
Database Cracking

David Werner

23. Januar 2018

Zusammenfassung

This paper talks about the self-oraganized index maintainance approach

of database cracking. It provides fundamental knowledge as well as the des-

cription of a basic implementation of database cracking. Alongside multiple

cracking algorithms, the implementation also contains the code of a cracking

index. By combining these two features the implementation allows the execu-

tion of range queries on a single column. These range queries are compared to

the range queries of a B+-Tree. The evaluation of the comparison shows that

cracking based range queries perform more e�ciently.

1 Introduction

In database management systems, index structures are used to speed up queries.
An index can be built on an attribute and stores all existing attribute values and
their corresponding physical position within the memory space in which the column
resides. Typically only attributes with distinct values are indexed. By looking up
the required attribute value in the index, a query can �nd their corresponding
position faster than by using a table scan as long as there are not to many required
values. When the database is updated by inserting or removing records, the index
needs to be adapted by either inserting a new entry or removing an existing one for
the a�ected attribute values. In this seminar paper I present another approach to
indexing and index maintainance called database cracking. Database cracking relies
on reordering the pyhsical database according to the needs of incoming queries.
Queries on attributes which are indexed using database cracking trigger such a
reordering according to the query conditions. This procedure is based on the idea
that index maintaing should be part of the query processing instead of database
updates.

2 Database Cracking

This section provides fundamental knowledge about database cracking. Di�erent
cracking algorithms are presented and a notion of how and what to safe in a cracking
index is given. Furthermore some interesting properties of database cracking are
discussed.

2.1 Basics

Database cracking is an approach for data indexing and index maintainance in
a self-organized way. In a database system where database cracking is used, an
incoming query requesting all elements which satisfy a certain condition c does not
only return a result but it also causes a reodering of the physical database so that
all elements satisfying c are stored in a contiguous memery space. Therefore the

1

physical database is devided into multiple parts. This procedure is called cracking.
The di�erent parts of the database which result from cracking are called pieces. As
the cracking process is caused by queries, a query on the database can be seen as a
hint for the database on how the data has to be ordered. By using this mechanism
the database reorganizes itself in the most favourable way according to the workload
which is put on it. Alongside the cracking procedures a structure called cracking
index is maintained. This index stores entries containing information about already
existing pieces. By looking up matching entries for required pieces a query is able
to use crackings from preceding queries to shorten its execution time.[1]

An example scenario in which queries cause crackings and use the index to
speed up their execution can be seen in �gure 1 where three consecutive queries use
cracking to �nd their results. The �rst query requests all elements which are smaller
than �ve. Therefore the database is cracked in two pieces. The second query wants
to �nd all elements between �ve and eight. As the �rst query already created a piece
which contains all elements greater or qual to �ve, the second query can use this in-
formation from the cracking index so that only one of the two existing pieces needs
to be cracked. Consequently the second piece is cracked in two new pieces where one
contains all elements from �ve to eight and the other contains all elements greater
than eight. A third query is looking for all values greater than eight. Because the
second query already induced the creation of a piece containing all values which are
greater than eight, the third query is able to �nd a result without cracking but only
with information from the index.

Abbildung 1: Example cracking scenario

2.2 Cracking Algorithms

When using database cracking, the cracking procedure which means the physical
reordering of a column is not performed on the original column but on a copy of it,
the so called cracking column. This cracking column is needed because the originial
column has to stay in the insertion order. If it would be reorganized the insertion
order would be destroyed. A column store database would then not be able to
reconstruct complete records properly. Hence, before any query is able to perform
crackings, a cracking column must be created on which the cracking algorithms can
operate.

In this paper, I would like to present three di�erent cracking algorithms. All of
them crack a column by using by using two position variables left and right and

2

one or two bound values. The values are the seperators which are used to split the
column. On top of that inclusive �ags are used to determine whether the bound
values itselves are in the lower or the upper piece. The algorithms use comparison
operators which are depicted as ∆1 and ∆2. The former is either < or ≤ while the
latter is either > or ≥. Which operator is used depends on the inclusive �ags.

The �rst algorithm cracks a column or a column piece in two new pieces. The
second algorithm works similar to the �rst one but cracks into three pieces. They
operate according to the following pseudocode:

Algorithm 1 Crack in two pieces

1: procedure crack_in_2(column, left, right, value, inclusive)
2: while left < right do
3: if column[left] ∆1 value then
4: left← left + 1
5: else

6: while column[right] ∆2 value and left < right do
7: right← right− 1
8: end while

9: swap(column[left], column[right])
10: left← left + 1
11: right← right− 1
12: end if

13: end while

14: end procedure

Algorithm 2 Crack in three pieces

1: procedure crack_in_3(column, left, right, value1, value2, inclusive1, inclusive2)
2: tmp← left
3: while left < right do
4: while left < right and column[left] ∆3 value2 do

5: if column[left] ∆4 value1 then

6: swap(column[left], column[tmp])
7: tmp← tmp + 1
8: end if

9: left← left + 1
10: end while

11: while left < right and column[right] ∆5 value2 do

12: right← right− 1
13: end while

14: if left < right then
15: swap(column[left], column[right])
16: end if

17: end while

18: end procedure

Algorithm 1 as well as Algorithm 2 are single-pass algorithms and were introdu-
ced in [1]. I modi�ed the second algorithm to require less code than the original one.
Both algotihms crack by walking through the column using two (left, right) or 3
(left,right and tmp) pointers reading the values. Values which full�ll the correspon-
ding condition(greater or smaller) remain where they are. If both pointers identify

3

values which do not satisfy their condtition the values are swapped. Thereby the
algorithms touch as little elements of the cracking column as possible. Cracking in
three pieces could also be realized by cracking two times in two pieces but since
Algorithm two is a single-pass algorithm it performs slightly better.[1]

The third algorihtm also cracks a column or a piece of a column in two new
pieces. It is therefore an alternative to Algorithm 1. The di�erence is that this
algorithm does not have any branches. This is achieved by interpreting the results
of condition evaluations as 1 (true) or 0 false. The algorithm cracks by taking a
look at the elements pointed to by left and right. One of them is stored in an
active variable, the other one is stored in a backup variable and then overwritten
with the active value. Based on the evaluation of active ∆1 value either left or
right is advanced. The element at the advanced pointer becomes the new backup
value while the old backup value becomes the new active element. This procedure is
continued until left and right point to the same position. When this step is reached
the element in the active slot is stored at this position and the algorithm is �nished.
It is depicted as pseudocode in the following �gure:

Algorithm 3 Crack in two pieces (branch free)

1: procedure crack_in_2_bf(column, left, right, value, inclusive)
2: cmp
3: active← column[left]
4: backup← column[right]
5: while left < right do
6: cmp← active ∆1 value
7: column[left]← active
8: column[right]← active
9: left← left + cmp

10: right← right− (1− cmp)
11: active← (column[left] ∗ cmp) + (column[right] ∗ (1− cmp))
12: swap(active, backup)
13: end while

14: column[left]← active
15: end procedure

2.3 Cracking Index

In order to provide information about crackings a cracking index is maintened.
For each crack the index stores the value v by which the column was reordered
during the crack, the corresponding inclusive �ag i and a postition p. The position
p points to a position of the cracking column. All values x in the cracking column
which reside before or at this position satisfy the cracking condition x < v or x ≤ v

depending on i. Other values which reside at positions greater than p do not satisfy
that condition.[1]

The index serves two purposes: When a query tries to �nd a result, the index
is checked if there already exits a crack so that the column is ordered in a way If a
index entry which matches the query parameters (value and inclusive �ag) is found,
no crack needs to be done and the query just needs to return the position from the
entry. If no matching entry is found the query needs to take a look at the entries
which contain the next smaller and the next larger element for which a crack exists
the position stored in these entries mark the boundaries of the piece which needs
to be cracked by the query in order to �nd its result.

4

A special case of an index search occurs when an entry is found which matches
the query value but not the inclusive �ag. In this case the cracking column needs
to be recracked for the a�ected value since no piece exists which contains all values
of the result. This can be demonstrated by a short example. Let us assume a query
wants to �nd values x which satisfy x ≤ 5. While searching the index an entry
containing 5 and false is found which means a crack < 5 exists. The entry contains
the position 8. The query could thus �nd all values smaller than 5 but not 5 itself if
it exists in the column. Since the postition of 5 in the column cannot be determined
a recrack needs to happen.

2.4 Advantages of Database Cracking

The Database Cracking approach has several advantages which make it an intere-
sting approach for organizing and indexing data.

As already mentioned, database cracking enables the database to be self-orgarnized.
The data is ordered in a favourable way for the queries without the need for upfront
knowledge about the workload. The second advantage of cracking is that it is perfor-
med on the cracker column instead of the original one. Although this may seem like
a drawback because the higher memory consumption, the cracking column removes
the necessity of copying query results to a seperate output space. Since copying
elements causes a lot of memory accesses this feature improves the performance of
queries by a lot. Another positive aspect is that the cracking of the physical data-
base can be supported by the cracking index. If queries �nd an enrty in the index
which matches their search value as well as their search condition cracking can be
omitted in the query procedure which speeds up the execution. Even if no matching
entry is found, existing pieces reduce the range of the cracking column which needs
to be considered when the query has to crack.

3 Implementation

In this section I will present my implementation of Database Cracking. It consists
of multiple cracking algorithms as well as a structure which uses these algorithms
combined with an index structure in order to perform queries. Furthermore I added
a range scan on an existing B+-Tree implemetation for comparison purposes.

The implementation relies on various simpli�cations which reduce otherwise ne-
cessary overhead and promote the comparability between cracking and regular in-
dexing. Albeit these assumptions also reduce code complexity a complete cracking
scenario is implmeneted which provides enough functionality to compare it to other
indexing techniques. The simpli�cations are:

1. Distinct values in the column

2. Only one column is cracked

3. Only lookups are supported, no inserts and deletes

In theory cracking algorithms are able to handle non distinct values in a column.
But as it needs a workaround to handle non-distinct values in B+-Trees we only
allow distinct values. Since I want to focus on the cracking aspect I only handle one
column which is represented by a pointer to an array. Furthermore my implementa-
tion does not o�er means to add or remove elements to the column. Implementing
this would produces overhead and is not needed to show the concept of database
cracking.

5

3.1 Cracking Algorithms

The current implementation supports all three cracking algorihtms presented in 2.2.
On top of the execution of the algortihms, the corresponding C++ methods return
the position in the cracking column which points to the last element of the left piece
resulting from the cracking which means the last element that satis�es the cracking
condition.This position corresponds to the position which needs to be stored in
the cracking index (see 2.3). In order to use the incusive �ag to determine which
comparison operators should be used for ∆1 and ∆2 in the cracking algorithms the
following conditions are evalutated:

X∆1Y : (X < Y) || ((X == Y) && inclusive)

X∆2Y : (X > Y) || ((X == Y) && inclusive)

3.2 Cracking index structure

The cracking index structures combines a cracking index with the cracking algo-
rithms from the preceding chapter. It o�ers means to maintain the index and me-
thods to perform range queries on the values of a column. The structure consists of
a pointer to the column, the size of the column, a pointer to the cracking column
and a map which is used as cracking index. The map stores pairs of values and
entry structs. The values represent the bound values of pieces while entry structs
store information about their position as well as the inclusive �ag.

Additionally the index struct o�ers a method to �nd a matching piece for a
query. A matching piece is either a piece which satis�es the range condition of the
query or the smallest known piece which needs to be cracked in order to get a
satis�ying one. The method searches the map for the bound values it requires. If it
�nds a map element containing the desired value the inclusive �ag from the entry
struct is checked. If the inclusive �ag matches the �ag from the query a matching
piece was found and the position of the piece is returned. If the inclusive �ag of
the entry does not match or no map element for the bound value was found, the
method returns a piece which contains the desired bound value but is not already
cracked. On this piece a crack or a recrack needs to be performed.

In order to be able to insert new entries into the cracking index a method is
provided which adds information about cracking pieces to the map. The method
decides between two cases: If no entry for the bound of the query is found, a whole
new value-entry pair is inserted in the map. When an entry for the bound value
exists but the inclusive �ag doesnt match only the entry struct is replaced in the
existing map element with a new one containing the new position and new inclusive
�ag. The latter case is used to adapt the index after a recrack.

Beside these helper methods the cracking index struct implements two query
methods. One of them handles single bound queries while the other one handles
double bound queries. The query methods return the start and end position of the
piece/pieces containing the result values within the cracking column. The following
steps are roughly performed during the execution of the query methods:

1. Search index for matching piece(s)

2. Return if exact matchings were found

3. Otherwise crack found piece(s)

4. Add newly created cracks to index

5. Return

6

While the method which handles single bound query is fairly simple, the double
bound query has multiple cases which it needs to cover. The ��nd piece� method
needs to be called twice as one piece for each bound needs to be found. Depending
on the result of these method calls, di�erent cracking scenarios have to take place.
In case both methods return an exact match the query is �nished and able to return
the piece containing the results. If only one of them �nds an exact match, a crack
for the bound value which did not correspond to an index entry needs to be done.
The most interesting cases are the ones where no match is found for either of both
bounds. If no exact matches are found by the ��nd piece� method, it returns the
start and end position of a piece which needs to be cracked. A comparison of start
and end position for the lower bound piece and the upper bound piece is done. If
for both bound values the same start and end positions are received, the bound
values reside in the same piece. In this case the �crack in three� algorithm needs
to be executed. If the bound values share either the same start or the same end
position two cracks need to happen. It is important that in this case, the crack for
the lower bound is performed �rst as the crack for the upper bound needs its result
to be performed correctly. In case lower and upper bound have neither start nor end
position in common, they reside in two di�erent pieces. Both pieces can be cracked
independently from each other.

3.3 B-Tree implementation

For comparison purposes I extended the B+-Tree implementation of [3] in order to
be able to scan leaf nodes. The implementation already contained the code for inner
nodes, leaf nodes and full trees which make use of the node implementations. Both
node structs provide means to insert into and split them as well as �nding an lower
bound for a certain key. The tree code o�ers methods to perform inserts in the tree
and lookups of keys and their respective pasyloads. These methods make use of the
corresponding node methods.

As I want to use the B+-Tree as index, it stores the values from a column as
keys and their corresponding column position as payload. In order to realize a leaf
node traversal, leaf nodes now have a pointer to their right sibling. Due to the
implemented splitting mechanism the �rst leaf created in a B+-Tree is always the
leftmost leaf in the tree which means it always contains the entries with the smallest
keys. To make use of this property I additionally added a pointer to the B+-Tree
code which references this ��rst� leaf. This pointer simpli�es scans starting from the
smallest key in the tree.

In order to make use of the extended B+-Tree implementaion in range scans
on a column, I embedded it in an index struct similar to the cracking index struct
described in [3.2]. It also o�ers query two methods for single bound and double
bound queries. Both query methods operate logically in the same way:

1. Determine start position within start leaf

2. Determine end end position within end leaf

3. Start traversal of leaves

4. For each key lookup the position within column

5. Use positions to copy values from column to output

6. Stop traversal when end position is reached

In contrast to the query methods form the cracking index struct the single
bound query needs an indicator whether the bound represents a lower or upper

7

bound. According to this indicator the bound parameter is either set as the start
position (lower bound) or the end position (upper bound). In the former case the
end position is the last position in the rightmost leaf node, in the latter case the
start position is the �rst position in the leftmost leaf. The double bound query does
not need suc an indicator as it dermines it start position with the help of the lower
bound and its end position with the help of the upper bound.

3.4 Test scenarios

My implementation features two main test cases. The �rst test case aims at deter-
mining which of the �crack in two� algorithms performs better. Depending on the
result of the evalutation of this test case I determined which of both algorithms in
the �nal implementation. The test scenario has the following properties:

• column with 500'000'000 values

• single crack is

• performed twice with two di�erent workloads:

� crack with small piece as result

� crack with large piece as result

The second test case compares the database cracking range queries with range
queries using the B+-Tree index. The properties of this test case are:

• column with 500'000'000 values

• 100 cack are performed consecutively

• performed twice with two di�erent workloads:

� workload causing a single crack

� workload causing crack in every single query

4 Evaluation

This section shows the results of the test scenarios described in section 3.4. The
results are brie�y discussed.

4.1 Comparison of cracking algorithms

The result of the comparison of the �Crack in two� algorithms can be seen in the
following �gure:

8

780.58

1220

0

250

500

750

1000

1250

 basic bf

approach

tim
em

s

(a) small resulting piece

1888.2

1189.89

0

500

1000

1500

 basic bf

approach

tim
em

s
(b) big resulting piece

We can see that the two approaches performs di�erently well depending on the
size of the resulting cracking piece. Based on this result I chose to use the basic
algortihm within the cracking index struct as over time the size of the resulting
cracks within a database cracking scenario reduces.

4.2 Database Cracking versus Indexing

The following fogure show the results of the cracking versus indexing test:

188.59

30578.28

0

10000

20000

30000

 crack index

name

tim
em

s

(c) single crack workload

1162.91

31119.58

0

10000

20000

30000

 crack index

name

tim
em

s

(d) only cracks workload

The graphs indicate that cracking performs considerably better than B+-Tree
indexing. This is no surprise for the optimal workload since it only a single crack
is triggered while the rest of the queries are answered with cracking index lookups
only. More interesting are the results or the workload which produces cracks in every
query. Although this is the wirst case for database cracking as cracking takes more
time than just cracking index lookups, the query performance is still better than
the performance of the B+-Tree based queries. The extreme performance di�erences
between both approaches can be explained with memeory accesses. The indexing
approach requires to copy the results to an output array which takes takes a fairly
large amount of time. This con�rms the statement from the introduction that a

9

regular index structure should not be used when a lot of records are touched by a
query. As we can see this is not the case for database cracking.

5 Conclusion

In this paper I provided fundamental knowledge about Database Cracking. I pre-
sented di�erent cracking algorihtms as well as ideas on how to maintain a cracking
index. Furthermore I introduced an implemenetation using database cracking to
perform range queries on single columns and compared them to range queries using
a B+-Tree as index. As seen in the evaluation section the cracking based queries
performed signi�cantly better than the index based queries. The use of an cracking
index storing information about cracking pieces combined with the lack of the ne-
cessity to copy elements to an output space is able to speed up the query execution
so that even a query workload which causes a lot of cracks can be handled e�ciently.
Thus i would consider database cracking as an interesting approach to organize and
index data within a database system.

Literatur

[1] Stratos Idreos. Martin L. Kersten. Stefan Manegold. Database Cracking. CIDR,
2007.

[2] Holger Pirk. Eleni Petraki. Stratos Idreos. Stefan Manegold. Martin Kersten.
Database Cracking: Fancy Scan not Poor Man's Sort. DaMoN Workshop, 2014.

[3] Viktor Leis. Lecture: Data Processing on modern Hardware. TUM, winter term
2017. https://db.in.tum.de/teaching/ws1718/dataprocessing/?lang=de

10

