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Abstract

Three of the most widely used main memory database system layouts
available today are row store, column store and hybrid store. In this paper,
their similarities and differences regarding their layout and the way each of
them handle data are presented based on available literature and two simple
implementations. The results of the implementations, not always matching
the theoretical findings, present a simple understanding of how different ap-
proaches and additional techniques may change the results drastically.

1 Introduction

A Main Memory Database System (MMDB) is a database management system
(DBMS) that stores the entire database content in the physical main memory, op-
posite to conventional DBMS, which are designed for the use of disk storage [1, 11].
The main advantage of the MMDB over normal DBMS is a significantly lower I/O
cost, since the data lives permanently in the memory, which translates to very
high-speed access [1].

Row store, column store and hybrid store are kinds of database layouts. In my
paper I will focus on the main memory versions of them. In the conventional row
store each entity is assigned a dedicated row [1, 10]. Column store stores tables of
tuple attributes contiguously [2, 7]. Hybrid store is a combination of both of these
layouts, storing insert and update intense data in row stores and analytical and
historical data in column stores [1, 12].

In the upcoming sections, I’ll introduce three different storing techniques, namely
row-store, column-store and hybrid-store and compare the advantages and disadvan-
tages of each, their main purpose and where they find use based on the requirements
of different services. I then introduce a simple C++ implementation of each type of
layout and show how the advantages of one over the other in terms of time needed
to compute specific operations over different table sizes.

2 Existing storing Methods for In-Memory Databases

In this section, I will discuss more in detail the characteristics, advantages and
disadvantages of the three different layouts, namely row store, column store and
hybrid and provide the most common use cases for each.

2.1 Row Store
Row oriented database systems (also known as row stores) represent the traditional
way the data is physically stored. As the name suggests, the database stores all
the attributes values of each tuple subsequently. Hence, when one needs to access
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attributes of a tuple, regardless of how many are relevant to the operation, each
tuple attribute will still be accessed. The advantages of this kind of storage can
be seen when multiple attributes of a single row need to be accessed. When, in
the opposite scenario, only single attribute values need to be accessed, this storage
layout can be at a disadvantage because of the costly unnecessary usage of cache
storage [1, 10]. In row store, each tuple attribute will be transferred to the Level2
and Level1 caches, alongside the necessary value. The summation of the values in
a single column of a table is considered:

select sum(A)
from R

The layout of the stored attributes in the main memory alongside with the trans-
fers from the main memory to the cache lines needed for the operations considered
are displayed in Figure 1.
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Figure 1: Logical Row Store. Source: own representation based on [1]

Using row store and considering the example of the sum of the first column of
the table, it is clear that this kind of storage transfers roughly four times more
information than the relevant values needed for the operation. In this example the
main memory is accessed 9 times using row store. This is only a simplified example
of memory access and cache sizes. In reality, cache lines usually have a size of 64 or
128 Bytes [1].

Since row store handles data “horizontally” (accessing rows of a table resembles
reading the table horizontally), they are more suited for updates and insertions.
In row stores, the whole row is written in a single operation [10]. This makes row
stores more preferable for OLTP-oriented databases, since OLTP workloads tend to
be more loaded with interactive transactions, like retrieving every attribute from a
single entity or adding entities to the table [6].

Some of the most well-known databases that store the data using this technique
are Oracle, IBM DB2, Microsoft SQL Server and MySQL.

2.2 Column Store
Column-oriented database systems (column-stores) have only recently gathered the
attention of many database architects even though their origins can be dated back to

2



the 1970s and their advantages over typical relational databases being documented
since the late 1980s [7].

A column-store database layout differs from the traditional row-store in the very
core of how data is stored in the memory. In a column-store, attributes depicted
by column are stored contiguously as depicted in Figure 2 [7].

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Row 1

Row 2

Row 3

Row 4

Row 5

Figure 2: Structure of a Column oriented database. Source: own representation
based on [7]

The same example used in row store, where the summation of one column is
required, can be implemented here as well. Using the same values as in the first
example, but this time “splitting” the table into smaller columnar tables for each
attribute, it is clear that these columns are stored contiguously in the main memory.
Furthermore, given the same query and the same cache line size as before, Figure 3
shows how these values are accessed and copied into the Level2 and Level1 caches.
The cache lines in this scenario are way less overloaded with redundant information
as in the row store layout. It can also be observed that this time the main memory is
only accessed two times for the cache line transfers compared to nine costly transfers
in row store [1]. The physical storage of a column store depends on the intended
use of the database.
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Figure 3: Logical Column Store. Source: own representation based on [1]

Column stores have lately been subject to a vast interest in the design of read-
optimized database systems. While, as mentioned above, row stores seem to be
better suited at write-oriented cases in which whole tuples are accessed, column
stores have shown to be more efficient at handling read-oriented cases when specific
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subsets of a table containing a large number of tuples are targeted [6]. Recent re-
search has proven that column stores perform an order of magnitude better than row
stores on analytical workloads such as those in data warehouses, decision support
and business intelligence applications [2, 4, 7]. Because of this significant advantage,
column stores have been successfully implemented in OLAP-oriented databases [9].
However while column store is more performant regarding reading operations, it
suffers in performance in writing ones. The reason write operations and tuple con-
struction operations are problematic is that each entity has to be split into each of
its attributes and consequently they have to be written separately [3]. The differ-
ence in how the data is accessed for different processes depending on the layout of
the database can be seen in Figure 4.
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Figure 4: Memory alignment and resulting access patterns for row and column
stores. Source: own representation based on [8]

A small summary of the advantages and disadvantages of column store over row
store and vice versa can be seen in Figure 5.

Criterion Row Store Column Store

Data Loading Slower Rapid

Query E�ciency Not much optimized Optimized

Frequent transac�ons Very effective Not much support

Compression Not efficient Very much efficient

Analy�c performance Not suitable Very effective

Figure 5: Comparative analysis of row and column store. Source: own representa-
tion based on [7]

Some of the most known commercially available column store databases are
MonetDB, C-Store, Sybase IQ the SAP BI accelerator, and Kickfire.

2.3 Hybrid Store
Many businesses require that their databases are able to handle OLTP transactions
and OLAP processes without prioritizing one over the other. In such databases it
can be difficult to choose only one layout, since each stores data differently and
profits from different advantages when compared to the other. With this challenge
in mind, database architects had to develop a new type of layout. This marked the
inception of the idea of hybrid store [1].

In hybrid store, a combination of both techniques discussed above is used. Some
of the attributes are grouped together to form a “mini-table” which will act as the
row-store component. The remaining attributes are stored individually in single
columnar tables and they act as the column-store component. Since the properties
the layouts bring are almost mutually exclusive, the most meaningful way of sepa-
rating the attributes is by its use case [12]. If it is already known which components
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of the entity will be needed for transaction processing, where the whole group of
attributes for the operation is needed or where additional data is to be written or
new data is to be entered on these attributes, the row oriented database would be
preferred [6]. Using the same approach, it is clear that the attributes which will
mostly be used for analytical processes would need to be stored in the column store
component [5].

3 Implementation: Row-Store vs. Column-Store
vs. Hybrid-Store

Based on the various database storage technologies collected through the previously
conducted literature review, a simple simulation showing these approaches would
help further understand their differences. I implemented such an example using
C++. More importantly, I used only the basic libraries provided by the C++ 98
iteration of the language to ensure getting closer to an actual low-level implemen-
tation of a database.

3.1 Initial Effort
Since C++ is an object-oriented language, the initial approach consisted in the
usage of such objects as storage containers for the columns or rows. To identify
the appropriate object types required for a similar storage structure to that of a
database, it was also necessary to look at the memory allocation C++ internally
uses to store these objects. The basic C++ objects “vector” (an expandable array
of same-type objects) and “struct” (custom-defined structure consisting of nested
objects) were ideal for this simple implementation because C++ stores these objects
sequentially in memory and avoids the usage of pointers that may jump to different
memory locations.

The sample table used for the simulation was provided in the form of a comma-
separated values file and consisted of three columns filled with generated data con-
taining stock purchase transactions: Name, Quantity, Price (one file line matching
one table row). These entries are not unique, but single transactions that a per-
son, stored in the Name column, may have conducted, extended by the Quantity of
the stocks purchased and the Price per stock. To accommodate these structures, I
created three classes with the following pseudo-description:

1. RowStore:

(a) One row is contained in a struct Row [Name, Quantity, Price] object

(b) The table consists of a vector<Row> object containing such rows

2. ColumnStore:

(a) Each column in contained in a vector<> object depending on the col-
umn type

(b) The table consists of a struct Table [vector(Name), vector(Quantity),
vector(Price)]

3. HybridStore:

(a) One partial row is contained in a struct MiniRow [Quantity, Price]
object
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(b) The table consists of a vector(Name) object for the first column, and
a vector<MiniRow> for the second “column” containing (Quantity,
Price) per entry

These objects would enable C++ to allocate the data internally the same way as
in the definition of each approach from the previous chapter, allowing the execution
of further operations over them by accessing them similarly to the various database
stores. Thus, to complete the implementation of this approach, the operating func-
tions should also be included. As such, for each of these classes I implemented func-
tions simulating: inserting a row, inserting multiple rows, selecting rows, and three
aggregation operations: SUM(Quantity), AVG(Price), and SUM(Quantity *
Price).

For initially preparing the input data before loading them into these objects,
I first implemented a general function to read the CSV file and store them in a
generic vector<vector<string>> object without specific datatypes, similar to
a staging table in a database.

3.2 Evaluation
The implementation described above would theoretically access the data in three
different ways to perform the required insertions and aggregations. Measuring the
times elapsed for each of these operations would result in a table of these values,
allowing us to compare the differences and notice the eventual advantages.

All the results depicted on this paper were conducted on a Lenovo ThinkPad
machine with a Intel-Core i7-4500U processor with two cores at a frequency of 1.80
GHz and a single 8 GB DDR3 RAM, running a 64-bit version of Microsoft Windows
10 Pro.

However, once the CSV file is loaded, C++ stores these objects in-memory to
be used during runtime. Consequently, since Random Access Memory (RAM) is
considerably faster than massive storage alternatives, this would cause the execution
of this approach to require a long time for the initial loading and allocation of the
data into the objects, but a much shorter time to execute the aggregations. Testing
the operations with an initial dataset of 1000 rows was almost unmeasurable in
milliseconds.

Increasing the dataset size to 1 million, 10 million, and 20 million would simply
result in a longer inserting time but still very quick aggregations. In order to achieve
a balance between these phases, I tried simulating a slower system through the use
of a Virtual Machine (VM). In this configuration, I limited the total RAM available
at 3 GB and the number of used CPU cores to a single one, which I limited further
down to ca. 30% of its capacity. Although the CPU specifications differ depending
on the model, this serves simply to show the decreased capacity without going into
further technical detail. Executing the project on this VM resulted in a longer
loading time but also in a considerably longer aggregation time as expected.

# Entries 1 Million 10 Million

Store Type
Row 

Store

Column 

Store

Hybrid 

Store
Row Store

Column 

Store

Hybrid 

Store

INSERT 91929 101312 106577 1467790 1437250 1427344

SELECT 3117 3444 4084 9261 10598 7079

SUM(Quantity) 212 718 204 612 528 626

AVG(Price) 204 215 205 1250 1032 1244

SUM(Quan�ty*Price) 223 226 227 2386 1983 1133

Figure 6: Execution times for 1 million and 10 million entries (in milliseconds).
Source: own representation.

Figure 6 shows two runs using two datasets of respectively 1 million and 10
million entries. Since new transactional data is normally delivered in rows, inde-
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pendently of the way it is stored on the database, the results show that an INSERT
operation of these rows happens faster if they are stored in a row store, where the
information remains together as is. A SELECT operation on all the available data
is also faster on a row store since the table is recreated easily by sequentially reading
the stored rows and outputting them one after the other.

On the other hand, although the environment was slowed-down artificially, the
aggregation operations resulted in highly varying measurements even for repeated
executions of the same dataset. Additionally, the comparison of these times with
each other did not always provide results as expected. It is easily noticeable on
the left that all three operations were faster on the row store object, which should
not be the case. Although the simulated store objects should be stored sequentially
in memory by C++ as expected, there may be multiple other environment factors
causing these outcomes, including the internal behavior of the physical memory,
operating system, and C++ among others when accessing the data. Even the
INSERT and SELECT operations may sporadically return unexpected values,
especially in a faster system because of such external factors.

This approach still provides a good logical simulation of the different storage
structures used in databases because it creates an analogy for the underlying mem-
ory allocation of the data through the use of objects matching this sequential struc-
ture. Regarding the aggregation operations however an alternative approach was
necessary, as will be described in the next section.

3.3 Approach
Since the environment factors cannot be completely avoided in such a simple simu-
lation project, I tried to minimize their influence, especially the access method by
which the data is retrieved in order to perform the aggregations. To achieve this,
I implemented a completely different approach which gets already stored data and
deals only with reading and aggregating operations. The input data in this case
consist of one CSV file for each store mode: row, column, and hybrid (Figure 7).

Row Store

Cruz,700,22.00

Rina,77,174.04

Caryn,62,667.50

...

Name   Quan�ty   Price

Column Store

Cruz,Rina,Caryn,...

700,77,62,...

22,174.04,667.5,...

Name

Quan�ty

Price

Hybrid Store

Cruz,Rina,Caryn,...

700|22,77|174.04,62|667.5,...

Name

Quan�ty   Price

Figure 7: : Input CSV file structure for the second approach. Source: own repre-
sentation

The data in each of these files is already prepared to be stored as would be
expected for each store in sequence. As such, the C++ objects are not used in this
case to simulate their structures. Different separators are used in these files to help
the functions identify each value: “,”, “|”, but also the special new line character
“\n”, which is from the C++ stream reader perspective just another character to
recognize. Thus, although the CSV files are visually shown as having multiple rows
on a text editor, they are in fact a single sequence of continuous characters, just as
they would be stored in memory. These CSV files serve as the “storage” unit of the
database, and provide two advantages:

1. Accessing the data is slowed down when performing aggregations because
this way the content is not loaded in-memory but continuously from a slower
storage.
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2. The environment factors and further internal optimizations when dealing with
known objects as in the previous case of C++ structures are minimized be-
cause the structure of the data that will be read is unknown, and thus no
internal optimization can be made in-between.

Since the input data is already delivered in the required form for each store
method, there is no INSERT operation included in this approach. On the other
hand, I implemented the following operations: SELECT * (with a filter on Name),
COUNT(*), SUM(Quantity), AVG(Price), SUM(Quantity*Price). Each
of these operations is computed from a separate function for each store type. These
functions operate on a lower level technical approach, because the raw data coming
from the CSV files needs to be parsed manually and in a different way for each
respective store type. The previously described separators are identified in order
to separate the values and extract the necessary information for performing the
aggregation. This way the reading phase of the operation approximates a real-life
database implementation better.

3.4 Results
The first thing to notice from the results of the second approach, some of which are
shown in Figure 8 for a batch of 1 million entries, is that the aggregation operations
required a longer time to compute this time, without the need of a slowed-down
VM. As such, it was easier to compare the differences between their execution times
even by using the smaller dataset.

# Entries 1 Million

Store Type Row Store
Column 

Store

Hybrid 

Store

SELECT * [Name=’Zoe’] 922 271 253

COUNT(*) 826 102 102

SUM(Quantity) 1482 716 1384

AVG(Price) 4673 4054 4619

SUM(Quantity*Price) 8697 7917 8426

Figure 8: Second approach execution times for 1 million entries (in milliseconds).
Source: own representation.

The COUNT(*) operation was considerably faster for the column and hybrid
stores, since they directly count the amount of sequential values for a column,
whereas in row store the reader needs to go through the whole row to count the
next one. Depending on which column should be counted, the hybrid store may
also need longer in other cases, but for my example implementation I use the first
column to count the entries, which could be considered similar to a NOT NULL
column in a database.

The SUM(Quantity) and AVG(Price) operations were faster on the column
store because the values necessary to perform these operations are located in single
respective columns and thus directly and sequentially accessible. On the other hand,
the hybrid store operations took longer because they have to traverse at least one
more value beside the required one, namely Price when computing SUM(Quantity)
and Quantity when computing AVG(Price). These aggregations needed even more
time to execute for row store because the Name column also needed to be traversed,
making again the whole row.

The SUM(Quantity*Price) operation was a bit faster on the column store
than the hybrid store, different than expected because the Quantity and Price values
are stored near each other and are located sequentially one after the other directly
by the reader. This aggregation should actually take longer on the row and column
stores because of the additional effort to traverse unnecessary values or locate both
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values respectively. These measurements may come as a result of the internal C++
behavior combined with the parsing logic, whose process, although theoretically
trying to approximate a real implementation, may not be fully reproduced and e.g.
the value separating may affect performance.

Similarly, the SELECT operation also took longer on the row store than the
column and hybrid store. The main reason for these results may also be supposed
to be as before because of the parsing logic. However, this also provides a good
opportunity to create an analogy to indexing in databases. The column and hybrid
stores save the index of the filtered entries based on the first column, and then
extract the values of the other columns using this index. The row store would
normally also be faster if it were indexed in a real database.

4 Discussion

In the two sample implementations described earlier I tried to achieve an approxi-
mation of the storage and access alternatives for databases based on the gathered
information from the literature research. By developing a low-level process for in-
serting and processing data through simple operations, I was able to simulate the
behavior of these approaches and experience this process first-hand and collect some
rough statistics to accompany the literature findings. Implementing a proper and
extensively functional solution was out of the scope of this project, and would re-
quire considerable efforts to develop and test all the features identified for each
of the store types. Compression methods, dictionaries, and complex operations or
large relations and tables were thus not experimented upon.

The comparison of execution times collected from both implemented approaches
did not always return the expected results. There were multiple factors which
cause these differences, starting with the environment behavior. Depending on
the current status of the system and the internal processes and optimizations that
may occur during runtime, the performance may be affected. Furthermore, the
implemented logic used in both approaches may differ slightly or highly depending
on the complexity of the operation it is trying to simulate. However, it is important
to note that actual databases may also differ on various scenarios depending on the
implementation approach and optimization strategies followed by each vendor, as
well as the context of usage.

Lastly, tuning is another factor that needs to be taken into consideration, not
only when initially designing and deploying a database, but for each project or
object that will make use of such instances. The data modeler and architect would
need to know the features provided by the system in order to be able to optimize it
for serving the requirements of the company. All these factors were highly simplified
for the purpose of my sample implementation, and some of the reasons were already
mentioned when discussing the results, however it enabled the analysis of the basic
advantages and disadvantages of each store type.

5 Conclusion

In this paper I presented the importance of MMDB in today’s data processing world.
It is obvious that different needs led to a development of different storing layouts,
each benefiting from different advantages and suffering from different disadvantages.

Row store is an intuitive layout and easy when it comes to implementation.
This layout leads to faster insertion, updates and selection of tuples, but would
slow down when accessing or operating on individual attributes of each tuple on the
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table. In my implementation I showed that this is not always the case, as different
factors mentioned in the section above may play a factor.

Column store is, compared to the traditional row store, a relatively new layout.
The situations in which column store outperforms the more traditional row store by
storing attributes in different tables rather than whole tuples are analytical queries,
OLAP processes, data compression etc. In my implementation I showed that the
theoretical expectations mostly match the practical implementation.

In practical use it is not simple to choose between row store and column store,
since each has its own advantages and disadvantages and are, in most cases, almost
mutually exclusive. This led to the development of hybrid store, which stores the
data relying mostly on inserts and updates in row store and the data mostly used
for analytical queries and reads on column stores.

In the last part of the paper I implemented a simple C++ visualization of each
storage layout discussed earlier and showed how expected results from the research
matched or otherwise differed from my practical implementation. Finally I provided
a discussion explaining the relation between my example and an actual database
provider by analyzing the various factors causing such results.
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