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Abstract

This paper describes a �Rank und Select Based Quotient Filter�(RSQF)
and it's implementation. The RSQF consists of two meta-data arrays and
a remainder array and has linear runtime. Moreover, the runtime of insert
and query can be improved by using o�sets and the cache e�ciency can be
increased by splitting the data into blocks. The RSQF is easy to expand to
a Counting-RSQF(CQF) which allows e�cient counting of elements inserted.
The implementations of the RSQF and the CQF are compared to a basic
�Bloom�lter�(BF) and �Counting Bloom�lter�(CBF). The RSQF and CQF
have better runtime compared to the BF and the CBF due to better cache
performance and fewer lookups in the table.

1 Introduction

This paper will show the advantages of a �Rank und Select Based Quotient Fil-
ter�(RSQF) compared to a Bloom�lter(BF). It will show that the RSQF can be
implemented in a cache e�cient way, that makes the RSQF faster than the BF. In
addition, it will show that the RSQF can be expanded to a Counting-RSQF(CQF)
which is more space e�cient than a Counting-BF.
The paper explains the properties and the usage of a Filter, �rst.
The second section describes how a basic RSQF works and how it is represented
in memory.Furthermore, it will turn linear runtime into constant runtime and in-
crease the cache e�ciency. The end of the section describes how e�cient counting
of elements can be added to the RSQF.
The next section explains the implementation of the RSQF and the CQF.
The last section evaluates the RSQF and CQF by comparing them with a BF and
a CBF.

2 Filters in general

This section will explain what �lters are and what they are used for.

2.1 Filter

Filters are data structures comparable to a set. They implement operations such as
�insert� and �query�. Both operations should have runtime of O(log n) or O(1).The
operation �insert� adds elements to the �lter, whereas �query� returns true if an
element is contained in th �lter. If an element x was not inserted into the �lter,
�query� will return false with a probability of (1−δ), where δ is the false-positive-rate
of a �lter, which can be de�ned during creation. The smaller the false-positive-rate
δ, the lager the space consumption of the �lter.
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2.2 Counting �lter

Counting-�lters are data structures similar to �lters. The only di�erence being
�query� returning the number of elements inserted in the Counting-�lter, instead of
true or false. The result is greater than the real count with a portability of (1− δ),
but never less.

2.3 Usage of �lters

Filters are usually used if fast access time and low space consumption are required,
whereas the error δ is negligible for the use-case. For example, a pre-selection of
elements can be done e�ciently. If query returns false, the database does not have
to be searched.

3 Rank and Select Based Quotient �lter

The following will explain how a Rank and Select Based Quotient �lter works.

3.1 Architecture

The following will describe how elements are saved and represented in the �lter, as
well as they are inserted and queried.

3.1.1 Memory-representation

A Rank and Select Based Quotient �lter owns a hash-function h : X → {0, . . . , 2p−
1}, that projects onto a natural number, that consists of p = log2

n
δ bits. h(x)

is divided into h0(x) the quotient and h1(x) the remainder. h0(x) consists of the
upper (p − r) bits and h1(x) of the lower r bits of h(x). (r can be con�gured in
relation to p.)
To save remainders (h1), the RSQF maintains an array of length 2q with r-bit slots.
By inserting an element x the remainder h1(x) will be saved in its homeslot h0(x).
If the slot is already in use by another remainder, the collision will be resolved by
using a variant of linear probing. Next, this variant will be explained.
In order to guarantee that an element is saved in its home slot (if this is possible)
and remainders of elements with the same quotient are stored in consecutive slots,
the �lter needs some meta-data and invariants.

Meta-Data:

• occupied array of length 2p with 1-Bit Slots

• runend array of length 2p with 1-Bit Slots

Invariants:

• occupied[x] = 1 ⇐⇒ ∃y∈S : h0(y) = x ⇐⇒ slot x is occupied

• runends[b]=1 ⇐⇒ slot b contains the last remainder in a run.

• ∀x,y∈S : h0(x) < h0(y) =⇒ h1(x) is stored in an earlier slot than h1(y)

• If h1(x) is stored in slot s, then h0(x) ≤ s and there are no unused slots
between slot h0(x) and slot s, inclusive.

S is a set of elements that have been inserted into the �lter and a slot is unused if
no remainder is stored in it.
These invariants imply that for each set bit in occupied there exits exactly one set
bit in runend. An example can bee seen in �gure 1.
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slot 0 1 2 3 4 5 6 7
occupied 1 1 0 0 1 0 0 1
runend 0 0 0 1 1 1 0 1
remainders h1(a) h1(b) h1(c) h1(d) h1(e) h1(f) 0 h1(g)

Figure 1: Elements a-g have been inserted into this RSQF. h0(a) = h0(c) = h0(b) =
h0(d) = 0 , h0(e) = 1 , h0(f) = 1 , h0(g) = 7

3.1.2 Operations

When inserting or querying an element x, the end of the corresponding run starting
at homeslot h1(x) has to be found. This is equal to �nding the runend-bit associated
with the bit occupied[h1(x)]. This can be done with the operations RANK and
SELECT .

RANK(B, i) =

i∑
j=0

B[j] (Ammount of set bits in B up to postion i)

SELECT (B, i) = (Index of the ith set bit in B)

h1(x), d = RANK(occupied, h1(x)) counts the number of set bits in occupied up
to position h1(x)). s = SELECT (runend, d) �nds runend bit s associated with the
homeslot h1(x).
This can be simpli�ed to the operation rankSelect(x) which �nds the corresponding
runend to a slot if it exists.

rankSelect(h0(x)) = SELECT (runend,RANK(occupied, x))

For all y > z = (Index of the earlier set bit in occupied of slot y ) it applies that:
occupied[y] = 0 =⇒ rankSelect(y) = rankSelect(z)

Insert To insert an element x in the RSQF the following should be done:
s = rankSelect(h0(x)) �nds the associated runend bit s.
If s < h0(x), slot h0(x) is unused and can be used. The following should be set:
occupied[h0(x)]=1, runend[h0(x)]=1 and remainders[h0(x)] = h1(x).
if s ≥ h0(x), the next unused slot n must be found. After that, all remainders and
runend bits between (s + 1) and (n − 1) must be shifted one by one to the slots
between (s + 2) and (n). Finally the following should be set: occupied[h0(x)]=1,
runend[s+1]=1 and remainders[s+1] = h1(x). If occupied of[h0(x)] was already set
before the insert operation, runend[s] should be set to 0.

Query Figure 2 shows the query algorithm returning true if x was inserted in the
RSQF.

3.2 Improvement of runtime by o�sets

Insert and query have a runtime of O(2q), because rankSelect has a runtime of
O(2q). To improve the runtime to O(1) o�sets should be added. An o�set saves the
distance between an occupied bit and its associated runend bit. Furthermore, Oi
is de�ned by rankSelect(i)− i and is only the de�ned if and only if occupied[i]=1,
otherwise the o�set Oi is not well de�ned. An o�set Oj can be computed by a
de�ned o�set Oi if i < j.
To save space, the o�set will only be saved for every 64th slot. To ensure that all
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1 s = rankSelect(h0(x))

2 do{

3 if remainders[s] = h1(x) then

4 return true;

5 s = s-1;

6 }while(s>h0(x) and !runend[s]);

7 return false;

Figure 2: This algorithm checks if the associated remainder in slot ≤ s was found,
until s < Homeslot h0(x) or the next runend bit of another run was found.

1 rankSelect( h0) :

2 i = ((h0 / 64) * 64);//Index of next lower offset

3 if i = h0:

4 return offset[i / 64] + h0

5 else:

6 d = RANK(occupieds, i + 1, h0 - i - 1)

7 if d = 0:

8 return i + offset[i / 64]

9 else:

10 t = SELECT(runends, i + offset[i / 64] +1, d)

11 return i + offset[i / 64] + t +1

Figure 3: This algorithm shoqs the rankselect operation with o�sets.

o�sets are well de�ned, each 64th runend and occupied bit will be set to 1. To
check if an element was already inserted into a 64th slot, the RSQF has to maintain
another array �used� of length 2p

64 with 1-bit slots.

used[i/64(integerdivision)] = 1 ⇐⇒ an element x with h0(x)=i was inserted into the �lter

As a consequence of using o�sets, rankSelect can be rede�ned with a time complex-
ity O(1) as �gure 3 shows. Rank and select are de�ned by:
RANK(B, a, b) = RANK([Ba, Ba+1, . . . , B2p ], b)

SELECT (B, a, b) = SELECT ([Ba, Ba+1, . . . , B2p ], b)

If RANK returns 0, it is obvious that select will return zero and no additional
step between (i + o�set[i / 64]) and (i + o�set[i / 64] +1) has to be added.

Because (h0 - i - 1) is usually small compared to 2p and an associated runend
bit is usually not �far� away this algorithm has time complexity O(1).
These o�sets can be updated whenever an insert operation shifts runend bits.

3.3 Improvement of cache-e�ciency by blocking data

Insert and query are not cache e�cient because there are a couple of di�erent
lookups in the occupied, runend and o�set array. This is not cache friendly because
arrays have a minimum distance of 2p

bytes bytes. To make the RSQF cache e�cient
the occupied, runend and o�set array will be broken down into blocks. Each block
owns 64 entries. The block's structure is described in �gure 4.
This structure is cache e�cient because if an element is inserted, only consecutive
blocks have to be observed (ordered).
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7 1 64 64 r · 64
o�set used occupieds runends remainders

Figure 4: Representation of one block

Count Encoding Rules

1 x none
2 x, x none

For x 6= 0
>2 x, cl−1, . . . , c0, x x > 0

cl−1 < x
∀i<l−1 ci 6= x
∀ci 6= x

For x = 0
3 x, x, x none
>3 x, cl−1, . . . , c0, x, x ∀ci 6= x

∀i<l−1 ci 6= x

Figure 5: Shows encoding of counters for an element x

3.4 Counting

The RSQF counts elements unary. By inserting an encoded counter instead of stor-
ing the same remainder a couple of times, the amount of used slots in the �lter
will be reduced. Counters can be found by storing elements in increasing order. To
store a counter for a remainder x this counter has to violate the increasing order.
That implies the �rst symbol of a counter has to be smaller than x. To mark the
end of a counter the remainder x will be stored again beyond the counter. That
implies that the counter is not allowed to have a symbol that equals to x.
If x = 0, it is not possible to start a counter by using a smaller symbol. A counter
for x = 0 can be identi�ed by two trailing zeros. That means for each run only
two consecutive zeros are allowed, because they mark the end of a counter for the
remainder �0�. This implies zeros can not be used as symbols for encoding counters.
Counters are encoded as shown in �gure 5.

For x 6= 0 and count C ≥ 3:
C can be encoded as C − 3 as cl−1, . . . , c0 in base 2r − 2 where symbols are
1, 2, . . . , x− 1, x+ 1, . . . , 2r − 1 and add a trailing zero if cl >= x.

For x = 0 and count C ≥ 4:
C can be encoded as C − 4 as cl−1, . . . , c0 in base 2r − 1 where symbols are
1, 2, . . . , 2r − 1.

Using counters in a RSQF demands that r ≥ 2 because otherwise the base would
be zero.
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4 Implementation

Hereafter, the implementation of the Rank and Select Based Quotient �lter and the
Counting Rank and Select Based Quotient �lter will be explained.

4.1 Rank and Select Based Quotient Filter

First, the implementation of the Rank and Select Based Quotient �lter will be
explained.

4.1.1 Blocks

The �lter saves the data described as in section 3.3. The block struct is de�ned in
�Block.h�:

1 struct Block{

2 uint8_t offset:7;

3 uint8_t used:1;

4 uint64_t occupied;

5 uint64_t runend;

6 uint64_t remainder[REMAINDER_LEN];

7 }__attribute__((packed));

The �rst 8 bits are divided into 7 o�set bits and 1 used �ag (introduced in 3.2). 7
o�set bits allow a maximum o�set of 127, which is usually enough.
(REMAINDER_LEN = r, can be changed in Properties.h. r can be 2n, n ∈ N ).
The attribute �packed� guarantees that the compiler does not add padding to save
memory.

4.1.2 Rank und Select

Rank is only called on occupied and select only on runend. The rank and select
operation expects a reference to a block and a starting bit in that block to call rank
or select on.

Rank For an e�cient implementation of the operation rank, �__builtin_popcountll�
can be used. It returns the number of set bits in a 64Bit integer. To use this method
64Bit integers have to be extracted out of consecutive blocks. This can be done as
following:

1 uint64_t r = ((blocks[i].occupied << startingBit)

2 |(blocks[i+1].occupied >> (64 - startingBit))

Then rank(r , min(number of bits still to consider, 64 )) gets called until the correct
count of bits to consider is zero. The sum of all rank operations will be returned.
rank(r,n) sets the least signi�cant (64-n) bits to zero and then calls popcountll.

Select Select(B,i) inspects each bit in a loop and returns the index of the ith set
bit.

RankSlect The rankSelect operation was implemented as described in section
3.2. Furthermore, it calculates the bit index inside a block to call rank and select.
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4.1.3 Query

The rankSelect operation was implemented as described in section 3.1.2. It is not
possible to access a remainder directly, it can be extracted out of a block with the
method �getRemainder�.

4.1.4 Insert

The insert operation was implemented as described in section 3.1.2, with slight
changes due to the adding of o�sets and blocking. Each o�set pointing to a set
runend bit between the result of rankSelect and the next free slot will be increased
by one.

4.2 Counting Rank und Select Based Quotient Filter

The CQF implementation encodes the counter as described in section 3.4. The
implementation reverses the encoding of the counter.

4.2.1 Changes in Query

The operation query tries to �nd the correct remainder while skipping counters of
di�erent remainders. If the correct remainder was found, it decodes the correspond-
ing counter and returns the count.

4.2.2 Changes in Insert

Insert tries to �nd a counter, for an element to insert, in the same way that query
does.
If the element does not exist, the element will be stored at the correct position, so
that all remainders in one run are sorted in descending order.
If the element exists, the counter will be incremented. This may need one more
unused slot which can be gathered by shifting runends and remainders.

5 Evaluation

All testes have been executed on a machine with Intel-Core i7 4820k processor and
16GB-DDR3-RAM.
A �lter is always con�gured with the given false-positive-rate δ and the number of
elements n to insert.

5.1 Rank and Select Based Quotient Filter

The test data is created randomly (by c++ �rand� function) ). An element consists
of a random long with the identity function as hash function. It is very likely that
test data of n elements is distinct.

5.1.1 Comparison of RSQF variants

Table 1 shows speed tests for the three variants of the RSQF.
The RSQF with no blocking (nb) is the slowest because of linear runtime of the
rankSelect operation. The speedup by factor of 3 from nb to the normal RSQF
is caused by the cache e�cient implementation and the overhead of �std::vector�
which was used in the nb implementation .
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Con�guration Operations RSQF no RSQF nb RSQF

δ = 0.001 Random insert 20s <5ms <2ms
n = 10000 Query on inserted elements 20s <5ms <2ms

Random query(100% load) 0.1s <1ms <0.5ms
δ = 0.0001 Random insert / 1.4s 3.7s
n = 10000000 Query on inserted elements / 1.8s 5.3s

Random query(100% load) / 0.7s 0.6s
δ = 0.001 Random insert / 43s 15s
n = 100000000 Query on inserted elements / 52s 17s

Random query(100% load) / 8.2s 7.3s

Table 1: Speedtest for RSQF with no o�sets (no), the RSQF with no blocking (nb)
and the RSQF with o�sets and blocking

Con�guration Operations(in million per second) BF RSQF

(r=4)
δ = 0.01 Random insert 2.9 6.0
n = 10000000 Query on inserted elements 3.2 7.6

Random query(100% load) 12.7 12.0

(r=8)
δ = 0.00001 Random insert 1.6 8.8
n = 10000000 Query on inserted elements 1.8 6.6

Random query(100% load) 12.26 25.7

(r=16)
δ = 0.000001 Random insert 1.1 4.7
n = 100000000 Query on inserted elements 1.3 5.0

Random query(100% load) 10.0 10.4

Table 2: This table compares the BF and the RSQF for di�erent δ and n

5.1.2 Comparison with Bloom�lter

Runtime The runtime grows for larger remainders because longer remainders
have to be compared or shifted. The RSQF's increases with lower δ (because of
less collisions) whereas the BF gets slower (because more hash functions are used).
Random queries are fast in BF because only a few hash functions are considered.
This can be observed in table 2.
In addition, the BF is capable of performing inserts and lookups of inserted elements
in constant time (independent from the load factor). Random lookups in the BF
get worse with increasing load factors because more slots of di�erent hash-functions
must be checked.
Random inserts in the RSQF need more time with increasing load-factor, due to
the time consuming resolving of collisions. Random lookups require more time
because a whole run has to be checked before returning false if possible. This can
be observed in �gure 6.
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Figure 6: Graphs showing runtime for di�erent load factors (n = 100000000, δ =
0.001)
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Figure 7: Graphs showing the relationship between r , n and δ

Operations(in million per second) CBF CQF(r=8)
Random insert 7.9 13.5
Random lookup 7.7 9.6

Table 3: Table showing average runtime of 1 000 000 000 operations each for a
CQF/ CBF con�gured with δ = 0.0001 ,n = 2000
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Space-analysis The needed space can be calculated (in Bit):

bf =
−n ln δ
ln 2 ln 2

rsqf = 2log2(
n
δ )−r(2 + r +

8

64
)

Where 2log2(
n
δ−r) is the number of slots. In the equation the 2 stands for the oc-

cupied and runend bit vector, the r for remainders and 8
64 for the o�sets. Figure 7

shows the relations between r , n and δ.

The larger r the lower the space consumption. This implies r is the factor to choose
between runtime and memory usage. The lower r, the better the runtime and the
more memory is used. The larger r, the better the memory usage and the larger
the runtime.

5.2 Counting Rank und Select Based Quotient Filter

The test data is created as in section 5.1. n will be amount of distinct elements
inserted.

Runtime For distinct insertion sets the runtime of the CQF and the RSQF does
not vary for any operation because no counters are needed. For distinct sets the
CBF performs worse than the BF .
Performance of CQF and CBF can bee seen in table 3.
If n grows, the performance of the CQF will stay the same, while the one of the
CBF will get worse, because more slots have to considered every insert or lookup.

Space-analysis While the CQF does not need more space than the RSQF, the
CBF needs c (counter size in bits) times more space than the BF. The space con-
sumption of the CBF gets even worse while the memory usage of the CQF stays the
same (compared to the non counting versions). c should be 16, 32 or 64 depending
on the amount of elements to insert.

6 Conclusion

It was shown that a RSQF can be implemented cache e�cient with runtime O(1).
The RSQF was easy to expand to a CQF that never uses more slots than the RSQF
due to e�cient counter encoding. The RSQF/CQF can have better runtime and
memory usage than a BF/CBF. The relationship of runtime and memory usage of
the RSQF/CQF can be con�gured by setting the remainder length to the correct
value.

Rank and Select Based Quotient �lters are good alternatives to Bloom�lters be-
cause of better runtime up to a factor of 4. Only random lookups in empty �lters
are slow, but this is a scenario that usually does not happen.
This implies running Rank and Select Based Quotient �lters is always better than
running Blomm�lters.
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