
Multi-Threading in C++

Multi-Threading in C++

642



Multi-Threading in C++

Multi-Threading in C++

In C++ it is allowed to run multiple threads simultaneously that use the same
memory.
• Multiple threads may read from the same memory location
• All other accesses (i.e. read-write, write-read, write-write) are called conflicts
• Conflicting operations are only allowed when threads are synchronized
• This can be done with mutexes or atomic operations
• Unsynchronized accesses (also called data races), deadlocks, and other

potential issues when using threads are undefined behavior!

All conflicting operations must be synchronized in some way!

643



Multi-Threading in C++ Threads Library

Threads Library (1)

The header <thread> defines the class std::thread
• Using this class is the best way to use threads platform-independently
• May require additional compiler flags depending on the actual underlying

implementation
• Use CMake to determine these flags in a platform-independent way
• For gcc and clang on Linux this will usually be -pthread

cmake_minimum_required(VERSION 3.21)
project(sample)

find_package(Threads REQUIRED)
add_executable(sample main.cpp)
target_link_libraries(sample PUBLIC Threads::Threads)

644

https://en.cppreference.com/w/cpp/thread/thread


Multi-Threading in C++ Threads Library

Threads Library (2)

The constructor of std::thread can be used to start a new thread
• Syntax: thread(Function&& f, Args&&... args)
• The function f will be invoked in a new thread with the arguments args
• The thread will terminate once f returns
• The default constructor can be used to create an empty thread object

The member function join() must be used to wait for a thread to finish
• join() must be called exactly once for each thread
• join() must be called before an std::thread object is destroyed
• When the destructor of an std::thread is called, the program is

terminated if the associated thread was not joined

645

https://en.cppreference.com/w/cpp/thread/thread


Multi-Threading in C++ Threads Library

Threads Library (3)

Example

#include <thread>

void foo(int a, int b);

int main() {
// Pass a function and args
std::thread t1(foo, 1, 2);
// Pass a lambda
std::thread t2([]() {

foo(3, 4);
});

foo(5, 6);

t2.join();
t1.join();

}

main() t1t2

t1 constructed

t2 constructed foo(1, 2)

foo(3, 4)

foo(5, 6)

t1 joined

t2 joined

646



Multi-Threading in C++ Threads Library

Threads Library (4)
Example

#include <iostream>
#include <string_view>
#include <thread>

void safe_print(std::string_view s);

int main() {
{

std::thread t1([]() { safe_print("Hi\n"); });
t1.join();

}
// Everything is fine, we called t1.join()
{

std::thread t2([]() {});
}
// Program terminated because t2.join() was not called

}

647

https://en.cppreference.com/w/cpp/thread/thread/join


Multi-Threading in C++ Threads Library

Threads Library (5)

std::thread is movable but not copyable
• Moving transfers all resources associated with the running thread
• Only the moved-to thread can be joined
• The moved-from thread object is empty (not associated with any thread)

Example

#include <iostream>
#include <string_view>
#include <thread>

void safe_print(std::string_view s);

int main() {
std::thread t1([]() { safe_print("Hi\n"); });
std::thread t2 = std::move(t1); // t1 is now empty
t2.join(); // OK, thread originally started in t1 is joined

}

648



Multi-Threading in C++ Threads Library

Threads Library (6)

std::thread can be used in standard library containers

#include <thread>
#include <vector>

void safe_print(int i);

int main() {
std::vector<std::thread> threadPool;
for (int i = 1; i <= 9; ++i) {

threadPool.emplace_back([i]() { safe_print(i); });
}
// Digits 1 to 9 are printed (unordered)
for (auto& t : threadPool) {

t.join();
}

}

649



Multi-Threading in C++ Threads Library

Other Functions of the Thread Library

The thread library also contains other useful functions that are closely related to
starting and stopping threads:
• std::this_thread::sleep_for(): Stop the current thread for a given

amount of time
• std::this_thread::sleep_until(): Stop the current thread until a

given point in time
• std::this_thread::yield(): Let the operating system schedule another

thread
• std::this_thread::get_id(): Get the (operating-system-specific) id of

the current thread

650

https://en.cppreference.com/w/cpp/thread


Multi-Threading in C++ Mutual Exclusion

Mutual Exclusion (1)

Mutual exclusion is a straightforward way to synchronize multiple threads
• Threads acquire a lock on a mutex object before entering a critical section
• Threads release their lock on the mutex when leaving a critical section

High-level programming model
• The resource (usually a class) that requires protection from data races owns a

mutex object of the appropriate type
• Threads that intend to access the resource acquire a suitable lock on the

mutex before performing the actual access
• Threads release their lock on the mutex after completing the access
• Usually locks are simply acquired and released in the member functions of the

class

651



Multi-Threading in C++ Mutual Exclusion

Mutual Exclusion (2)

The standard library defines several useful classes that implement mutexes in the
<mutex> and <shared_mutex> headers
• std::mutex – regular mutual exclusion
• std::recursive_mutex – recursive mutual exclusion
• std::shared_mutex – mutual exclusion with shared locks

The standard library provides RAII wrappers for locking and unlocking mutexes
• std::unique_lock – RAII wrapper for exclusive locking
• std::shared_lock – RAII wrapper for shared locking

The RAII wrappers should always be preferred for locking and unlocking mutexes
• Makes bugs due to inconsistent locking/unlocking much more unlikely
• Manual locking and unlocking may be required in some rare cases
• Should still be performed through the corresponding functions of the RAII

wrappers

652



Multi-Threading in C++ Mutual Exclusion

std::unique_lock (1)

std::unique_lock can be used to lock a mutex in exclusive mode
• The constructor acquires an exclusive lock on the mutex
• Constructor syntax: unique_lock(mutex_type& m)
• Blocks the calling thread until the mutex becomes available
• The destructor releases the lock automatically
• Can be used with any mutex type from the standard library

#include <mutex>
#include <iostream>

std::mutex printMutex;
void safe_print(int i) {

std::unique_lock lock(printMutex); // lock is acquired
std::cout << i;

} // lock is released

653

https://en.cppreference.com/w/cpp/thread/unique_lock


Multi-Threading in C++ Mutual Exclusion

std::unique_lock (2)

std::unique_lock provides additional constructors
• unique_lock(mutex_type& m, std::defer_lock_t t) – Do not

immediately lock the mutex
• unique_lock(mutex_type& m, std::try_to_lock_t t) – Do not

block when the mutex cannot be locked

std::unique_lock provides additional member functions
• lock() – Manually lock the mutex
• try_lock() – Try to lock the mutex, return true if successful
• operator bool() – Check if the std::unique_lock holds a lock on the

mutex

654

https://en.cppreference.com/w/cpp/thread/unique_lock


Multi-Threading in C++ Mutual Exclusion

std::unique_lock (3)
Example

#include <mutex>

std::mutex mutex;

void foo() {
std::unique_lock lock(mutex, std::try_to_lock);
if (!lock) {

doUnsynchronizedWork();

// block until we can get the lock
lock.lock();

}

doSynchronizedWork();

// release the lock early
lock.unlock();

doUnsynchronizedWork();
}

655



Multi-Threading in C++ Mutual Exclusion

std::unique_lock (4)
std::unique_lock is movable to transfer ownership of a lock on a mutex

#include <mutex>

class MyContainer {
private:
std::mutex mutex;

public:
class iterator { /* ... */ };

iterator begin() {
std::unique_lock lock(mutex);

// compute the begin iterator constructor args

// keep the lock for iteration
return iterator(std::move(lock), ...);

}
};

656



Multi-Threading in C++ Mutual Exclusion

Recursive Mutexes (1)
The following code will deadlock since std::mutex can be locked at most once

#include <mutex>

std::mutex mutex;

void bar() {
std::unique_lock lock(mutex);

// do some work...
}

void foo() {
std::unique_lock lock(mutex);

// do some work...

bar(); // INTENTIONALLY BUGGY, will deadlock
}

657



Multi-Threading in C++ Mutual Exclusion

Recursive Mutexes (2)

std::recursive_mutex implements recursive ownership semantics
• The same thread can lock an std::recursive_mutex multiple times

without blocking
• Other threads will still block if an std::recursive_mutex is currently

locked
• Can be used with std::unique_lock just like a regular std::mutex
• Useful for functions that call each other and use the same mutex

#include <mutex>

std::recursive_mutex mutex;
void bar() {

std::unique_lock lock(mutex);
}
void foo() {

std::unique_lock lock(mutex);
bar(); // OK, will not deadlock

}

658

https://en.cppreference.com/w/cpp/thread/recursive_mutex


Multi-Threading in C++ Mutual Exclusion

std::shared_lock (1)

std::shared_lock can be used to lock a mutex in shared mode
• Constructors and member functions analogous to std::unique_lock
• Multiple threads can acquire a shared lock on the same mutex
• Shared locking attempts block if the mutex is locked in exclusive mode
• Only usable in conjunction with std::shared_mutex

We have to adhere to some contract to write well-behaved programs
• Shared mutexes are mostly used to implement read/write-locks
• Only read accesses are allowed when holding a shared lock
• Write accesses are only allowed when holding an exclusive lock

659

https://en.cppreference.com/w/cpp/thread/shared_lock


Multi-Threading in C++ Mutual Exclusion

std::shared_lock (2)
Example

#include <shared_mutex>

class SafeCounter {
private:
mutable std::shared_mutex mutex;
size_t value = 0;

public:
size_t getValue() const {

std::shared_lock lock(mutex);
return value; // read access

}

void incrementValue() {
std::unique_lock lock(mutex);
++value; // write access

}
};

660



Multi-Threading in C++ Mutual Exclusion

Working with Mutexes

We usually have to make mutexes mutable within our data structures
• The RAII wrappers require mutable references to the mutex
• const member functions of our data structure usually also need to use the

mutex

Using mutexes without care can easily lead to deadlocks within the system
• Usually occurs when a thread tries to lock another mutex when it already

holds a lock on some mutex
• Can in some cases be avoided by using std::recursive_mutex (if we are

locking the same mutex multiple times)
• Requires dedicated programming techniques when multiple mutexes are

involved

661



Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (1)
The following example will lead to deadlocks

std::mutex m1, m2, m3;
void threadA() {

// INTENTIONALLY BUGGY
std::unique_lock l1{m1}, l2{m2}, l3{m3};

}
void threadB() {

// INTENTIONALLY BUGGY
std::unique_lock l3{m3}, l2{m2}, l1{m1};

}

Possible deadlock scenario
• threadA() acquires locks on m1 and m2
• threadB() acquires lock on m3
• threadA() waits for threadB() to release m3
• threadB() waits for threadA() to release m2

662



Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (2)

Deadlocks can be avoided by always locking mutexes in a globally consistent order
• Ensures that one thread always “wins”
• Maintaining a globally consistent locking order requires considerable

developer discipline
• Maintaining a globally consistent locking order may not be possible at all

std::mutex m1, m2, m3;
void threadA() {

// OK, will not deadlock
std::unique_lock l1{m1}, l2{m2}, l3{m3};

}
void threadB() {

// OK, will not deadlock
std::unique_lock l1{m1}, l2{m2}, l3{m3};

}

663



Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (3)

Sometimes it is not possible to guarantee a globally consistent order
• The std::scoped_lock RAII wrapper can be used to safely lock any

number of mutexes
• Employs a deadlock-avoidance algorithm if required
• Generally quite inefficient in comparison to std::unique_lock
• Should only be used as a last resort!

std::mutex m1, m2, m3;
void threadA() {

// OK, will not deadlock
std::scoped_lock l{m1, m2, m3};

}
void threadB() {

// OK, will not deadlock
std::scoped_lock l{m3, m2, m1};

}

664

https://en.cppreference.com/w/cpp/thread/scoped_lock


Multi-Threading in C++ Mutual Exclusion

Condition Variables (1)

A condition variable is a synchronization primitive that allows multiple threads to
wait until an (arbitrary) condition becomes true.
• A condition variable uses a mutex to synchronize threads
• Threads can wait on or notify the condition variable
• When a thread waits on the condition variable, it blocks until another thread

notifies it
• If a thread waited on the condition variable and is notified, it holds the mutex
• A notified thread must check the condition explicitly because spurious

wake-ups can occur

665



Multi-Threading in C++ Mutual Exclusion

Condition Variables (2)

The standard library defines the class std::condition_variable in the header
<condition_variable> which has the following member functions:
• wait(): Takes a reference to a std::unique_lock that must be locked by

the caller as an argument, unlocks the mutex and waits for the condition
variable

• notify_one(): Notify a single waiting thread, mutex does not need to be
held by the caller

• notify_all(): Notify all waiting threads, mutex does not need to be held
by the caller

666

https://en.cppreference.com/w/cpp/thread/condition_variable


Multi-Threading in C++ Mutual Exclusion

Condition Variables Example

One use case for condition variables are worker queues: Tasks are inserted into a
queue and then worker threads are notified to do the task.

std::mutex m;
std::condition_variable cv;
std::vector<int> taskQueue;

void pushWork(int task) {
{
std::unique_lock l{m};
taskQueue.push_back(task);

}
cv.notify_one();

}

void workerThread() {
std::unique_lock l{m};
while (true) {
while (!taskQueue.empty()) {

int task = taskQueue.back();
taskQueue.pop_back();
l.unlock();
// [...] do actual work here
l.lock();

}
cv.wait(l);

}
}

667



Multi-Threading in C++ Atomic Operations

Atomic Operations

Mutual exclusion may be inefficient for synchronization
• Very coarse-grained synchronization
• May require communication with the operating system

Modern hardware also supports atomic operations for synchronization.
• The memory order of a CPU determines how non-atomic memory operations

are allowed to be reordered
• In C++ all non-atomic conflicting operations have undefined behavior even if

the memory order of the CPU would allow it!
• There is one exception: Special atomic functions are allowed to have conflicts
• The compiler usually knows your CPU and generates “real” atomic

instructions only if necessary

668



Multi-Threading in C++ Atomic Operations

Atomic Operations Library (1)

C++ provides atomic operations in the atomic operations library
• Implemented in the <atomic> header
• std::atomic<T> is a class that represents an atomic version of the type T
• Can be used (almost) interchangeably with the original type T
• Has the same size and alignment as the original type T
• Conflicting operations are only allowed on std::atomic<T> objects

std::atomic on its own does not provide any synchronization at all
• Simply makes conflicting operations possible and defined behavior
• Exposes the guarantees of specific memory models to the programmer
• Suitable programming models must be used to achieve proper synchronization

669

https://en.cppreference.com/w/cpp/atomic/atomic


Multi-Threading in C++ Atomic Operations

Atomic Operations Library (2)

std::atomic has several member functions that implement atomic operations
• T load(): Loads the value
• void store(T desired): Stores desired in the object
• T exchange(T desired): Stores desired in the object and returns the

old value

If T is a integral type, the following operations also exist:
• T fetch_add(T arg): Adds arg to the value and returns the old value
• T fetch_sub(T arg): Same for subtraction
• T fetch_and(T arg): Same for bitwise and
• T fetch_or(T arg): Same for bitwise or
• T fetch_xor(T arg): Same for bitwise xor

670

https://en.cppreference.com/w/cpp/atomic/atomic


Multi-Threading in C++ Atomic Operations

Atomic Operations Library (3)

Example (without atomics)

#include <thread>

int main() {
unsigned value = 0;
std::thread t([&]() {

for (size_t i = 0; i < 10; ++i)
++value; // UNDEFINED BEHAVIOR, data race

});

for (size_t i = 0; i < 10; ++i)
++value; // UNDEFINED BEHAVIOR, data race

t.join();

// value will contain garbage
}

671



Multi-Threading in C++ Atomic Operations

Atomic Operations Library (4)
Example (with atomics)

#include <atomic>
#include <thread>

int main() {
std::atomic<unsigned> value = 0;
std::thread t([&]() {

for (size_t i = 0; i < 10; ++i)
value.fetch_add(1); // OK, atomic increment

});

for (size_t i = 0; i < 10; ++i)
value.fetch_add(1); // OK, atomic increment

t.join();

// value will contain 20
}

672



Multi-Threading in C++ Atomic Operations

Semantics of Atomic Operations

C++ may support atomic operations that are not supported by the CPU
• std::atomic<T> can be used with any trivially copyable type
• In particular also for types that are much larger than one cache line
• To guarantee atomicity, compilers are allowed to fall back to mutexes

The C++ standard defines precise semantics for atomic operations
• Every atomic object has a totally ordered modification order
• There are several memory orders that define how operations on different

atomic objects may be reordered
• The C++ memory orders do not necessarily map precisely to memory orders

defined by a CPU

673



Multi-Threading in C++ Atomic Operations

Modification Order (1)

All modifications of a single atomic object are totally ordered
• This is called the modification order of the object
• All threads are guaranteed to observe modifications of the object in this order

Modifications of different atomic objects may be unordered
• Different threads may observe modifications of multiple atomic objects in a

different order
• The details depend on the memory order that is used for the atomic

operations

674



Multi-Threading in C++ Atomic Operations

Modification Order (2)

Example

std::atomic<int> i = 0, j = 0;
void workerThread() {

i.fetch_add(1); // (A)
i.fetch_sub(1); // (B)
j.fetch_add(1); // (C)

}
void readerThread() {

int iLocal = i.load(), jLocal = j.load();
assert(iLocal != -1); // always true

}

Observations
• Reader threads will never see a modification order with (B) before (A)
• Depending on the memory order, multiple reader threads may see any of
(A),(B),(C), or (A),(C),(B), or (C),(A),(B)

675



Multi-Threading in C++ Atomic Operations

Memory Order (1)

The atomics library defines several memory orders
• All atomic functions take a memory order as their last parameter
• The two most important memory orders are std::memory_order_relaxed

and std::memory_order_seq_cst
• std::memory_order_seq_cst is used by default if no memory order is

explicitly supplied
• You should stick to this default unless you identified the atomic operation to

be a performance bottleneck

std::atomic<int> i = 0;

i.fetch_add(1); // uses std::memory_order_seq_cst
i.fetch_add(1, std::memory_order_seq_cst);
i.fetch_add(1, std::memory_order_relaxed);

676

https://en.cppreference.com/w/cpp/atomic/memory_order


Multi-Threading in C++ Atomic Operations

Memory Order (2)
std::memory_order_relaxed
• Roughly maps to a CPU with weak memory order
• Only consistent modification order is guaranteed
• Atomic operations of different objects may be reordered arbitrarily

std::atomic<int> i = 0, j = 0;
void threadA() {

while (true) {
i.fetch_add(1, std::memory_order_relaxed); // (A)
i.fetch_sub(1, std::memory_order_relaxed); // (B)
j.fetch_add(1, std::memory_order_relaxed); // (C)

}
}
void threadB() { /* ... */ }
void threadC() { /* ... */ }

Observations
• threadB() may observe (A),(B),(C)
• threadC() may observe (C),(A),(B)

677

https://en.cppreference.com/w/cpp/atomic/memory_order


Multi-Threading in C++ Atomic Operations

Memory Order (3)
std::memory_order_seq_cst
• Roughly maps to a CPU with strong memory order
• Guarantees that all threads see all atomic operations in one globally

consistent order

std::atomic<int> i = 0, j = 0;
void threadA() {

while (true) {
i.fetch_add(1, std::memory_order_seq_cst); // (A)
i.fetch_sub(1, std::memory_order_seq_cst); // (B)
j.fetch_add(1, std::memory_order_seq_cst); // (C)

}
}
void threadB() { /* ... */ }
void threadC() { /* ... */ }

Observations
• threadB() may observe (C),(A),(B)
• threadC() will then also observe (C),(A),(B)

678

https://en.cppreference.com/w/cpp/atomic/memory_order


Multi-Threading in C++ Atomic Operations

Compare-And-Swap Operations (1)

Compare-and-swap operations are one of the most useful operations on atomics
• Signature: bool compare_exchange_weak(T& expected, T desired)
• Compares the current value of the atomic to expected
• Replaces the current value by desired if the atomic contained the expected

value and returns true
• Updates expected to contain the current value of the atomic object and

returns false otherwise

Often the main building block to synchronize data structures without mutexes
• Allows us to check that no modifications occurred to an atomic over some

time period
• Can be used to implement “implicit” mutual exclusion
• Can suffer from subtle problems such as the A-B-A problem

679

https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange


Multi-Threading in C++ Atomic Operations

Compare-And-Swap Operations (2)
Example: Insert into a lock-free singly linked list
#include <atomic>

class SafeList {
private:
struct Entry {

T value;
Entry* next;

};

std::atomic<Entry*> head;

Entry* allocateEntry(const T& value);

public:
void insert(const T& value) {

auto* entry = allocateEntry(value);
auto* currentHead = head.load();
do {

entry->next = currentHead;
} while (!head.compare_exchange_weak(currentHead, entry));

}
};

680



Multi-Threading in C++ Atomic Operations

Compare-And-Swap Operations (3)

std::atomic actually provides two CAS versions with the same signature
• compare_exchange_weak – weak CAS
• compare_exchange_strong – strong CAS

Semantics
• The weak version is allowed to return false, even when no other thread

modified the value
• This is called “spurious failure”
• The strong version may use a loop internally to avoid this
• General rule: If you use a CAS operation in a loop, always use the weak

version

681



Multi-Threading in C++ Atomic Operations

std::atomic_ref (1)

std::atomic can be unwieldy
• std::atomic is neither movable nor copyable
• As a consequence it cannot easily be used in standard library containers

std::atomic_ref allows us to apply atomic operations to non-atomic objects
• The constructor takes a reference to an arbitrary object of type T
• The referenced object is treated as an atomic object during the lifetime of

the std::atomic_ref
• std::atomic_ref defines similar member functions to std::atomic

Data races between accesses through std::atomic_ref and non-atomic
accesses are still undefined behavior!

682



Multi-Threading in C++ Atomic Operations

std::atomic_ref (2)
Example
#include <atomic>
#include <thread>
#include <vector>

int main() {
std::vector<int> localCounters(4);
std::vector<std::thread> threads;

for (size_t i = 0; i < 16; ++i) {
threads.emplace_back([&]() {

for (size_t j = 0; j < 100; ++j) {
std::atomic_ref ref(localCounters[i % 4]);
ref.fetch_add(1);

}
});

}

for (auto& thread : threads) {
thread.join();

}
}

683


	Multi-Threading in C++
	Threads Library
	Mutual Exclusion
	Atomic Operations


