
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im
WiSe 18/19

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1819/DBSandere/?lang=en

Sheet 03

Exercise 1

In this exercise we model an online pizza delivery service. Use the following details and
create a descriptive UML class diagram (including multiplicities):

• A pizza delivery service has a name and a website (modeled as a url). Each delivery
service has at least one branch.

• A branch has a user and a cleanness rating and two types of employees: one manager
and many drivers. Each employee has a salary, a name and a phone number.

• When a branch closes, the manager is automatically fired. Drivers, in our system, are
independent of branches and are allowed to contract for up to five different branches
at a time. They should remain in the system, even if they are currently not working
for any branch.

• Each pizza delivery service offers at least five different pizzas. Each pizza has a name,
a price and a list of toppings.

• Customers have a name, an address, a phone number and it should be stored how
much money they tip on average (For simplicity, we assume that no employee is also
a customer).

• A customer can place an order at a delivery service. The order is executed by a
concrete branch, delivered by one driver and it involves at least one pizza. It should
be possible to tell the total price for an order.

Solution:

1



Order

date when

Customer

decimal total_tip
int order_count

Person

string name
string phone_number

Topping

string name

Pizza

string name
decimal price

Manager Driver

Address

string street
int zip
string city
string country

Employee

int salary

PizzaDeliveryService

string url
string name

Branch

int user_rating
int cleaness_rating

1

*
1

*

*

1..*

1
*

5..*1..*

*
1..5

1

1..*

1

Exercise 2

Consider a super market where customers can buy products. Model the “purchase” relati-
onship between customers, products and stores using:

• Entity relationship diagrams with functionalities

• Entity relationship diagrams with min/max notation

• UML class diagrams with multiplicities

Think about what constraints on your database you can enforce with different choices.

One possible solution:

Purchase

Product

StoreCustomer

*

1..*

1

*

1

*

2



 Purchase

Product

StoreCustomer

M

1N

 Purchase

Product

StoreCustomer

(0,*)

(0,*)(0,*)

3


