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Exercise 1

In this exercise we model an online pizza delivery service. Use the following details and
create a descriptive UML class diagram (including multiplicities):

• A pizza delivery service has a name and a website (modeled as a url). Each delivery
service has at least one branch.

• A branch has a user and a cleanness rating and two types of employees: one manager
and many drivers. Each employee has a salary, a name and a phone number.

• When a branch closes, the manager is automatically fired. Drivers, in our system, are
independent of branches and are allowed to contract for up to five different branches
at a time. They should remain in the system, even if they are currently not working
for any branch.

• Each pizza delivery service offers at least five different pizzas. Each pizza has a name,
a price and a list of toppings.

• Customers have a name, an address, a phone number and it should be stored how
much money they tip on average (For simplicity, we assume that no employee is also
a customer).

• A customer can place an order at a delivery service. The order is executed by a
concrete branch, delivered by one driver and it involves at least one pizza. It should
be possible to tell the total price for an order.

Solution:
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Exercise 2

Consider a super market where customers can buy products. Model the “purchase” relati-
onship between customers, products and stores using:

• Entity relationship diagrams with functionalities

• Entity relationship diagrams with min/max notation

• UML class diagrams with multiplicities

Think about what constraints on your database you can enforce with different choices.

One possible solution:
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