prefix and postfix variants
• Prefix variants increment or decrement the value of an object and return a

reference to the result
• Postfix variants create a copy of an object, increment or decrement the value

of the original object, and return the copy

113

https://en.cppreference.com/w/cpp/language/operator_incdec

Basic C++ Syntax Expressions

Ternary Conditional Operator

Operator Explanation
a ? b : c Conditional operator

Semantics
• a is evaluated and converted to bool
• If the result was true, b is evaluated
• Otherwise c is evaluated

The type and value category of the resulting expression depend on the operands

int n = (1 > 2) ? 21 : 42; // 1 > 2 is false, i.e. n == 42
int m = 42;
((n == m) ? m : n) = 21; // n == m is true, i.e. m == 21

int k{(n == m) ? 5.0 : 21}; // ERROR: narrowing conversion
((n == m) ? 5 : n) = 21; // ERROR: assigning to rvalue

114

https://en.cppreference.com/w/cpp/language/operator_other#Conditional_operator

Basic C++ Syntax Expressions

Precedence and Associativity (1)

How to group multiple operators in one expression?
• Operators with higher precedence bind tighter than operators with lower

precedence
• Operators with equal precedence are bound in the direction of their

associativity
• left-to-right
• right-to-left

• Often grouping is not immediately obvious: Use parentheses judiciously!

Precedence and associativity do not specify evaluation order
• Evaluation order is mostly unspecified
• Generally, it is undefined behavior to refer to and change the same object

within one expression

115

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Expressions

Precedence and Associativity (2)

In some situations grouping is obvious

int a = 1 + 2 * 3; // 1 + (2 * 3), i.e. a == 7

However, things can get confusing really quickly

int b = 50 - 6 - 2; // (50 - 6) - 2, i.e. b == 42
int c = b & 1 << 4 - 1; // b & (1 << (4 - 1)), i.e. c == 8

// real-world examples from libdcraw
diff = ((getbits(len-shl) << 1) + 1) << shl >> 1; // ???
yuv[c] = (bitbuf >> c * 12 & 0xfff) - (c >> 1 << 11); // ???

Bugs like to hide in expressions without parentheses

// shift should be 4 if sizeof(long) == 4, 6 otherwise
unsigned shift = 2 + sizeof(long) == 4 ? 2 : 4; // buggy

116

Basic C++ Syntax Expressions

Operator Precedence Table (1)

Prec. Operator Description Associativity

1 :: Scope resolution left-to-right

2

a++ a-- Postfix increment/decrement

left-to-right
<type>()
<type>{}

Functional Cast

a() Function Call
a[] Subscript
. -> Member Access

3

++a --a Prefix increment/decrement

right-to-left

+a -a Unary plus/minus
! ~ Logical/Bitwise NOT
(<type>) C-style cast
*a Dereference
&a Address-of
sizeof Size-of
new new[] Dynamic memory allocation
delete delete[] Dynamic memory deallocation

117

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Expressions

Operator Precedence Table (2)

Prec. Operator Description Associativity

4 .* ->* Pointer-to-member left-to-right

5 a*b a/b a%b Multiplication/Division/Remain-
der

left-to-right

6 a+b a-b Addition/Subtraction left-to-right

7 << >> Bitwise shift left-to-right

8 <=> Three-way comparison left-to-right

9 < <= Relational < and ≤ left-to-right
> >= Relational > and ≥

10 == != Relational = and 6= left-to-right

118

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Expressions

Operator Precedence Table (3)

Prec. Operator Description Associativity

11 & Bitwise AND left-to-right

12 ^ Bitwise XOR left-to-right

13 | Bitwise OR left-to-right

14 && Logical AND left-to-right

15 || Logical OR left-to-right

16

a?b:c Ternary conditional

right-to-left

throw throw operator
= Direct assignment
+= -= Compound assignment
*= /= %= Compound assignment
<<= >>= Compound assignment
&= ^= |= Compound assignment

17 , Comma left-to-right

119

https://en.cppreference.com/w/cpp/language/operator_precedence

Basic C++ Syntax Statements

Simple Statements

Declaration statement: Declaration followed by a semicolon

int i = 0;

Expression statement: Any expression followed by a semicolon

i + 5; // valid, but rather useless expression statement
foo(); // valid and possibly useful expression statement

Compound statement (blocks): Brace-enclosed sequence of statements

{ // start of block
int i = 0; // declaration statement

} // end of block, i goes out of scope
int i = 1; // declaration statement

120

https://en.cppreference.com/w/cpp/language/statements

Basic C++ Syntax Statements

Scope

Names in a C++ program are valid only within their scope
• The scope of a name begins at its point of declaration
• The scope of a name ends at the end of the relevant block
• Scopes may be shadowed resulting in discontiguous scopes (bad practice)

int a = 21;
int b = 0;
{

int a = 1; // scope of the first a is interrupted
int c = 2;
b = a + c + 39; // a refers to the second a, b == 42

} // scope of the second a and c ends
b = a; // a refers to the first a, b == 21
b += c; // ERROR: c is not in scope

121

https://en.cppreference.com/w/cpp/language/scope

Basic C++ Syntax Statements

If Statement (1)

Conditionally executes another statement

if (init-statement; condition)
then-statement

else
else-statement

Explanation
• If condition evaluates to true after conversion to bool, then-statement is

executed, otherwise else-statement is executed
• Both init-statement and the else branch can be omitted
• If present, init-statement must be an expression or declaration statement
• condition must be an expression statement or a single declaration
• then-statement and else-statement can be arbitrary (compound) statements

122

https://en.cppreference.com/w/cpp/language/if

Basic C++ Syntax Statements

If Statement (2)
The init-statement form is useful for local variables only needed inside the if

if (unsigned value = computeValue(); value < 42) {
// do something

} else {
// do something else

}

Equivalent formulation

{
unsigned value = computeValue();
if (value < 42) {

// do something
} else {

// do something else
}

}

123

Basic C++ Syntax Statements

If Statement (3)
In nested if-statements, the else is associated with the closest if that does not
have an else

// INTENTIONALLY BUGGY!
if (condition0)

if (condition1)
// do something if (condition0 && condition1) == true

else
// do something if condition0 == false

When in doubt, use curly braces to make scopes explicit

// Working as intended
if (condition0) {

if (condition1)
// do something if (condition0 && condition1) == true

} else {
// do something if condition0 == false

}

124

Basic C++ Syntax Statements

Switch Statement (1)

Conditionally transfer control to one of several statements

switch (init-statement; condition)
statement

Explanation
• condition may be an expression or single declaration that is convertible to an

enumeration or integral type
• The body of a switch statement may contain an arbitrary number of
case constant: labels and up to one default: label

• The constant values for all case: labels must be unique
• If condition evaluates to a value for which a case: label is present, control is

passed to the labelled statement
• Otherwise, control is passed to the statement labelled with default:
• The break; statement can be used to exit the switch

125

https://en.cppreference.com/w/cpp/language/switch

Basic C++ Syntax Statements

Switch Statement (2)

Regular example

switch (computeValue()) {
case 21:

// do something if computeValue() was 21
break;

case 42:
// do something if computeValue() was 42
break;

default:
// do something if computeValue() was != 21 and != 42
break;

}

126

Basic C++ Syntax Statements

Switch Statement (3)

The body is executed sequentially until a break; statement is encountered

switch (computeValue()) {
case 21:
case 42:

// do something if computeValue() was 21 or 42
break;

default:
// do something if computeValue() was != 21 and != 42
break;

}

Compilers may generate warnings when encountering such fall-through behavior
• Use special [[fallthrough]]; statement to mark intentional fall-through

127

Basic C++ Syntax Statements

While Loop

Repeatedly executes a statement

while (condition)
statement

Explanation
• Executes statement repeatedly until the value of condition becomes false.

The test takes place before each iteration.
• condition may be an expression that can be converted to bool or a single

declaration
• statement may be an arbitrary statement
• The break; statement may be used to exit the loop
• The continue; statement may be used to skip the remainder of the body

128

https://en.cppreference.com/w/cpp/language/while

Basic C++ Syntax Statements

Do-While Loop

Repeatedly executes a statement

do
statement

while (condition);

Explanation
• Executes statement repeatedly until the value of condition becomes false.

The test takes place after each iteration.
• condition may be an expression that can be converted to bool or a single

declaration
• statement may be an arbitrary statement
• The break; statement may be used to exit the loop
• The continue; statement may be used to skip the remainder of the body

129

https://en.cppreference.com/w/cpp/language/do

Basic C++ Syntax Statements

While vs. Do-While

The body of a do-while loop is executed at least once

unsigned i = 42;

do {
// executed once

} while (i < 42);

while (i < 42) {
// never executed

}

130

Basic C++ Syntax Statements

For Loop (1)

Repeatedly executes a statement

for (init-statement; condition; iteration-expression)
statement

Explanation
• Executes init-statement once, then executes statement and

iteration-expression repeatedly until condition becomes false
• init-statement may either be an expression or declaration
• condition may either be an expression that can be converted to bool or a

single declaration
• iteration-expression may be an arbitrary expression
• All three of the above statements may be omitted
• The break; statement may be used to exit the loop
• The continue; statement may be used to skip the remainder of the body

131

https://en.cppreference.com/w/cpp/language/for

Basic C++ Syntax Statements

For Loop (2)

for (unsigned i = 0; i < 10; ++i) {
// do something

}

for (unsigned i = 0, limit = 10; i != limit; ++i) {
// do something

}

Beware of integral overflows (signed overflows are undefined behavior!)

for (uint8_t i = 0; i < 256; ++i) {
// infinite loop

}

for (unsigned i = 42; i >= 0; --i) {
// infinite loop

}

132

Basic C++ Syntax Functions

Basic Functions (1)

Functions in C++

• Associate a sequence of statements (the function body) with a name
• Functions may have zero or more function parameters
• Functions can be invoked using a function-call expression which initializes the

parameters from the provided arguments

Informal function definition syntax

return-type name (parameter-list) {
statement

}

Informal function call syntax

name (argument-list);

133

https://en.cppreference.com/w/cpp/language/function

Basic C++ Syntax Functions

Basic Functions (2)
Function may have void return type

void procedure(unsigned parameter0, double parameter1) {
// do something with parameter0 and parameter1

}

Functions with non-void return type must contain a return statement

unsigned meaningOfLife() {
// extremely complex computation
return 42;

}

The return statement may be omitted in the main-function of a program (in
which case zero is implicitly returned)

int main() {
// run the program

}

134

Basic C++ Syntax Functions

Basic Functions (3)

Function parameters may be unnamed, in which case they cannot be used

unsigned meaningOfLife(unsigned /*unused*/) {
return 42;

}

An argument must still be supplied when invoking the function

unsigned v = meaningOfLife(); // ERROR: expected argument
unsigned w = meaningOfLife(123); // OK

135

Basic C++ Syntax Functions

Argument Passing

Argument to a function are passed by value in C++

unsigned square(unsigned v) {
v = v * v;
return v;

}

int main() {
unsigned v = 8;
unsigned w = square(v); // w == 64, v == 8

}

C++ differs from other programming languages (e.g. Java) in this respect
• Parameters can explicitly be passed by reference
• Essential to keep argument-passing semantics in mind, especially when

used-defined classes are involved

136

Basic C++ Syntax Functions

Default Arguments

A function definition can include default values for some of its parameters
• Indicated by including an initializer for the parameter
• After a parameter with a default value, all subsequent parameters must have

default values as well
• Parameters with default values may be omitted when invoking the function

int foo(int a, int b = 2, int c = 3) {
return a + b + c;

}

int main() {
int x = foo(1); // x == 6
int y = foo(1, 1); // y == 5
int z = foo(1, 1, 1); // z == 3

}

137

https://en.cppreference.com/w/cpp/language/default_arguments

Basic C++ Syntax Functions

Function Overloading (1)

Several functions may have the same name (overloaded)
• Overloaded functions must have distinguishable parameter lists
• Calls to overloaded functions are subject to overload resolution
• Overload resolution selects which overloaded function is called based on a set

of complex rules

Informally, parameter lists are distinguishable
• If they have a different number of non-defaulted parameters
• If they have at least one parameter with different type

138

https://en.cppreference.com/w/cpp/language/overload_resolution

Basic C++ Syntax Functions

Function Overloading (2)

Indistinguishable parameter lists (invalid C++)

void foo(unsigned i);
void foo(unsigned j); // parameter names do not matter
void foo(unsigned i, unsigned j = 1);
void foo(uint32_t i); // on x86_64

Valid example

void foo(unsigned i) { /* do something */ }
void foo(float f) { /* do something */ }

int main() {
foo(1u); // calls foo(unsigned)
foo(1.0f); // calls foo(float)

}

139

Basic C++ Syntax Basic IO

Basic IO (1)

Facilities for printing to and reading from the console
• Use stream objects defined in <iostream> header
• std::cout is used for printing to console
• std::cin is used for reading from console

The left-shift operator can be used to write to std::cout

#include <iostream>
// ----------------------------------
int main() {

unsigned i = 42;
std::cout << "The value of i is " << i << std::endl;

}

140

https://en.cppreference.com/w/cpp/header/iostream

Basic C++ Syntax Basic IO

Basic IO (2)

The right-shift operator can be used to read from std::cin

#include <iostream>
// ----------------------------------
int main() {

std::cout << "Please enter a value: " << std::flush;
unsigned v;
std::cin >> v;
std::cout << "You entered " << v << std::endl;

}

The <iostream> header is part of the C++ standard library
• Many more interesting and useful features
• More details later
• In the meantime: Read the documentation!

141

Basic C++ Syntax Code Style

Code Formatting (1)

Projects should always use a uniform code style
• Consistent conventions for naming, documentation, etc.
• Some aspects of a uniform code style have to be implemented manually (e.g.

naming conventions)

Automated code formatting can for example be performed with clang-format
• Widely available through package manager
• Highly configurable code formatting tool
• Configuration possible through .clang-format file
• Integrated in CLion

142

Basic C++ Syntax Code Style

Code Formatting (2)

Basic clang-format usage

> clang-format -i <path-to-file>

Reformats a source file in-place
• Reads formatting rules from .clang-format file in the current directory
• Should usually reside in the source root for project-wide formatting rules
• CLion detects .clang-format files and uses them for formatting
• Can be verified by looking for “ClangFormat” in the status bar of CLion

143

Basic C++ Syntax Code Style

Code Formatting (3)

We will provide you with a .clang-format file for now
• Contains (in our opinion) sensible formatting rules
• Please make sure that your submissions are formatted according to these rules
• But our formatting rules should not be seen as the single source of truth

Some high-level formatting guidelines should be universally followed
• Descriptive names for variables and functions
• Comments for complicated sections of code
• ...

144

	Basic C++ Syntax
	Comments
	Basic Types and Variables
	Expressions
	Statements
	Functions
	Basic IO
	Code Style

