
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme
Prof. Alfons Kemper, Ph.D.

Exercise for Database System Concepts for Non-Computer Scientist im
WiSe 18/19

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1819/DBSandere/?lang=en

Sheet 10

Exercise 1

”
Busy Students“: Write a SQL query to find all students that have more weekly hours in

total than the average student has. Also consider students that do not attend any lecture.

Solution:

The following query determines the
”
busy students“:

select s.*
from Students s
where s.studNr in

(select a.studNr
from attend a, Lectures l
where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours) >

(select sum(cast(weeklyHours as decimal (5,2)))
/ count(distinct(s2.studNr))

from Students s2
left outer join attend a2

on a2.studNr = s2.studNr
left outer join Lectures l2

on l2.lectureNr = a2.lectureNr));

By using the with construct or case, we can write a query that is much easier to read.
First with with:

with TotalWeeklyHours as (
select sum(cast(weeklyHours as decimal (5,2))) as

CountWeeklyHours
from attend a, Lectures l
where l.lectureNr = a.lectureNr

),
TotalStudents as (

select count(studNr) as CountStudents
from Students

)
select s.*
from Students s
where s.studNr in (

select a.studNr
from attend a, Lectures l
where a.lectureNr = l.lectureNr
group by a.studNr
having sum(weeklyHours)

1



> (select CountWeeklyHours / CountStudents
from TotalWeeklyHours , TotalStudents));

And here with case:

with WeeklyHoursPerStudent as (
select s.studNr ,

cast((case when sum(l.weeklyHours) is null
then 0 else sum(l.weeklyHours)

end) as real) as CountWeeklyHours
from Students s

left outer join attend a on s.studNr = a.studNr
left outer join Lectures l on a.lectureNr = l.lectureNr

group by s.studNr
)

select s.*
from Students s
where s.studNr in (select weeklyHours.studNr

from WeeklyHoursPerStudent weeklyHours
where weeklyHours.CountWeeklyHours

> (select avg(CountWeeklyHours)
from WeeklyHoursPerStudent));

Exercise 2

ExamPoints

StudName ExerciseId PossiblePoints Score

Bond 1 10 4

Bond 2 10 10

Bond 3 11 4

Maier 1 10 4

Maier 2 10 2

Maier 3 11 3

Create a view in SQL for the ExamResult, which should look like the following for our
example instantiation:

ExamResult

Name PossiblePoints Score Ratio Passed

Bond 31 18 0,580645 yes

Maier 31 9 0,290323 no

An exam should be graded as passed if at least 50% of the possible points where scored.

[Bonus] Create the underlying table for ExamPoints and think about what the primary
key should be.

2






Solution:

create table ExamPoints(studName varchar not null ,
exerciseId int not null ,
possiblePoints int not null ,
score int not null ,
primary key(studName ,

exerciseId));
insert into ExamPoints values

(’Bond’, 1, 10, 4), (’Bond’, 2, 10, 10),
(’Bond’, 3, 11, 4), (’Maier ’, 1, 10, 4),
(’Maier’, 2, 10, 2), (’Maier’, 3, 11, 3);

create view ExamResult (Name , PossiblePoints , Score ,
Ratio , Passed) as (

select e.Name , sum(e.PossiblePoints) as PossiblePoints ,
sum(e.Score) as Score ,

(cast (sum(e.Score) as float))/sum(e.PossiblePoints) as
Ratio ,

(case when (cast (sum(e.Score) as float))/sum(e.
PossiblePoints) >= 0.5 then ’yea’ else ’no’ end) as
Passed

from ExamPoints e
group by e.Name);

3


