Query Optimization '16 Exercise Session 2

Bernhard Radke

November 14

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Important

Please literally prepend [qo16] to the subject of emails regarding query optimization exercises!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Homework

 Find all professors whose lectures attended at least two students

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

No Group By in TinyDB

Homework

 Find all professors whose lectures attended at least two students

No Group By in TinyDB

select p.name
from Professoren p, Vorlesungen v,
 Hoeren h1, Hoeren h2
where p.persnr=v.gelesenvon
 and v.vorlnr=h1.vorlnr
 and v.vorlnr=h2.vorlnr
 and h1.matrnr<>h2.matrnr;

Selectivities

• Given the selectivity f_R of a selection $\sigma(R)$

$$|\sigma(R)| = f_R \cdot |R|$$

Selectivities

• Given the selectivity f_R of a selection $\sigma(R)$

 $|\sigma(R)| = f_R \cdot |R|$

• Given the selectivity $f_{1,2}$ of a join $R_1 \bowtie R_2$

$$|R_1 \bowtie R_2| = f_{1,2} \cdot |R_1| \cdot |R_2|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Join Ordering

Basic cost function

$$C_{\text{out}}(T) = \begin{cases} 0 & \text{if } T \text{ is a leaf } R_i \\ |T| + C_{\text{out}}(T_1) + C_{\text{out}}(T_2) & \text{if } T = T_1 \bowtie T_2 \end{cases}$$

Join Ordering

Basic cost function

$$C_{\text{out}}(T) = \begin{cases} 0 & \text{if } T \text{ is a leaf } R_i \\ |T| + C_{\text{out}}(T_1) + C_{\text{out}}(T_2) & \text{if } T = T_1 \bowtie T_2 \end{cases}$$

Find the cheapest alternative

Physical Optimization

Choose the actual implementation of an operator

- choosing indexes or table scan
 - index vs table scan: 10% selectivity threshold

- clustered index
- non-clustered index
- choosing types of joins
 - nested loops join
 - blockwise nested loops join
 - index nested loop join
 - merge join
 - hash join

Physical Optimization

- Courses(ID, Title, Room, Time)
- Exercises(ID,CID,TID,Room)
- Tutors(ID,Name)

select C.Name, T.Name, E.Room
from Courses C, Tutors T, Exercises E
where C.ID = E.CID and T.ID = E.TID
 and C.Room like '02.09.%'
 and E.Room not like '02.09.%';

Physical Optimization

- Courses(ID, Title, Room, Time)
- Exercises(ID,CID,TID,Room)
- Tutors(ID,Name)

```
select C.Name, T.Name, E.Room
from Courses C, Tutors T, Exercises E
where C.ID = E.CID and T.ID = E.TID
    and C.Room like '02.09.%'
    and E.Room not like '02.09.%';
```

- non-clustered index on Courses.Room
- a) clustered indexes on Exercises.TID, Tutors.ID

b) only clustered index on Tutors.ID

Search space is defined by:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Query graph type

Search space is defined by:

Query graph type (chain, star, tree, clique, cycle, grid)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Join tree class

Search space is defined by:

Query graph type (chain, star, tree, clique, cycle, grid)

- Join tree class (left-deep, zig-zag, bushy)
- Cost function class

Search space is defined by:

Query graph type (chain, star, tree, clique, cycle, grid)

- Join tree class (left-deep, zig-zag, bushy)
- Cost function class (symmetry, ASI)

select *
from R1, R2, R3, R4
where R1.a = R2.b
 and R2.c = R3.d
 and R3.e = R4.f

What kind of query graph is it?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

```
select *
from R1, R2, R3, R4
where R1.a = R2.b
    and R2.c = R3.d
    and R3.e = R4.f
```

- What kind of query graph is it?
- ► Let's allow cross-products ⇒ no restrictions on the order in which relations are joined

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

select *
from R1, R2, R3, R4
where R1.a = R2.b
 and R2.c = R3.d
 and R3.e = R4.f

- What kind of query graph is it?
- ► Let's allow cross-products ⇒ no restrictions on the order in which relations are joined

- Count left-deep trees
- Count zig-zag trees
- Count bushy trees

Homework: Task 1 (5 points)

Consider the TPC-H benchmark (http://www.tpc.org/tpch/) and the query:

select *
from lineitem l, orders o, customers c
where l.l_orderkey=o.o_orderkey
and o.o_custkey=c.c_custkey
and c.c_name='Customer#000014993'.

Do canonical translation and logical optimization.

Given |R1|, |R2|, and sizes of domains |R1.x| and |R2.y| and the information if R1.x and/or R2.y are keys of R1 and R2

- ► How can we estimate the selectivity of *σ*_{R1.x=c}, where *c* is a constant?
- How can we estimate the selectivity of $\bowtie_{R1.x=R2.y}$?

NB: we can not assume that we know the size of $\bowtie_{R1.x=R2.y}$ (the other way round, we estimate the join size using the selectivity estimation. But how to estimate the selectivity?)

Homework: Task 3 (10 points)

- Given are two relations R and S, with sizes 1,000 and 100,000 pages respectively.
- Each page has 50 tuples.
- The relations are stored on a disk, the average access time for the disk is 10 ms and the transfer speed is 10,000 pages/sec.
- Question 1: How long does it take to perform the Nested Loops Join of R and S?
- Question 2: How long does it take to perform the Block Nested Loops Join with a block size of 100 pages?
- Assume that CPU costs are negligible and ignore I/O costs for the join output.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの

Master Students?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Master Students?
- Internship @ Google?

- Master Students?
- Internship @ Google?
- Send your CV to Andrey Gubichev (gubichev@google.com)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Info

- Slides and exercises: http://db.in.tum.de/teaching/ws1617/queryopt/
- Send any questions, comments, solutions to exercises etc. to radke@in.tum.de

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exercises due: 9 AM, November 21