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Database cracking



What is database cracking? - 1

• self organized indexing and index maintenance

• queries are used as advice to crack the database in pieces

• cracking means physically reordering the database

• sequential access for range queries is guaranteed
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What is database cracking? - 2

• original column stays in insertion order

• cracking column is used for reordering

• this allows fast reconstruction of records
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Cracking example
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Cracking index

• index on cracking column

• stores information about every crack

• bound value

• end position of piece

• inclusive flag
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Cracking in two pieces - basic

Algorithm 1 Crack in two pieces

1: procedure crack in 2(column, left, right, value, inclusive)

2: while left < right do

3: if column[left] ∆1 value then

4: left ← left + 1

5: else

6: while column[right] ∆2 value and left < right do

7: right ← right − 1

8: end while

9: swap(column[left], column[right])

10: left ← left + 1

11: right ← right − 1

12: end if

13: end while

14: end procedure

∆1 is < or ≤, ∆2 is > or ≥ depedending on the inclusive flag
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Cracking in two pieces - branch free

Algorithm 2 Crack in two pieces (branch free)

1: procedure crack in 2 bf(column, left, right, value, inclusive)

2: cmp

3: active ← column[left]

4: backup ← column[right]

5: while left < right do

6: cmp ← active ∆1 value

7: column[left]← active

8: column[right]← active

9: left ← left + cmp

10: right ← right − (1− cmp)

11: active ← (column[left] ∗ cmp) + (column[right] ∗ (1− cmp))

12: swap(active, backup)

13: end while

14: column[left]← active

15: end procedure
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Cracking in three pieces

Algorithm 3 Crack in three pieces

1: procedure crack in 3(column, left, right, value1, value2, inclusive1, inclusive2)

2: tmp ← left

3: while left < right do

4: while left < right and column[left] ∆1 value2 do

5: if column[left] ∆1 value1 then

6: swap(column[left], column[tmp])

7: tmp ← tmp + 1

8: end if

9: left ← left + 1

10: end while

11: while left < right and column[right] ∆2 value2 do

12: right ← right − 1

13: end while

14: if left < right then

15: swap(column[left], column[right])

16: end if

17: end while

18: end procedure
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Advantages

Database cracking has some interesting properties:

• no copying of query results

• no updfront knowledge about workload required

• physcial reordering can be supported by index

• consecutive cracks receive speed from index

9



Implementation



Cracking Algorihtms

• All three cracking algorithms

• Return last position of piece in cracking column

• < and ≤ cracks only

• > and ≥ queries can use these results
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Cracking index struct

• Combines cracking algorithms with cracking index

• Comprises:

• Pointer to original column

• Pointer to cracking column

• Column size

• Map as index

• Main functionality:

• Find pieces

• Query (single bound, double bound)
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Find piece - 1

exact match:

returns: true
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Find piece - 2

no match at all1 or inclusive flag does not match2 :

returns: false
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Query

Two different types of queries

• single bound (e.g. X < a)

• double bound (e.g. a < X < b)

Query method interface:

• Require bound value(s) and inclusive flag(s)

• Return start/end position of result piece(s)
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Query - single bound

simple control flow:

1. Find piece for value

2. If exact match: return

3. Otherwise: crack

4. Add crack to index

5. Return
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Query - double bound

• Find piece for both bounds

• Depending on results different cases need to be handled

• Four easy cases:

• None of both bounds needs a crack

• Both bounds need crack in different pieces

• Upper/lower bound needs crack

• Two involved cases
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Special case 1

example query: 9 ≤ X < 12

solution: crack in three pieces
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Special case 2

example query: 4 < X ≤ 13

solution: crack yellow first, use result to crack red
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Extensions and Usage

• Extensions:

• Leaves have sibling pointers

• Pointer to leftmost leaf

• Tree stores:

• bound values as keys

• position and inclusive flag as payload
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Query operation

1. Find start position

2. Find end position

3. Traverse leaves

4. Lookup column positions

5. Copy column values to output

6. Stop at end position
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Evaluation



Test cases

• Comparison of
”
Crack in two“ algorithms

• 500’000’000

• single crack

• Cracking vs. Indexing

• 50’000’000 values in column

• 100 consecutive cracks
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Comparison of cracking algorithms

small result piece:
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Cracking vs Indexing

single crack workload:
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