
Implementierungstechniken für
Hauptspeicherdatenbanksysteme:

The Bw-Tree
Josef Schmeißer

January 9, 2018

Abstract
The Bw-Tree as presented by Levandoski et al. was designed to accom-

modate the emergence of new hardware, and especially the rising number of
processing cores available in modern CPU architectures. This paper provides
a detailed description of the structure and algorithms of this particular tree.
Another aspect of this paper concerns a performance evaluation of the Bw-Tree
in comparison to B+-Trees harnessing different locking protocols. Substantial
improvements in regard to the overall performance of the B+-Tree are to be
expected by the utilization of optimistic locking techniques.

1 Introduction
Efficient synchronization techniques in the context of data structures are a funda-
mental aspect of achieving satisfactory scalability on modern hardware. Database
index structures like B-Trees are one example where the choice of an insufficient
approach might lead to an overall performance degradation. It is therefore not
surprising that this field is still subject of current research.

B-Trees are traditionally often synchronized by utilizing the so called lock cou-
pling protocol, where each page is protected by its own lock. Operations like the
insertion of a new value acquire the lock on a node and keep it until it is no longer
required. This is the case when the operation on the B-Tree can be sure that it
will not access a certain node again. Locking goes hand in hand, this means that
an operation will acquire the lock of a child node before it releases the lock of its
parent node. This scheme is repeated until the desired leaf node is reached.

The lock coupling approach might seem sufficient at first glance. However, we
will show that plain vanilla application of this protocol does not result in acceptable
scalability. This paper on the other hand presents a different approach introduced
by Levandoski et al. based on lock free techniques [1]. In fact, the presented tree
does not utilize any locks at all and does therefore belong to the category of lock-free
[6] data structures.

2 Related Work
Another approach was described by Lehman and Yao, the Blink-Tree. This partic-
ular tree utilizes a more relaxed locking scheme, where no read-locks are required.
The Blink-Tree extends each node by a side link to its next sibling in order to
maintain structural integrity. These side links will be used to redirect concurrent
operations during an unfinished split. Locks are only acquired for structural op-
erations like splits. Thereby, the Blink-Tree only keeps a maximum of three locks

1



simultaneously [3]. The Bw-Tree borrows this idea of side links and utilizes the
concept in a similar manner within the context of a lock-free data structure [1].

With optimistic lock coupling Leis et al. presented a general approach to improve
scalability of lock coupling based data structures. This approach is based on the
assumption that concurrent modifications are rare. Versioned locks are used to
detect concurrent modifications and restart conflicting operations if necessary. This
approach significantly reduces the number of writes to shared memory regions [4].
By applying this protocol to the Adaptive Radix Tree (ART) Leis et al. showed
that this approach may lead to dramatic performance improvements.

3 Fundamentals
3.1 Atomic Primitives
Instead of locks the Bw-Tree makes heavy use of the so called compare-and-swap
(CAS) instruction, which atomically replaces a memory value with a new one if the
old value matches the expected value. On x86 the CAS instruction is implemented
as CMPXCHG in conjunction with the LOCK prefix.

bool compare_and_swap(int * ptr, int & expected, int desired) {
int oldValue;
atomic {

oldValue = *ptr;
if (oldValue == expected) {

*ptr = desired;
return true;

}
}
expected = oldValue;
return false;

}

Listing 1: Semantics of the CAS instruction.

The semantics of CAS is shown by the pseudo-code in Listing 1. Notice, the
atomic block which indicates that the entire block has to be performed atomically.
It should be mentioned that such a feature is currently not part of C++17. There
are, however, efforts to add a similar feature to the language standard [2].

4 Architecture
The Bw-Tree is a lock free variant of the B+-Tree, payload is hence only stored on
leaf nodes. It is mainly based on one important key idea: updates are performed
in a lock-free manner through delta records. Such a delta record is considered to
be immutable once it is part of the tree. We never alter the existing state, every
change to the tree is formulated as delta, and will be prepended to a chain of
existing records [1]. The base page is also part of this chain. We will refer to the
whole record chain (which includes the base page) simply as page or sometimes as
logical page. Structural modifications like splits can be formulated with multiple
delta updates. This will be described in more detail in the following sections.

Another key idea is the use of a so called Mapping Table. This table can be
implemented as an array of pointers to records. We will refer to an index of this

2



table as Page Identifier or simply as PID. Hence, this table represents a mapping
function of the form PID → ptr. Changes to this table are usually performed by an
atomic CAS operation. Conflicting operations to a single page are therefore easy
to detect by the result of the CAS [1]. We usually repeat a failed operation simply
by restarting it if the CAS fails.

4.1 Leaf Level Modifications
Most of the time we perform update operations on a leaf page. There we use
three types of delta records: (1) insert, which represents a new key-value tuple;
(2) modify, which represents a modification to an existing entry; and (3) delete,
which represents the logical deletion of an existing entry [1]. These updates may,
however, lead to more complex structural modifications like a split, which will be
described subsection 4.3.

Searching a key on a leaf page is more involved than in a normal B+-Tree. We
start with the first delta record (if present) and traverse the delta chain until we
find a delta which contains the key, or until we have reached the base page. The
search succeeds if the key is contained in either an insert or update delta and fails
if it is part a delete delta. Otherwise, we perform a binary search on the base page
in the standard B+-Tree manner [1].

4.2 Page Consolidation
Constantly appending deltas to logical pages leads to ever-expanding chains, which
in turn leads to poor search performance [1]. We thus consolidate pages from time
to time, once a certain chain length threshold is reached. A page is consolidated
by creating a copy of the existing base page, and applying all delta changes to this
copy. Afterwards, the consolidated page will be installed with a CAS instruction.
The memory of the old logical page will be reclaimed once the page is no longer
used.

4.3 Node Split
Splitting a node requires additional effort within the context of a Bw-Tree. The
split logic basically consists of two parts: (1) splitting the corresponding page and
(2) altering the parent node. Both parts have to be performed atomically [1].

struct LeafSplitDeltaRecord : public Record {
const Key separatorKey;
const pid_ty upper;

};

Listing 2: LeafSplitDeltaRecord holds all attributes associated with a certain
page split. A similar record also exists for inner nodes.

In order to split page P we have to determine an appropriate separator key ks.
This key is used to consolidate every entry with key ki which satisfies ks > ki into a
new page Pr. The newly created page Pr is then installed into the mapping table.
Note that we do not require an atomic CAS operation to accomplish this since only
the thread performing the split is aware of Pr at this time [1]. Pr and ks are then
collected in an instance of LeafSplitDeltaRecord, which is shown in Listing 2.
We will then try to install the newly created record into the mapping table via a
CAS instruction. If the split fails at this point, we have to deallocate the memory

3



previously allocated for Pr and invalidate the according PID. Another thread or a
future operation may initiate a new attempt to split P . If, however, installing this
record succeeds, the first part of the split is considered to be complete.

It is important to note that the separator key ks stored in the separatorKey
field also acts as an invalidation hint. Every entry with key ki within P , for which
ks > ki holds, will from now on be considered as obsolete since it now resides on
page Pr. A subsequent consolidation process will therefore only consolidate entries
which satisfy ki ≤ ks[1]. The upper field on the other hand contains the side
pointer (which is a PID) to Pr. This is necessary to ensure structural integrity
during complex operations (like a split). To see this, consider a situation where
only the first part of a split is complete. Since we did not yet install our separator
ks in the parent, a tree traversal for a key kt with kt > ks will initially end up
on page P . However, it must yield Pr as result in order to retain our invariant.
This will be achieved by following the side link to Pr within the split record while
processing the record chain of P .

struct InnerIndexEntryRecord : public Record {
const pid_ty child = invalidPid;
// a record of this type represents the range: (lowKey, highKey]
const Key lowKey;
const Key highKey;
// or the range (lowKey, ∞) if 'hasUpperBound' is not set
const bool hasUpperBound;

};

Listing 3: InnerIndexEntryRecord extends an inner node by one entry.

In the second part of the split we update the parent node Pp of P . Thus, we
create an instance of InnerIndexEntryRecord, which is shown in Listing 3. This
struct holds the child PID namely the PID of P together with two key entries.
These keys represent the responsibility domain of P , hence lowKey will be set to ks

whereas highKey will be set to the following separator key on Pp if such a key exists,
otherwise lowKey will be left empty. This is the case when P is the rightmost child
of Pp, this scenario will be indicated by setting hasUpperBound to false. Note that
the domain of P is unlimited in regard to the upper limit in the latter case. After
the initialization of these members we will attempt to install the resulting record
by an atomic CAS operation as usual. This, however, may fail. Recovering from
this situation is more involved than usual.

Let us first consider how Pp is determined in the first place. During the initial
tree traversal we remember the full path of PIDs which brought us to P . The
direct ancestor Pp of P is therefore also part of this path. However, occasionally it
may occur that the parent Pp has been logically deleted in the meantime. We are
able to detect this situation by the presence of a remove node delta record indicating
that Pp is no longer part of the tree structure. In this case we have to determine
the new parent of P by re-traversing the tree.

Pp’s size might exceed the page size limit after successfully installing the newly
created index entry record instance. If this is the case, we have to recursively
repeat the split process and apply it to Pp as well. Occasionally it may happen that
a recursive split propagates up to the root node. In this case we have to increase the
tree depth by creating a new root node. We then try to install the newly created
root node with an atomic CAS operation and repeat the previous steps if the atomic
CAS fails.

4



4.4 Node Merge
Once the logical size of page is below a certain threshold, a node merge is initiated.
However, we need even more atomic operations than in the split case to perform
the merge operation in a lock-free manner [1].

We first mark a page Pr as obsolete by installing a remove node delta record [1].
The only purpose of this record is to act as a marker, it has no further attributes.
This ensures that other threads will not attempt to access Pr. The remove node delta
record indicates that the left sibling Pl of Pr is now responsible for the combined
domain of both nodes, it thus also acts as redirection to the left sibling. A thread
encountering such a record on page Pr has to perform its operation on Pl instead.

struct LeafNodeMergeRecord : public Record {
const Key separatorKey;
const Record * rightPage;

};

Listing 4: LeafNodeMergeRecord holds all attributes associated with a certain
merge. A similar record also exists for inner nodes.

The second part deals with the actual merge of Pl and Pr. We perform the
merge by posting a node merge delta record such as shown in Listing 4 to Pl. Note
that we use a physical pointer as reference to Pr in this case. The rightPage field
points to the first record after the remove node delta record on Pr. This indicates
that the contents of Pr are to be included in Pl [1].

Including the separator key ks in the field separatorKey as shown in Listing 4
serves an important purpose when searching Pl for keys contained in Pr’s domain.
A thread searching Pl will be either directed to Pl’s original state or to the absorbed
contents of Pr (these are still accessible through the rightPage pointer) [1]. The
tree like structure of this record chain will be resolved during page consolidation.
Consolidation on Pl is triggered as usual when the system notices that the chain
length has grown beyond a certain threshold.

In the third and final part of the merge we have to alter the parent node Pp of
Pr by removing the corresponding index entry, which still points to Pr. The index
entry will be logically removed by posting an index term delete delta record. This
record contains the information that Pr is from now on considered to be deleted
and the new key domain of Pl. We specify the new domain as union of Pl’s and Pr’s
domain by choosing the low key of Pl and the high key of Pr as key range within
the index term delete delta [1]. Subsequent searches for a key in Pr’s domain are
thus redirected to Pl.

It may be necessary to recursively merge the parent node Pp as well. The applied
logic is similar to the recursive split, thus the merge operation may also propagate
up to the root node.

5 Alternative Approach
As already mentioned, the optimistic lock coupling protocol can be used as an alter-
native to the normal lock coupling protocol. Converting a B+-Tree implementation
based on lock coupling to the optimistic lock coupling protocol proved to be fairly
simple, only minor adoptions were necessary. These adaptations were limited to
additional version verifications as described by Leis et al. [4]. For example, one has
to ensure that a child pointer is still valid during a tree traversal. Furthermore, it is

5



necessary to ensure that every optimistically operating algorithm terminates, since
a concurrent operation on the same node may perform arbitrary changes.

6 Performance Evaluation
The subsequent experiments were conducted on the following test system: Intel®
Core™ i9-7900X with a total amount 10 processing cores hyper-threaded to 20
logical cores.

0

1

2

3

4

2 4 8 16 32
Delta Chain Limit

M
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

Figure 1: Performance effect of varying chain length limits.

The effect of varying delta chain length thresholds is depicted in Figure 1. Our
synthetic workload confirmed the results shown by Levandoski et al. [1]. Shorter
delta chain length thresholds lead to more frequent page consolidations, which in
turn results in a performance degradation; whereas, on the other hand, larger thresh-
olds also lead to a significant performance decline once a certain limit is transcended.
The optimal choice for this threshold depends on the workload as shown by Levan-
doski et al. [1]. In our case a limit of four seems to be the optimal choice for the
threshold.

6



0

1

2

3

4

0 5 10 15 20
Threads

M
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

approach
Bw−Tree
LockCoupling
nosync

(a) Insert Workload

0

20

40

60

0 5 10 15 20
Threads

M
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

approach
Bw−Tree
LockCoupling
nosync

(b) Lookup Workload

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20
Threads

M
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

approach
Bw−Tree
LockCoupling
nosync

(c) Mixed Workload

Figure 2: Performance evaluation in comparison to Lock Coupling.

Levandoski et al. compare their implementation against BerkeleyDB’s B-Tree
in their analysis [1]. This particular B-Tree implementation utilizes the lock cou-
pling synchronization protocol [5]. Their analysis yielded a significant performance
increase in favor of the Bw-Tree. Our implementation was able to confirm this
advantage over the lock coupling based approach as shown in Figure 2.

7



0

3

6

9

0 5 10 15 20
Threads

M
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

approach
Bw−Tree
LockCoupling
olcEpoch

(a) Insert Workload

0

20

40

60

0 5 10 15 20
Threads

M
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

approach
Bw−Tree
LockCoupling
olcEpoch

(b) Lookup Workload

0

20

40

0 5 10 15 20
Threads

M
 O

pe
ra

tio
ns

 p
er

 s
ec

on
d

approach
Bw−Tree
LockCoupling
olcEpoch

(c) Mixed Workload

Figure 3: Performance evaluation in comparison to Optimistic Lock Coupling.

However, the approach described in section 5 yields quite a different picture as
shown in Figure 3. The optimistic lock coupling (olc) based approach in conjunction
with an epoch-based memory reclamation scheme as described by Fraser [7] results
in far better scalability throughout the entire collection of conducted benchmarks.

7 Conclusion
When considering scalability, the Bw-Tree is definitely an improvement over the
traditional lock coupling based approach. However, more sophisticated locking pro-
tocols such as optimistic lock coupling yield far better results in terms of scalability.
Another disadvantage of the Bw-Tree is the rather poor single-threaded performance
revealed by the previously shown experiments.

References
[1] Justin J. Levandoski, David B. Lomet and Sudipta Sengupta. The Bw-Tree:

A B-tree for New Hardware Platforms. IEEE 29th International Conference on
Data Engineering (ICDE), 2013.

[2] ISO/IEC JTC 1/SC 22/WG 21. Technical Specification for C++ Extensions for
Transactional Memory. ISO, 2015.

8



[3] Philip L. Lehman and S. Bing Yao. Efficient Locking for Concurrent Operations
on B-Trees. ACM Transactions on Database Systems, Vol. 6, No. 4, December
1981, Pages 650-670.

[4] Viktor Leis, Florian Scheibner, Alfons Kemper and Thomas Neumann. The ART
of Practical Synchronization. Twelfth International Workshop on Data Manage-
ment on New Hardware, 2016.

[5] Margo Seltzer and Keith Bostic. Berkeley DB.
http://www.aosabook.org/en/bdb.html, accessed: 28.12.2017.

[6] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. Java Concurrency in Practice. Addison-Wesley, 2005.

[7] Keir Fraser. Technical Report: Practical lock-freedom. University of Cambridge,
2004.

9


	Introduction
	Related Work
	Fundamentals
	Atomic Primitives

	Architecture
	Leaf Level Modifications
	Page Consolidation
	Node Split
	Node Merge

	Alternative Approach
	Performance Evaluation
	Conclusion

