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Scale Out in Big Data Analytics

• Big Data usually means data is
distributed

• Scale out to process very large
inputs

• but for analytics data has to be
combined and aggregated

• typically map/reduce-based,
Hadoop/Hive etc.

• data is copied to processing nodes
for aggregations

• not very smart, dominated by
network traffic

• smart data movement can speed
up processing significantly
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Running Example (1)

• Focus on analytical query
processing in this talk

• TPC-H query 12 used as
running example

• Runtime dominated by join
orders on lineitem

• Example from well-known
benchmark, but applicable for
all distributed joins
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Running Example (2)

• Relations are equally distributed
across nodes

• We make no assumptions on
the data distribution

• Thus, tuples may join with
tuples on remote nodes

• Communication over the
network required
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CPU vs. Network
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CPU speed has grown much faster than network bandwidth
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Scale Out: Network is the Bottleneck

• Single node: Performance is
bound algorithmically

• Cluster: Network is bottleneck for
query processing

• Investing time and effort in
decreasing network traffic pays off

• Goal:
Increase local processing to close
the performance gap jo
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Neo-Join: Network-optimized Join [ICDE14]

1. Open Shop Scheduling
Efficient network communication

2. Optimal Partition Assignment
Increase local processing

3. Selective Broadcast
Handle value skew
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Bandwidth Sharing
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• Simultaneous use of a single link creates a bottleneck

• Reduces bandwidth by at least a factor of 2
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Näıve Schedule
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time
• Node 2 and 3 send to node 1 at the same time

• Bandwidth sharing increases network duration significantly
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Open Shop Scheduling (1)

Avoiding bandwidth sharing translates to
open shop scheduling:

• A sender has one transfer per receiver

• A receiver should receive at most one
transfer at a time

• A sender should send at most one
transfer at a time
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Open Shop Scheduling (2)

Compute optimal schedule:

• Edge weights represent total transfer
duration

• Scheduler repeatedly finds perfect
matchings

• Each matching specifies one
communication phase

• Transfers in a phase will never share
bandwidth
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Optimal Schedule
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• Open shop schedule achieves minimal network duration

• Schedule duration determined by maximum straggler
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Distributed Join

• Tuples may join with tuples on
remote nodes

• Repartition and redistribute
both relations for local join

• Tuples will join only with the
corresponding partition

• Using hash, range, radix, or
other partitioning scheme

• In any case: Decide how to
assign partitions to nodes
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Running Example: Hash Partitioning
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Assign Partitions to Nodes (1)

Option 1: Minimize network traffic

• Assign partition to node that owns
its largest part

• Only the small fragments of a
partition sent over the network

• Schedule with minimal network
traffic may have high duration

5 6 5

2 3 3

2 3 3

hash partitioning (x mod 3)

4

4

5

5

4

4
P2 P3P1

5 6 5

4 5 4

4 5 4

hash partitioning (x mod 3)

5

5

55

4

4

P2 P3P1

traffic: 26 time: 26 traffic: 28 time: 10

13
13

4 5 1
4 4 1
4 4 1

open shop schedule open shop schedule

n1

n3

n2

n1

n3

n2

n1
n2
n3

n1
n2
n3

5 6 5

2 3 3

2 3 3

hash partitioning (x mod 3)

4

4

5

5

4

4
P2 P3P1

5 6 5

4 5 4

4 5 4

hash partitioning (x mod 3)

5

5

55

4

4

P2 P3P1

traffic: 26 time: 26 traffic: 28 time: 10

13
13

4 5 1
4 4 1
4 4 1

open shop schedule open shop schedule

n1

n3

n2

n1

n3

n2

n1
n2
n3

n1
n2
n3

Thomas Neumann Accelerating Analytical Workloads 15 / 26



Assign Partitions to Nodes (2)

Option 2: Minimize response time:

• Query response time is time from
request to result

• Query response time dominated by
network duration

• To minimize network duration,
minimize maximum straggler
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Minimize Maximum Straggler

• Formalized as mixed-integer
linear program

• Shown to be NP-hard in worst
case

• But in practice fast enough
using CPLEX or Gurobi
(< 0.5 % overhead for 32 nodes,
200 M tuples each)

• Partition assignment can
optimize any partitioning
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(a) Create histograms according to the last three bits of the join key
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(b) Compute an optimal partition as-
signment based on the histograms
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(c) Resulting send/receive costs deter-
mine the network phase duration

Fig. 4. Example for the optimal partition assignment which aims at a minimal
network phase duration with three nodes and eight (23) radix partitions

maximum stragglers with a cost of 12 as depicted in Fig. 4(c).
For a perfect hash partitioning one would expect that every
node has to send 1�n-th of its tuples to every other node (≈
21) and also receive 1�n-th of the tuples from every other
node (also ≈ 21). In this simplified example, radix partitioning
reduced the duration of the network phase by almost a factor
of two compared to hash partitioning.

B. Optimal Partition Assignment (Phase 2)

The previous section described how to repartition the input
relations so that tuples with the same join key fall into the same
partition. In general, the new partitions are fragmented across
the nodes. Therefore, all fragments of one specific partition
have to be transferred to the same node for joining. This
section describes how to determine an assignment of partitions
to nodes that minimizes the network phase duration.

We define the receive cost of a node as the number of
tuples it receives from other nodes for the partitions that were
assigned to it. Similarly, its send cost is defined as the number
of tuples it has to send to other nodes. Section III-C4 shows
that the minimum network phase duration is determined by the
node with the maximum send/receive cost. The assignment is
therefore optimized to minimize this maximum cost.

A naı̈ve approach would assign a partition to the node that
owns its largest fragment. However, this is not optimal in
general. Consider the assignment for the running example in
Fig. 4(b). Partition 7 is assigned to node 1 even though node 0

owns its largest fragment. While the assignment of partition 7
to node 0 reduces the send cost of node 0 by 4 tuples, it also
increases its receive cost to a total of 13 tuples. As a result, the
network phase duration increases from 12 to 13 (cf. Fig. 4(c)).

1) Mixed Integer Linear Programming: We phrase the par-
tition assignment problem as a mixed integer linear program
(MILP). As a result, one can use an integer programming
solver to solve it. The linear program computes a configuration
of the decision variables xij ∈ {0,1}. These decision variables
define the assignment of the p partitions to the n nodes: xij = 1
determines that partition j is assigned to node i, while xij = 0
specifies that partition j is not assigned to node i.

Each partition has to be assigned to exactly one node:
n−1�
i=0 xij = 1 for 0 ≤ j < p (1)

The linear program should minimize the duration of the
network phase, which is equal to the maximum send or receive
cost over all nodes. We denote the send cost of node i as si

and its receive cost as ri. The objective function is therefore:

min max
0≤i<n{si, ri} (2)

Using the decision variables xij and the size of partition j
at node i—denoted with hij—we can express the amount of
data each node has to send (si) and receive (ri):

si = p−1�
j=0 hij ⋅ (1 − xij) for 0 ≤ i < n (3)

ri = p−1�
j=0
��xij

n−1�
k=0,i≠k hkj

�� for 0 ≤ i < n (4)

Equation 3 computes the send cost of node i as the size
of all local fragments of partitions that are not assigned to
it. Likewise, equation 4 adds the size of remote fragments of
partitions that were assigned to node i to the receive cost.

MILPs require a linear objective, which minimizing a max-
imum is not. Fortunately, we can rephrase the objective and
instead minimize a new variable w. Additional constraints take
care that w assumes the maximum over the send/receive costs:

(OPT-ASSIGN)

minimize w, subject to

w ≥ p−1�
j=0 hij(1 − xij) 0 ≤ i < n

w ≥ p−1�
j=0
��xij

n−1�
k=0,i≠k hkj

�� 0 ≤ i < n

1 = n−1�
i=0 xij 0 ≤ j < p

One can obtain an optimal solution for a specific partition
assignment problem (OPT-ASSIGN) by passing the mixed
integer linear program to an optimizer such as Microsoft
Gurobi3 or IBM CPLEX4. These solvers can be linked as a
library to create and solve linear programs via API calls.

3http://www.gurobi.com
4http://ibm.com/software/integration/optimization/cplexThomas Neumann Accelerating Analytical Workloads 17 / 26



Running Example: Locality
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Locality

• Running example exhibits
time-of-creation clustering

• Radix repartitioning on most
significant bits retains locality

• Partition assignment can exploit
locality

• Significantly reduces query
response time
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Broadcast

• Alternative to data
repartitioning

• Replicate the smaller relation
between all nodes

• Larger relation remains
fragmented across nodes

broadcast O local join
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Selective Broadcast

• Decide per partition whether to
assign or broadcast

• Broadcast orders for P2, let line
items remain fragmented

• Assign the other partitions taking
locality into account

• Improves performance for high
skew and many duplicates
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Experimental Setup

• Cluster of 4 nodes

• Core i7, 4 cores, 3.4 GHz, 32 GB RAM

• Gigabit Ethernet

• Tuples consist of 64 bit key, 64 bit payload
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Locality

• Vary locality from 0%
(uniform distribution) to 100%
(range partitioning)

• Neo-Join improves join
performance from 29 M to
156 M tuples/s (> 500 %)

• 3 nodes, 600 M tuples jo
in
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TPC-H Results (scale factor 100)

• Results for three selected
TPC-H queries

• Broadcast outperforms hash
for large relation size differences

• Neo-Join always performs better
due to selective broadcast and
locality

• 4 nodes, ca. 100GB data
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Further Optimizations

Network-aware joining is only one ingredient

• All Query Processing steps are important
• parallel, network aware, maximize locality [PVDB12]

• group by, sort, cube, ... [DEBUL14, SIGMOD13, PVLDB11]

• also: smart loading/parsing [PVLDB13]

• Query Optimization has a huge impact
• Reformulate the query into a more efficient form [EDBT14,ICDE12]

• Involves algebraic optimization, exploiting statistics, etc. [ICDE11]

• Can improve runtimes by orders of magnitude!

Result is much faster than a naive map/reduce approach.
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Conclusion

Analyzing Big Data is challenging

• very large volume, distributed

• many operations require joining data

• network is a bottleneck

We can use optimization techniques to speed up the analysis

• maximize bandwidth

• exploit data characteristics (locality, skew, etc.)

• smart scheduling of operations

Improves over commonly used approaches like Hive by order of magnitudes.
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