
1 / 50

Distributed Processing

General Distributed Data Processing

What if you need to perform an analysis that is not supported by your
(distributed) database?

• Breadth-First search
• PageRank
• k-means

2 / 50

Distributed Processing

Possible Solution

Implement the analysis in your favorite language.
Certain tasks however need to be handled in every implementation:

• Parallelization/synchronisation
• Distribution of computation
• Distribution of data
• Communication between nodes
• Node failures
⇒ Overall, creating a custom solution takes time and is error prone.

3 / 50

Distributed Processing MapReduce

Alternative Solution

Idea
• Use a functional abstraction that specifies data-parallel computation:

map and reduce functions
• A runtime systems manages

I Program execution
I Data distribution
I Persistence
I Node failures
I Communication

Program formulation with

• Map all input records to key-value pairs
• Reduce: Computation on all pairs with the same key

4 / 50

Distributed Processing MapReduce

Word frequency with MapReduce

Map ReduceShuffle

• map produces (〈word〉, 1) pairs
• reduce sums up 1 of all pairs with same word

5 / 50

Distributed Processing MapReduce

Map-Reduce
A MapReduce program is defined by at least two functions:

map : (k1, v1) −→ [(k2, v2)]
reduce : (k2, [v2]) −→ [(k3, v3)]

Map is called for all input pairs and for each produces a list of key/value
pairs. Reduce is called once for each key that was produced by any map call
with a list of all corresponding values.

Word frequency:
def map(name , doc) :

f o r word i n ’ ’ . s p l i t (doc) :
emit (word , 1)

def reduce (key , v a l u e s) :
emit (key , sum(v a l u e s))

6 / 50

Distributed Processing MapReduce

Using MapReduce

• PageRank
• Join two relations

7 / 50

Distributed Processing MapReduce

MapReduce Implementations

• Google has a proprietary implementation in C++
• Hadoop is an open-source implementation in Java

I Development led by Yahoo, now an Apache project
I Designed for very large compute clusters to handle very large data sets
I Used in Production at Yahoo, Facebook, Twitter, LinkedIn, Netflix,...
I The de facto big data processing platform

• Losts of custom research implementations

8 / 50

Distributed Processing Hadoop

Hadoop Architecture

Core modules
• Common
• Distributed File System
• YARN, scheduling and cluster resource management
• MapReduce, system for parallel processing of large data sets

YARN manages the cluster
• Resource manager
• Node manager

Hadoop MapReduce is an application on the cluster that negotiates
resources with YARN.

• JobTracker globally manages jobs, gives tasks to
• TaskTracker to execute on their local nodes

9 / 50

Distributed Processing Hadoop

Lifecycle of a MapReduce request

• User submits job configuration JobTracker.
• JobTracker submits mapper tasks to TaskTrackers, thus schedules

computation on all available cluster nodes.
• Each task works on the data local to its node.
• While mappers produce output, the shuffle process moves the output

among the nodes in the cluster.
• Once the mappers and shuffling finishes, the JobTracker schedules

reduce tasks to all nodes.

10 / 50

Distributed Processing Hadoop

How is data shared between nodes?
• Hadoop uses the Hadoop distributed filesystem (HDFS) for durability

and data distribution
• Map input is read from HDFS
• Map output is pre-sorted and written to HDFS
• Shuffle phase moves data between nodes and merges pre-sorted data
• Results of reduce phase are written to HDFS

Filesystem In memory

11 / 50

Distributed Processing Hadoop

Fault Tolerance

HDFS is able to cope with failing nodes
• Files are split into blocks (default size 64MB)
• Blocks are replicated onto different machines (default: 3 replicas)
• In case of node failure, missing replicas are reconstructed on other

nodes
JobTracker is able to cope with failing nodes

• On failure, JobTracker will notice that one TaskTracker is
non-responsive.

• If the job is still in the mapping phase, tasks of the failed tracker will
be distributed to TaskTrackers on other nodes.

• If job is in reduce phase, those reduce tasks that did not finish are
restarted on other TaskTrackers.

12 / 50

Distributed Processing Hadoop

HDFS Architecture

• Name node manages file
system and regulates access

• Data nodes manage attached
storage

• HDFS exposes append-only files
to users

• Internally, files are split into
blocks and replicated across
name nodes for failure tolerance

Replication

Block ops

Datanode

Metadata

Namenode

13 / 50

Distributed Processing Hadoop

Implementing Word Frequency in Hadoop MR
Mappers must extend org.apache.hadoop.mapreduce.Mapper and
implement the map function:

p u b l i c s t a t i c c l a s s TokenizerMapper
e x t e n d s Mapper<Object , Text , Text , I n t W r i t a b l e >{

p u b l i c v o i d map(Object key , Text v a l u e ,
Context c o n t e x t)
throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

// w r i t e to output w i t h
c o n t e x t . w r i t e (key , v a l u e) ;

}
}
Reducers must extend org.apache.hadoop.mapreduce.Reducer:

p u b l i c s t a t i c c l a s s IntSumReducer
e x t e n d s Reducer<Text , I n t W r i t a b l e , Text , I n t W r i t a b l e > {

p u b l i c v o i d r e d u c e (Text key , I t e r a b l e <I n t W r i t a b l e > v a l u e s ,
Context c o n t e x t
) throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

// w r i t e to output
c o n t e x t . w r i t e (key , v a l u e) ;

}
}

14 / 50

Distributed Processing Hadoop

Optimizations

• Add combiner to reduce amount of transferred data
• Fold map and reduce steps to save on disk writes

15 / 50

Distributed Processing Hadoop

Programming for a data centre

We have seen the MapReduce abstraction for scalable programming. But
how can we create programs that run well on large clusters?

• Need to understand the design of warehouse-sized computers
I Different techniques for different setting
I Requires quite a bit of rethinking

• MapReduce algorithm design
I How to express everything in terms of map(), reduce(), combine(), and

partition()?
I Are there any design patterns we can leverage?

16 / 50

Distributed Processing Hadoop

Data centre architecture

Cluster Switch
One Server

Rack of Servers Cluster of Racks

• Computers in racks
• Racks in clusters, connected via cluster switch

17 / 50

Distributed Processing Hadoop

Storage hierarchy

Accessing data on remote machines comes at a price:
• Local DRAM, 16GB, 100ns, 20GB/s
• Local Disk, 2TB, 10ms, 200MB/s
• Rack local DRAM (80 servers), 1TB, 300µs, 100MB/s
• Rack local Disk (80 servers), 160TB, 11ms, 100MB/s
• Cluster DRAM (30 racks), 30 TB, 500µs, 10MB/s
• Cluster Disk (30 racks), 4.8PB, 12ms, 10MB/s

18 / 50

Distributed Processing Hadoop

Scaling up vs. out

• In case no single machine is large enough
I Should we use a cluster of large (expensive) machines or a large cluster

of (cheap) commodity machines?
• Nodes need to talk to each other!

I Intra-node latencies: ca. 100ns
I Inter-node latencies: ca. 100µs

• Let’s model communication overhead

19 / 50

Distributed Processing Hadoop

Modelling communication overhead

• Simple execution cost model
I TotalCost = CostOfComputation + CostToAccessGlobalData
I Fraction of local access is inversely proportional to size of cluster

I 1/n of the data is local
I n nodes in cluster (ignore cores for now)

I TotalCost = 1ms/n + f · [100ns · (1/n) + 100µs · (1 − 1/n)]
I Three scenarios:

I Light communication: f = 1
I Medium communication: f = 10
I Heavy communication: f = 100

• What is the cost of communication?

20 / 50

Distributed Processing Hadoop

Communication cost

• Workloads with light
communication benefit
from larger clusters

• Large amounts of
random communication
impede performance

⇒ avoid random reads from
remote!

0.0

2.5

5.0

7.5

4 8 12
Number of Nodes

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Workload Type

Heavy Communication

Light Communication

Medium Communication

21 / 50

Distributed Processing Hadoop

Seeks vs. scans

• Consider a 1TB database with 100 byte records
I We want to update 1% of the records

• Scenario 1: random access
I Each update takes 30ms (seek, read, write)
I 108 updates = 35 days

• Scenario 2: rewrite all records
I Assume 100MB/s throughput
I Time = 5.6 hours

⇒ avoid random reads from disk!

22 / 50

Distributed Processing Hadoop

HDFS Design Considerations

Hardware Failure Hardware failure is the norm rather than the exception.
Streaming Data Access Applications that run on HDFS need streaming

access to their data sets.
Large Data Sets Applications that run on HDFS have large data sets.
Simple Coherency Model HDFS applications need a write-once-read-many

access model for files.
Move Computation, Not Data A computation requested by an application

is much more efficient if it is executed near the data it
operates on.

Portability HDFS has been designed to be easily portable from one
platform to another.

23 / 50

Distributed Processing Hadoop

Hadoop MapReduce use case

Hadoop MapReduce was built with the following assumptions
• The data sets are much larger than available main memory
• Processing happens on very large clusters of commodity machines

Therefore,
• intermediate results are written to disk
• shuffle phase is followed by a merge-sort phase

This design makes Hadoop suitable for big-data use cases, however it is not
necessarily a good fit for workloads with a lot of computation and/or
smaller data sets.

24 / 50

Distributed Processing Spark

What is Spark?

Spark is an alternative more expressive fault-tolerant runtime for distributed
batch data analytics.
Architecture
Programming Model Resilient Distributed Datasets (RDDs), DataFrame

API, Dataset API
Runtime Spark

Cluster Manager Hadoop Yarn, Builtin, Apache Mesos
Distributed Filesystem HDFS, Local files, ...

25 / 50

Distributed Processing Spark

Why a New Programming Model?

• The primitives map and reduce only allow very naive algorithm
implementations. Hadoop thus also has to provides additional hooks to
override: Sorting, Partitioner, GroupingComparator, ...
Use-cases:

I Outputting globally by key sorted data.
I Increasing data-locality by using special partitioners, instead of

hash-partitioning.
I Answering window queries by sorting the values per group for the

reducer.
• A single Map/Reduce job is only rarely enough, need to express more

complex data pipelines.
• Lightweight recovery mechanisms. Heavyweight mechanisms contribute

more than > 70% of total job cost in Hadoop.

26 / 50

Distributed Processing Spark

The Spark Stack

Further convenience APIs on top of spark:
• Spark SQL - Express queries using SQL
• Spark Streaming - Allows for streaming data analysis instead of only

batch analysis
• GraphX - An API especially tailored towards analyzing graphs and also

implementing custom graph algorithms
• MLIB - Provides machine learning algorithms

27 / 50

Distributed Processing Spark

Evolution of the Spark Programming Model: RDD
Key idea: resilient distributed datasets (RDDs)

• + Distributed collection of objects that can be cached in memory
across the cluster

• + Manipulated through parallel functional operators (no need to write
tons of boilerplate classes)

• + Chain transformations easily and ability to store pipelines into
variables for easy composition

• + Materialization of intermediate steps optional as data can just be
recomputed on node failure.

Limitations
• - Datamodel still opaque blobs, no optimization Possible
• - Garbage collection overhead when keeping objects in memory

Programming interface
• Functional APIs in Scala, Java, Python
• Interactive use from Scala shell

28 / 50

Distributed Processing Spark

Evolution of the Spark Programming Model: DataFrame

Key idea: More declarative API - Spark SQL and DataFrame API
• + Declarativity allows query plan optimization
• + Strongly typed data model allows for optimized storage
• + Query compilation avoid interpretation overhead

Limitations
• - No custom lambdas possible, DataFrames first need to be converted

to RDDs
• - Spark SQL has no syntax checking and DataFrame API also limited

29 / 50

Distributed Processing Spark

Evolution of the Spark Programming Model: Dataset API

Key idea: Combination of RDD and DataFrames
• + When fully using strong typing everything is checked during compile

time
• + Optionally also weakly typed objects usable
• + Retains optimizability and code compilation

Footnote: The DataFrame and Dataset API’s internally are mapped to
RDDs and can use linage based recovery methods.

30 / 50

Distributed Processing Spark

Using the Dataset API

Basic principle:
1. Create initial dataset.
2. Analyze it by calling the corresponding methods, e.g. limit(...),

filter(...). Each method again returns a Dataset object.
3. Evaluation only starts once the result is required, e.g. by using count(),

show() or collect().

31 / 50

Distributed Processing Spark

Supported transformations
• agg
• distinct
• except
• filter
• flatMap
• groupBy
• intersect
• joinWith
• limit
• map
• orderBy
• sample
• select
• sort
• union

32 / 50

Distributed Processing Spark

Examples

• Word-Count (Aggregation)

33 / 50

Distributed Processing Spark

Extra Dataset functions

Managing Datasets:
• persist
• unpersist
• explain
• printSchema

Collecting results:
• describe
• first
• count
• show
• collect
• foreach

34 / 50

Distributed Processing Spark

Examples

• Word-Count (Aggregation)
• TPC-H Join (other SQL constructs)
• PageRank

35 / 50

Distributed Processing Spark

Fault Tolerance

RDDs track lineage information to rebuilt lost data.
Snapshots are automatically created after repartitioning transformations and
managed using an LRU cache to speed up recovery.

36 / 50

Distributed Processing Spark

Spark Detail: Optimizer

Steps:
1. Logical plan from Dataset / DataFrame / Spark SQL
2. Apply transformation rules to get optimized logical plan
3. Generate physical plan and select cheapest by using cost model

37 / 50

Distributed Processing Spark

Spark Detail: Tungsten Runtime

Spark’s runtime focuses on three main pain points:
• Memory Management and Binary Processing: leveraging application

semantics to manage memory explicitly and eliminate the overhead of
deserialization into the JVM object model and garbage collection

• Cache-aware computation: algorithms and data structures to exploit
memory hierarchy (columnar storage and compression)

• Code generation: using code generation to exploit modern compilers
and CPUs

38 / 50

Distributed Processing Spark

Examples: Code compilation

Whole stage generation can be identified by calling explain(). Entries
marked with (*) are using it.

• Word-Count (Aggregation)

39 / 50

Distributed Processing Spark

What Makes it Faster?

• Support for general DAGs
• Optimizer and Binary / Code Generation Runtime
• Lower-latency engine (Spark OK with 0.5s jobs)
• Column-oriented storage and compression

40 / 50

Distributed Processing Spark

What it Means for Users

Separate frameworks on Hadoop:
• HDFS read, ETL, HDFS write
• HDFS read, train, HDFS write
• HDFS read, query, HDFS write

Spark:
• HDFS read, ETL, train, query (combine Python, Scala, Java)

41 / 50

Distributed Processing Spark

Conclusion

• Big data analytics is evolving to include
I More complex analytics (e.g. machine learning)
I More interactive ad-hoc queries
I More real-time stream processing

• Spark is a fast platform that unifies these applications
• More info: http://spark.apache.org

http://spark.apache.org

42 / 50

Cloud Computing

Cloud Computing

For distributed data mangling, a cluster of machines is necessary. However
configuring your own cluster is not.
Many providers offer these services for rent:

• Infrastructure as a Service
• Platform as a Service
• Software as a Service

43 / 50

Cloud Computing

Services

Infrastructure Rent compute resources, storage capacity, network
connectivity, mobile devices

Platform Rent platform software: databases, webservers, CDNs, cluster
manager, user tracking

Software Rent user software: developer tools, data analytics tools, mail
services, office packages and much more

44 / 50

Cloud Computing

Service Providers

Biggest players:
• Amazon Web Services
• Microsoft Azure
• Google Cloud Platform

45 / 50

Cloud Computing Amazon

Example: Amazon Services

Infrastructure Services:
• EC2: virtual machines
• S3: distributed storage
• VPC: virtual private network

Platform as a service:
• RDS: relational databases
• EMR: MapReduce cluster, e.g. to run Spark
• Athena, Data Pipeline, ...: analytics tools
• dozens of more services available, see aws.amazon.com/documentation

46 / 50

Cloud Computing Amazon

Amazon EC2

Provision as many virtual machines as you need. Instances specs.1:
• With RAM from 0.5 to 1952 GiB
• With 1 to 128 vCPUs (vCPU is a hyperthread most of the time)
• Up to 16 GPUs (e.g. NVIDIA K80 GPUs with 16GB RAM)
• Up to 8 FPGAs
• Up to 8 x 800 GB SSDs or 24 x 2000 GB HDDs

Prices depend on your usage:
Smallest instance: $0.0059/h
Largest general purpose instance: $3.447/h
Largest compute instance: $1.591/h
Largest memory instance: $13.338/h

1https://aws.amazon.com/ec2/instance-types/

47 / 50

Cloud Computing Amazon

Amazon S3

S3 is a distributed file storage. In S3 lingo:
• buckets are used to store objects
• objects are uniquely identified by bucket, object key and version ID
• HTTP verbs are used for data modification and retrieval: GET, HEAD,

PUTS, DELETES

48 / 50

Cloud Computing Amazon

S3 Features

Amazon Web Services promises that S3
• stores an infinite amount of data in a bucket
• scales past trillions of objects
• offers object versioning
• offers access management
• yields 99.999999999% durability

To achieve this scalability, S3 only offers eventual consistency. This means
especially, that stale reads are possible.

49 / 50

Cloud Computing Amazon

How much data does Amazon store?

Not known, but let their offerings speak for themselves:
• AWS Snowmobile, a solution to transport 100 Petabyte
• https://aws.amazon.com/snowmobile/

https://aws.amazon.com/snowmobile/

50 / 50

Cloud Computing Amazon

How to experiment with AWS

Amazon offers a free tier with
1. 750 hours monthly for micro-instance usage
2. 5GB S3 storage with 20000 GET-requests and 2000-PUT requests
3. 750 hours of RDS (relational database service)

This gives you a nice opportunity to be master of your own compute cluster!
If you want more free resources, consider applying for aws educate.

https://aws.amazon.com/de/free/

	Distributed Processing
	MapReduce
	Hadoop
	Spark

	Cloud Computing
	Amazon

