
1 / 66

Using a Database Advanced SQL

SQL

• intergalactic standard for data retrieval
• SQL is declarative (specifies rather than how to execute the query)
• supported by almost all data processing platforms
• the SQL standard grows over time: SQL-92 (basics supported by most

systems), SQL:1999 (recursive CTEs, grouping sets), SQL:2003
(window functions), SQL:2006 (XML), SQL:2008, SQL:2011 (temporal
support, more window functions)

• newer versions of the SQL standard are huge and many systems only
support subsets

• some differences in syntax and semantics between different systems
• we use the PostgreSQL dialect, which is fairly standards-compliant

2 / 66

Using a Database Advanced SQL

TPC-H Data Set

• TPC-H is an ad-hoc,
decision support
benchmark

• randomly generated
data set, data set
generator available

• size can be
configured (scale
factor 1 is around
1 GB)

3 / 66

Using a Database Advanced SQL

Loading Data: Schema
create table lineitem (

l_orderkey integer not null,
l_partkey integer not null,
l_suppkey integer not null,
l_linenumber integer not null,
l_quantity decimal(12,2) not null,
l_extendedprice decimal(12,2) not null,
l_discount decimal(12,2) not null,
l_tax decimal(12,2) not null,
l_returnflag char(1) not null,
l_linestatus char(1) not null,
l_shipdate date not null,
l_commitdate date not null,
l_receiptdate date not null,
l_shipinstruct char(25) not null,
l_shipmode char(10) not null,
l_comment text not null

);

4 / 66

Using a Database Advanced SQL

Data Types (PostgreSQL)
• signed integers: smallint (2 bytes), integer (4 bytes), bigint (8

bytes)
• fixed-precision numbers: numeric(scale,precision) (scale is the

number of decimal digits, precision is the number of digits after the
decimal separator)

• arbitrary precision numbers: numeric (size unbounded, very slow)
• floating point numbers: float (4 bytes), double precision (8 bytes)
• strings: varchar(n) (maximum length n), char(n) (maximum length

n, blank padded, strange semantics), text (arbitrary length)
• other common types: bytea (variable-length binary array), timestamp

(8 bytes), date (4 bytes), interval (16 bytes), boolean (1 byte)
• all types may be NULL, unless NOT NULL is specified
• PostgreSQL stores data in row-wise fashion
• https://www.postgresql.org/docs/current/static/datatype.html

https://www.postgresql.org/docs/current/static/datatype.html

5 / 66

Using a Database Advanced SQL

Loading CSV-like Data

$ head -n 1 lineitem.tbl
1|15519|785|1|17| ... |egular courts above the|
$ psql tpch
tpch=# \copy lineitem from lineitem.tbl delimiter ’|’
ERROR: extra data after last expected column
CONTEXT: COPY lineitem, line 1: "1|15519|785|1|17|24386.67|0.04|0.02|N|O|1996-03-13|1996-02-12|1996-03-22|DELIVER IN PERSON|TRUCK|egular courts above the|"
tpch# \q
$ sed -i ’s/|$//’ lineitem.tbl
$ psql
tpch=# \copy lineitem from lineitem.tbl delimiter ’|’
COPY 600572

• https://www.postgresql.org/docs/current/static/sql-copy.html

https://www.postgresql.org/docs/current/static/sql-copy.html

6 / 66

Using a Database Advanced SQL

Basic SQL: Joins, Group By, Ordering

select l_orderkey, -- single line comment
sum(l_extendedprice * (1 - l_discount)) revenue,
o_orderdate, o_shippriority

from customer, orders, lineitem /* this is a
multi line comment */
where c_mktsegment = 'BUILDING'
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date '1995-03-15'
and l_shipdate > date '1995-03-15'
group by l_orderkey, o_orderdate, o_shippriority
order by revenue desc, o_orderdate
limit 10;

7 / 66

Using a Database Advanced SQL

• How many items were shipped by German suppliers in 1995?

• What are the names and account balances of the 10 customers from
EUROPE in the FURNITURE market segment who have the highest
account balance?

7 / 66

Using a Database Advanced SQL

• How many items were shipped by German suppliers in 1995?
• What are the names and account balances of the 10 customers from

EUROPE in the FURNITURE market segment who have the highest
account balance?

8 / 66

Using a Database Advanced SQL

Subqueries

• subqueries can appear (almost) everywhere:

select n_name,
(select count(*) from region)

from nation,
(select *
from region
where r_name = 'EUROPE') region

where n_regionkey = r_regionkey
and exists (select 1

from customer
where n_nationkey = c_nationkey);

9 / 66

Using a Database Advanced SQL

Correlated Subqueries

select avg(l_extendedprice)
from lineitem l1
where l_extendedprice =

(select min(l_extendedprice)
from lineitem l2
where l1.l_orderkey = l2.l_orderkey);

• subquery is correlated if it refers to tuple form outer query
(l1.l orderkey)

• naive execution: execute inner query for every tuple of outer query
(quadratic runtime unless index on l orderkey exists)

10 / 66

Using a Database Advanced SQL

Query Decorrelation

• queries can be rewritten to avoid correlation (some systems do this
automatically):

select avg(l_extendedprice)
from lineitem l1,

(select min(l_extendedprice) m, l_orderkey
from lineitem
group by l_orderkey) l2

where l1.l_orderkey = l2.l_orderkey
and l_extendedprice = m;

11 / 66

Using a Database Advanced SQL

• decorrelate the following query

select c1.c_name
from customer c1
where c1.c_mktsegment = 'AUTOMOBILE'
or c1.c_acctbal >

(select avg(c2.c_acctbal)
from customer c2
where c2.c_mktsegment = c1.c_mktsegment);

12 / 66

Using a Database Advanced SQL

Set Operators

• UNION, EXCEPT, and INTERSECT remove duplicates

select n_name from nation where n_regionkey = 2
union
select n_name from nation where n_regionkey in (1, 2)
intersect
select n_name from nation where n_regionkey < 3
except
select n_name from nation where n_nationkey = 21;

13 / 66

Using a Database Advanced SQL

“Set” Operators

• UNION ALL: l + r
• EXCEPT ALL: max(l − r , 0)
• INTERSECT ALL (very obscure): min(l , r)

select n_name from nation where n_regionkey = 2
union all
select n_name from nation where n_regionkey in (1, 2)
intersect all
select n_name from nation where n_regionkey < 3
except all
select n_name from nation where n_nationkey = 21;

14 / 66

Using a Database Advanced SQL

Miscellaneous Useful Constructs

• case (conditional expressions)
select case when n_nationkey > 5

then 'large' else 'small' end
from nation;

• coalesce(a, b): replace NULL with some other value
• cast (explicit type conversion)
• generate series(begin,end)
• random (random float from 0 to 1):

select cast(random()*6 as integer)+1
from generate_series(1,10); -- 10 dice rolls

15 / 66

Using a Database Advanced SQL

Working With Strings

• concatenation:
select 'a' || 'b';

• simple string matching:
select 'abcfoo' like 'abc%';

• regexp string matching:
select 'abcabc' ˜ '(abc)*';

• extract substring:
select substring('abcfoo' from 3 for 2);

• regexp-based replacement: (str, pattern, replacement, flags)

select regexp_replace('ababfooab', '(ab)+', 'xy', 'g');

16 / 66

Using a Database Advanced SQL

Sampling

• sampling modes: bernoulli (pick random tuples) or system (pick
random pages)

• set random seed with optional repeatable setting
• supported by PostgreSQL ≥ 9.5:

select *
from nation tablesample bernoulli(5) -- 5 percent

repeatable (9999);

• it is also possible to get arbitrary tuples:

select *
from nation
limit 10; -- 10 arbitrary rows

17 / 66

Using a Database Advanced SQL

• compute the average o totalprice using a sample of 1% of all orders

18 / 66

Using a Database Advanced SQL

Views and Common Table Expressions
• like functions in “normal” programming languages
• code reuse, abstraction, readability
• in PostgreSQL, WITH is an optimization breaker, views are not

create view nation_europe as
select nation.*
from nation, region
where n_regionkey = r_regionkey
and r_name = 'EUROPE';

with old_orders as (
select *
from orders
where o_orderdate < date '2000-01-01')

select count(*)
from nation_europe, customer, old_orders
where n_nationkey = c_nationkey
and c_custkey = o_custkey;

19 / 66

Using a Database Advanced SQL

Recursive Common Table Expressions
• called recursive but is actually iteration
• traverse hierarchical data of arbitrary depth (joins only allow a

constant number of steps)
with recursive r (i) as (

select 1 -- non-recursive term
union all
select i+1 from r where i < 5) -- recursive term

select * from r;

• algorithm:
workingTable = evaluateNonRecursive()
output workingTable
while workingTable is not empty

workingTable = evaluateRecursive(workingTable)
output workingTable

20 / 66

Using a Database Advanced SQL

WITH RECURSIVE ... UNION ALL
animal

mammal reptile

giraffe tiger snake turtle

green sea turtle

with recursive
animals (id, name, parent) as (values (1, 'animal', null),

(2, 'mammal', 1), (3, 'giraffe', 2), (4, 'tiger', 2),
(5, 'reptile', 1), (6, 'snake', 5), (7, 'turtle', 5),
(8, 'grean sea turtle', 7)),

r as (select * from animals where name = 'turtle'
union all
select animals.*
from r, animals
where animals.id = r.parent)

select * from r;

21 / 66

Using a Database Advanced SQL

• compute all descendants of ’reptile’
• compute 10! using recursion
• compute the first 20 Fibonacci numbers (F1 = 1, F2 = 1,

Fn = Fn−1 + Fn−2)

22 / 66

Using a Database Advanced SQL

Recursive Common Table Expressions with UNION

• for graph-like data UNION ALL may not terminate
• with recursive [non-recursive] union [recursive]
• allows one to traverse cyclic structures
• algorithm:

workingTable = unique(evaluateNonRecursive())
result = workingTable
while workingTable is not empty

workingTable = unique(evaluateRecursive(workingTable)) \ result
result = result ∪ workingTable

output result

23 / 66

Using a Database Advanced SQL

WITH RECURSIVE ... UNION
Alice

Carol Bob

Grace Chuck Dan

Eve

Adam

Anne

with recursive
friends (a, b) as (values ('Alice', 'Bob'), ('Alice', 'Carol'),

('Carol', 'Grace'), ('Carol', 'Chuck'), ('Chuck', 'Grace'),
('Chuck','Anne'),('Bob','Dan'),('Dan','Anne'),('Eve','Adam')),

friendship (name, friend) as -- friendship is symmetric
(select a, b from friends union all select b, a from friends),

r as (select 'Alice' as name
union
select friendship.name from r, friendship
where r.name = friendship.friend)

select * from r;

24 / 66

Using a Database Advanced SQL

Window Functions

• very versatile feature: time series analysis, ranking, top-k, percentiles,
moving averages, cumulative sums

• window functions are evaluated after most other clauses (including
group by) but before order by

• in contrast to aggregation, window functions do not change the input,
they only compute additional columns

25 / 66

Using a Database Advanced SQL

Window Functions: Concepts
select o_custkey, o_orderdate,

sum(o_totalprice) over -- window function
(partition by o_custkey -- partitioning clause
order by o_orderdate -- ordering clause
range between unbounded preceding
and current row) -- framing clause

from customer;

order by

partition by

frame

26 / 66

Using a Database Advanced SQL

Window Functions Framing That Ignore Framing

• ranking:
I rank(): rank of the current row with gaps
I dense rank(): rank of the current row without gaps
I row number(): row number of the current row
I ntile(n): distribute evenly over buckets (returns integer from 1 to n)

• distribution:
I percent rank(): relative rank of the current row ((rank - 1) / (total

rows - 1))
I cume dist(): relative rank of peer group ((number of rows preceding

or peer with current row) / (total rows))
• navigation in partition:

I lead(expr, offset, default): evaluate expr on preceding row in
partition

I lag(expr, offset, default): evaluate expr on following row in
partition

27 / 66

Using a Database Advanced SQL

• determine medals based on number of orders, example output:
custkey | count | medal

---------+-------+--------
8761 | 36 | gold

11998 | 36 | gold
8362 | 35 | bronze
4339 | 35 | bronze
388 | 35 | bronze

3151 | 35 | bronze
9454 | 35 | bronze

28 / 66

Using a Database Advanced SQL

Window Functions: Framing
• current row: the current row (including all peers in range mode)
• unbounded preceding: first row in the partition
• unbounded following: last row in the partition

order by
2.5 4 5 6 107.5 8.5 12

range between 3 preceding and 3 following

rows between 3 preceding and 3 following

• default frame (when an order by clause was specified): range
between unbounded preceding and current row

• default frame (when no order by clause was specified): range
between unbounded preceding and unbounded following

• complex frame specifications are not yet supported by PostgreSQL

29 / 66

Using a Database Advanced SQL

Window Functions With Framing

• aggregates (min, max, sum, . . .):
compute aggregate over all tuples in current frame

• navigation in frame:
first value(expr), last value(expr), nth value(expr, nth):
evaluate expr on first/last/nth row of the frame

30 / 66

Using a Database Advanced SQL

• compute the cumulative customer spending (sum(o totalprice))
over time (o orderdate)

• for each customer from GERMANY compute the cumulative spending
(sum(o totalprice)) by year (extract(year from o orderdate),
example output:
custkey | yr | running_sum

---------+------+-------------
62 | 1992 | 169991.32
62 | 1993 | 344376.79
62 | 1994 | 433638.98
62 | 1995 | 960047.31
62 | 1996 | 1372061.28
62 | 1997 | 1658247.25
62 | 1998 | 2055669.94
71 | 1992 | 403017.41
71 | 1993 | 751256.86
71 | 1994 | 1021446.72
71 | 1995 | 1261012.10

31 / 66

Using a Database Advanced SQL

Statistical Aggregates

• stddev samp(expr): standard deviation
• corr(x, y): correlation
• regr slope(y, x): linear regression slope
• regr intercept(y, x): linear regression intercept

32 / 66

Using a Database Advanced SQL

Ordered-Set Aggregates

• mode(): most frequently occurring value
• percentile disc(p): compute discrete percentile (p ∈ [0, 1])
• percentile cont(p): compute continuous percentile (p ∈ [0, 1]),

may interpolate, only works on numeric data types
• aggregate functions with a special syntax that require sorting

select percentile_cont(0.5)
within group (order by o_totalprice)

from orders;

select o_custkey,
percentile_cont(0.5) within group (order by o_totalprice)

from orders
group by o_custkey;

33 / 66

Using a Database Advanced SQL

Grouping Sets, Rollup, Cube
• aggregate across multiple dimensions, e.g., revenue by year, by

customer, by supplier
• specify multiple groupings:

group by grouping sets ((a, b), (a), ())
• hierarchical groupings:

group by rollup (a, b)
• both are equivalent to:

select a, b, sum(x) from r group by a, b
union all
select a, null, sum(x) from r group by a
union all
select null, null, sum(x) from r;

• all (2n) groupings:
group by cube (a, b) is equivalent to
group by grouping sets ((a, b), (a), (b), ())

34 / 66

Using a Database Advanced SQL

• aggregate revenue (sum(o totalprice)): total, by region (r name),
by name (n name), example output:

revenue | region | nation
----------------+---------------------+----------------------

836330704.31 | AFRICA | ALGERIA
902849428.98 | AFRICA | ETHIOPIA
784205751.27 | AFRICA | KENYA
893122668.52 | AFRICA | MOROCCO
852278134.31 | AFRICA | MOZAMBIQUE

4268786687.39 | AFRICA |
...
21356596030.63 | |

35 / 66

Using a Database Advanced SQL

References

• SQL reference (PostgreSQL):
https://www.postgresql.org/docs/current/static/sql.html

• basic SQL (in German):
Datenbanksysteme: Eine Einführung, Alfons Kemper and Andre
Eickler, 10th edition, 2015

• Joe Celko’s SQL for Smarties, Joe Celko, 5th edition, 2014
• SQL cookbook, Anthony Molinaro, 2005

https://www.postgresql.org/docs/current/static/sql.html

36 / 66

Using a Database Database Clusters

Why Database Clusters?

Limitations of a single machine:
• space (a few tera bytes)
• performance (hundreds of GFLOPS)
• geo-locality (speed of light)
• no redundancy (in case of failures)

Therefore, we need to use multiple machines.

37 / 66

Using a Database Database Clusters

Properties of Database Clusters
• transparent for the user (cluster presents itself as a single system)
• consistency vs. fussy consistency (ACID vs. BASE)

Master

Slave	1

Slave	2

Client

Database	Cluster

38 / 66

Using a Database Database Clusters

Properties of Database Clusters

ACID
• Atomicity: a transaction is either executed completely or not at all
• Consistency: transactions can not introduce inconsistencies
• Isolation: concurrent transactions can not see each other
• Durability: all changes of a transaction are durable

39 / 66

Using a Database Database Clusters

Properties of Database Clusters

BASE
• Basically Available: requests may fail
• Soft state: the system state may change over time
• Eventual consistency: once the system stops receiving input, it will

eventually become consistent

40 / 66

Using a Database Database Clusters

Properties of Database Clusters

Providing ACID guarantees slows down the database, as more
synchronization is required. BUT:

• BASE does not provide a consistent view of the data, which can lead
to subtile bugs or confuse customers

• BASE can simply not be used for many critical systems (e.g., banking)
• before using BASE, be sure that you really do need the performance

and don’t need ACID guarantees. otherwise, you will end up
implementing ACID on the application layer

41 / 66

Using a Database Database Clusters

End of Transaction Handling

Just like in a non-distributed system, a transaction has to be atomic. There
are two options for ending a transaction:

commit the transaction was successful and all constraints are fulfilled:
it has to become persistent and visible to all nodes of the
cluster

abort the transaction failed or violates a constraint: it has to be
undone on all nodes of the cluster

Problem: the nodes of a distributed system can crash independently

42 / 66

Using a Database Database Clusters

End of Transaction Handling

Solution: Two Phase Commit Protocol (2PL).
• 2PL ensures the atomic property of distributed transactions
• one node acts as a coordinator
• it allows n agents of a system A1, A2, .., An, which participated in a

transaction T to either all persist the changes of T or all discard the
changes of T

43 / 66

Using a Database Database Clusters

Two Phase Commit
Message flow in 2PL with 4 agents:

K

A1

A2

A3

A4

K

A1

A2

A3

A4

K

PREPARE FAILED
READY

COMMIT
ABORT

ACK

44 / 66

Using a Database Database Clusters

Two Phase Commit

Potential points of failure in 2PL:
• crash of the coordinator
• crash of an agent
• lost messages

45 / 66

Using a Database Database Clusters

Replication

Every machine in the cluster has a (consistent) copy of the entire dataset.
• improved query throughput
• can accommodate node failures
• solves locality issue

46 / 66

Using a Database Database Clusters

Horizontal Partitioning (Sharding)
Every machine in the cluster has a chunk of the dataset.

• improved query runtimes (especially if no cross-shard communication is
required)

• performance heavily relies on the used interconnect
• can accommodate datasets that exceed the capacity of a machine

Single	Node

R1

R2

R3

R4

Node	1

R1

R3

Node	2

R2

R4

47 / 66

Using a Database Database Clusters

Horizontal Partitioning (Sharding) - Example
select Title
from Vorlesungen v, Professoren p
where v.gelesenVon = p.persNr
and p.rang = ’C4’;

π

σ

v.gelesenVon =	p.persNr

p.rang =	‘C4’

⋈

∪

TheolVorls PhiloVorls PhysikVorls

∪

TheolProfs PhiloProfs PhysikProfs

titel

48 / 66

Using a Database Database Clusters

Horizontal Partitioning (Sharding) - Example (Optimized)
select Title
from Vorlesungen v, Professoren p
where v.gelesenVon = p.persNr
and p.rang = ’C4’;

TheolProfTheolVorls

σ p.rang =	‘C4’

v.gelesenVon =	p.persNr⋈

π titel

∪

PhiloProfPhiloVorls

σ p.rang =	‘C4’

v.gelesenVon =	p.persNr⋈

π titel

PhysikProfPhysikVorls

σ p.rang =	‘C4’

v.gelesenVon =	p.persNr⋈

π titel

49 / 66

Using a Database Database Clusters

Shard Allocation

Shards can be allocated to the cluster machines in different ways.
• every machine receives one shard
• every machine receives multiple shards (e.g., MemSQL allocates 8

shards to a leaf node)
• having more shards than machines results in better skew handling

50 / 66

Using a Database Database Clusters

Replication and Sharding
Replication and sharding can be applied together.

• benefits of both are combined
• however, this leads to an increased resource consumption

Single	Node

R1

R2

R3

R4

Node	1

Node	2

R1

R3

R2

R4

S1

S1

S1

51 / 66

Using a Database Database Clusters

Joins

Joins in a replicated setting are easy (i.e., not different from local joins).
What is more challenging are joins when data is sharded across multiple
machines. Join types include:

• co-located joins
• distributed join (involves cross-shard communication)
• broadcast join (involves cross-shard communication)

52 / 66

Using a Database Database Clusters

Co-Located Joins

One option is to shard the tables that need to be joined on the respective
join column. That way, joins can be computed locally and the individual
machines do not need to communicate with each other.
Eventually, the individual results are send to a master node that combines
the results.

53 / 66

Using a Database Database Clusters

Distributed Join

Re-distribute both tables based on the corresponding join columns to
eventually compute the join locally.

54 / 66

Using a Database Database Clusters

Broadcast Join

Send smaller relation to all machines to compute the join locally.

55 / 66

Using a Database Database Clusters

Counting the Sum

Let’s consider summing up the quantity in lineitem, again. Assume
lineitem does not fit into the DRAM of a single machine. Depending on
the used interconnect, it turns out that reading lineitem from remote
machines is faster than reading it from a local SSD.

bandwidth query time
FDR InfiniBand 7GB/s 0.1s
10GB ethernet 1.25GB/s 0.6s
1GB ethernet 125MB/s 6s
rotating disk 200MB/s 3.6s
SATA SSD 500MB/s 1.6s
PCIe SSD 2GB/s 0.36s
DRAM 20GB/s 0.04s

56 / 66

Using a Database Database Clusters

Counting the Sum - Sharding

Lower query latencies by sharding the data to multiple nodes.
• each node only stores a partition of lineitem
• every node sums up its partition of lineitem
• a master node sums up the local sums

57 / 66

Using a Database Database Clusters

Vanilla PostgreSQL

What can we do with vanilla PostgreSQL?
• PostgreSQL supports read replicas

I from version 9.6, these replicas are kept in sync, allowing for consistent
reads

I allows for load-balancing read workloads and thus improved query
throughput

• PostgreSQL neither supports data distribution nor distributed queries

58 / 66

Using a Database Database Clusters

Replication in PostgreSQL

Master Slave	1 Slave	2

Application	1 Application	2 Application	3

Transactions Queries

Log

59 / 66

Using a Database Database Clusters

Greenplum to the rescue!

Pivotal Greenplum is a distributed open-source database based on
PostgreSQL.

• supports data distribution and partitioning
• master and segment (child) nodes

I master nodes contain the schemas
I segment nodes contain the data

• additional standby master and secondary (mirror) segment nodes

60 / 66

Using a Database Database Clusters

Greenplum: Distribution/Partitioning Schemes

Distribution/partitioning schemes can be specified when creating a table.
• DISTRIBUTED BY specifies how data is spread (sharded) across

segments
I random (round-robin) or hash-based distribution

• PARTITION BY specifies how data is partitioned within a segment
I list of values or range (numeric or date)
I subpartitioning

61 / 66

Using a Database Database Clusters

Greenplum: Distribution Example1

A table with a hash-based distribution:
CREATE TABLE products
(name varchar(40),
prod id integer,
supplier id integer)
DISTRIBUTED BY (prod id);

A table with a random (round-robin) distribution:
CREATE TABLE random stuff
(things text,
doodads text,
etc text)
DISTRIBUTED RANDOMLY;

1http://gpdb.docs.pivotal.io/4350/admin_guide/ddl/ddl-table.html

http://gpdb.docs.pivotal.io/4350/admin_guide/ddl/ddl-table.html

62 / 66

Using a Database Database Clusters

Greenplum: Partitioning Example

2
2http://gpdb.docs.pivotal.io/4350/admin_guide/ddl/ddl-partition.html

http://gpdb.docs.pivotal.io/4350/admin_guide/ddl/ddl-partition.html

63 / 66

Using a Database Database Clusters

MemSQL

MemSQL is yet another (distributed) database system.
• compatible with MySQL
• data can be sharded across multiple machines
• in addition to sharding, tables can be replicated to all machines

(reference tables) allowing for broadcast joins
• also supports distributed and co-located joins

64 / 66

Using a Database Database Clusters

MemSQL

A MemSQL cluster consists of aggregator and leaf nodes.
• aggregator nodes handle metadata, distribute queries, and aggregate

results
• aggregator nodes are also responsible for cluster monitoring and failover
• leaf nodes act as the storage layer of the cluster and execute SQL

queries

65 / 66

Using a Database Database Clusters

MemSQL

By default, MemSQL shards tables by their primary key. A manual shard
key can be specified as follows:

CREATE TABLE clicks (
click id BIGINT AUTO INCREMENT,
user id INT,
page id INT,
ts TIMESTAMP,
SHARD KEY (user id),
PRIMARY KEY (click id, user id)
); 3

3https://docs.memsql.com/docs/distributed-sql

https://docs.memsql.com/docs/distributed-sql

66 / 66

Using a Database Database Clusters

Conclusion

• a distributed system provides access to a bunch of machines and makes
them look like a single one to the user

• these systems naturally have more resources (e.g., compute power,
storage) than a single machine

• this makes clusters attractive for developers to simply put any data
there

• BUT: the synchronization of these resources may be expensive

	Using a Database
	Advanced SQL
	Database Clusters

