
Database Cracking

David Werner

January 23, 2018

Technische Universität München

Table Of Contents

Database cracking

Basics

Cracking index

Algorithms

Advantages

Implementation

Cracking Algorihtms

Cracking index struct

B+ − Tree

Evaluation

1

Database cracking

What is database cracking? - 1

• self organized indexing and index maintenance

• queries are used as advice to crack the database in pieces

• cracking means physically reordering the database

• sequential access for range queries is guaranteed

2

What is database cracking? - 2

• original column stays in insertion order

• cracking column is used for reordering

• this allows fast reconstruction of records

3

Cracking example

4

Cracking index

• index on cracking column

• stores information about every crack

• bound value

• end position of piece

• inclusive flag

5

Cracking in two pieces - basic

Algorithm 1 Crack in two pieces

1: procedure crack in 2(column, left, right, value, inclusive)

2: while left < right do

3: if column[left] ∆1 value then

4: left ← left + 1

5: else

6: while column[right] ∆2 value and left < right do

7: right ← right − 1

8: end while

9: swap(column[left], column[right])

10: left ← left + 1

11: right ← right − 1

12: end if

13: end while

14: end procedure

∆1 is < or ≤, ∆2 is > or ≥ depedending on the inclusive flag

6

Cracking in two pieces - branch free

Algorithm 2 Crack in two pieces (branch free)

1: procedure crack in 2 bf(column, left, right, value, inclusive)

2: cmp

3: active ← column[left]

4: backup ← column[right]

5: while left < right do

6: cmp ← active ∆1 value

7: column[left]← active

8: column[right]← active

9: left ← left + cmp

10: right ← right − (1− cmp)

11: active ← (column[left] ∗ cmp) + (column[right] ∗ (1− cmp))

12: swap(active, backup)

13: end while

14: column[left]← active

15: end procedure

7

Cracking in three pieces

Algorithm 3 Crack in three pieces

1: procedure crack in 3(column, left, right, value1, value2, inclusive1, inclusive2)

2: tmp ← left

3: while left < right do

4: while left < right and column[left] ∆1 value2 do

5: if column[left] ∆1 value1 then

6: swap(column[left], column[tmp])

7: tmp ← tmp + 1

8: end if

9: left ← left + 1

10: end while

11: while left < right and column[right] ∆2 value2 do

12: right ← right − 1

13: end while

14: if left < right then

15: swap(column[left], column[right])

16: end if

17: end while

18: end procedure

8

Advantages

Database cracking has some interesting properties:

• no copying of query results

• no updfront knowledge about workload required

• physcial reordering can be supported by index

• consecutive cracks receive speed from index

9

Implementation

Cracking Algorihtms

• All three cracking algorithms

• Return last position of piece in cracking column

• < and ≤ cracks only

• > and ≥ queries can use these results

10

Cracking index struct

• Combines cracking algorithms with cracking index

• Comprises:

• Pointer to original column

• Pointer to cracking column

• Column size

• Map as index

• Main functionality:

• Find pieces

• Query (single bound, double bound)

11

Find piece - 1

exact match:

returns: true

12

Find piece - 2

no match at all1 or inclusive flag does not match2 :

returns: false

13

Query

Two different types of queries

• single bound (e.g. X < a)

• double bound (e.g. a < X < b)

Query method interface:

• Require bound value(s) and inclusive flag(s)

• Return start/end position of result piece(s)

14

Query - single bound

simple control flow:

1. Find piece for value

2. If exact match: return

3. Otherwise: crack

4. Add crack to index

5. Return

15

Query - double bound

• Find piece for both bounds

• Depending on results different cases need to be handled

• Four easy cases:

• None of both bounds needs a crack

• Both bounds need crack in different pieces

• Upper/lower bound needs crack

• Two involved cases

16

Special case 1

example query: 9 ≤ X < 12

solution: crack in three pieces

17

Special case 2

example query: 4 < X ≤ 13

solution: crack yellow first, use result to crack red

18

Extensions and Usage

• Extensions:

• Leaves have sibling pointers

• Pointer to leftmost leaf

• Tree stores:

• bound values as keys

• position and inclusive flag as payload

19

Query operation

1. Find start position

2. Find end position

3. Traverse leaves

4. Lookup column positions

5. Copy column values to output

6. Stop at end position

20

Evaluation

Test cases

• Comparison of
”
Crack in two“ algorithms

• 500’000’000

• single crack

• Cracking vs. Indexing

• 50’000’000 values in column

• 100 consecutive cracks

21

Comparison of cracking algorithms

small result piece:

780.58

1220

0

250

500

750

1000

1250

 basic bf

approach

tim
em

s

big result piece:

1888.2

1189.89

0

500

1000

1500

 basic bf

approach

tim
em

s

22

Cracking vs Indexing

single crack workload:

188.59

30578.28

0

10000

20000

30000

 crack index

name

tim
em

s

only cracks workload:

1162.91

31119.58

0

10000

20000

30000

 crack index

name

tim
em

s

23

	Database cracking
	Basics
	Cracking index
	Algorithms
	Advantages

	Implementation
	Cracking Algorihtms
	Cracking index struct
	B+-Tree

	Evaluation

