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Dataflow systems in different areas

Machine- and deep learning Graph and stream-processing

Compiling Dataflow Systems are Everywhere!
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.

for each tuple t in sales
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
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   if t.price > 500
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   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Generated Query Code Dataflow Graph

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Generated Query Code Dataflow Graph

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales

   ...

   if t.price > 500
      
      ...

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales

   ...

   if t.price > 500
      
      ...

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Generated Query Code Dataflow Graph

Source Line

Recorded Call-Stack

Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

malloc(...)

Scan: call malloc()

...

Call-Stack Sample

for each tuple t in sales

   ...

   if t.price > 500
      
      ...

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register



Profiling Dataflow Systems on Multiple Abstraction Levels

beischl@in.tum.de 7

Tailored Profiling
Tagging Dictionary and Register Tagging

Profiling Dataflow Systems on Multiple Abstraction Levels EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.
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      unsetTag()

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Generated Query Code Dataflow Graph

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Generated Query Code Dataflow Graph

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales
 
   call malloc(...)

   if t.price > 500

      call malloc(...)

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register
for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register



Profiling Dataflow Systems on Multiple Abstraction Levels

beischl@in.tum.de 7

Tailored Profiling
Tagging Dictionary and Register Tagging

Profiling Dataflow Systems on Multiple Abstraction Levels EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.

for each tuple t in sales
   setTag(Scan)
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   if t.price > 500
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.

for each tuple t in sales
   setTag(Scan)
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.
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Figure 2. Layers of intermediate representation for the Um-
bra data�ow system. With today’s pro�lers, developers with
expertise on di�erent layers must all use pro�ling reports
on the lowest IR level.

hotspots and bottlenecks in the system (e.g., where the time
is spent, how operations interact, how e�ciently operations
use underlying resources, etc.) would be of great use.
However, with the current tools this task is not trivial.

Even in the simple(r) case, where the data�ow runs on a
single machine, does not rely on I/O for data exchange or
synchronization, and only uses the CPU (does not o�oad
computation to accelerators), the problem of mapping the
low-level pro�ling detail to higher-level components and
abstraction levels is a challenge. To understand the problem
better, we make the following observations:
Pro�lers work on low-level IR. They operate on the exe-
cutable and its libraries. As a result, the pro�les they gener-
ate only aggregate the recorded events on assembly-level or
source-line / function call granularity. While this is useful
information for a low-level systems engineer, like the Opera-
tor Developer working with compilers and code generation,
the data is too raw for anyone working with higher-level
constructs and concepts (cf. Figure 2). They will have to
reverse-engineer through multiple layers of code generation
to �nd where these instructions originate from, a process
that can easily become involved, ine�ective, and error-prone.
Pro�ling reports overall statistics for an event. Pro�l-
ers often fail to leverage the time dimension recorded along
with the collected samples. This data would be useful, not
only for performance tuning pipelines where multiple oper-
ations can be active at the same time, but also when provi-
sioning resources to di�erent operators at runtime (e.g., for
streaming data�ow engines [27]).
Memory tracing is costly and done by another tool.
Knowing the set of addresses accessed during program execu-
tion can be very valuable to developers. For instance, which
data structure was accessed when most of the cache-misses
are recorded and by which operator can help a developer
choose a more suitable data structure, or be more careful
with data partitioning among the executing threads.

Typically, memory tracing is done on a system level, which
comes with a big performance overhead, making it imprac-
tical, and in a format that maps the frequency of access
requests to memory addresses, making it too raw for anyone
working on higher abstraction levels.
There is a lack of a holistic solution. All of the above-
identi�ed limitations of existing pro�lers are because they
operate completely decoupled from the rest of the compila-
tion and optimization process (Figure 2). In fact, the whole
focus during the lowering and optimization process is on gen-
erating highly optimized code. As a side-e�ect, we lose track
of the higher-level components. For instance, in the step of
lowering a database query plan to LLVM-IR, the code gener-
ator produces low-level loops that fuse multiple operators
together, thereby losing the abstraction concept of operators
per-se and the dependency between them. As a result, pro�l-
ers cannot re-establish the link because the boundaries of the
higher-level components are often blurred in the IR of lower
levels, which is also why pro�ling data�ows on multiple
abstraction levels becomes such a puzzle for anyone.

3.1 Pro�ling Example
To make things more clear, let us walk through an example
that highlights the di�erent steps needed to identify a poten-
tial bottleneck in our DBMS Umbra that generates machine
code to achieve maximum in-memory processing speed.
As many other data�ow systems, Umbra progressively

lowers each user’s request (i.e., query) through a series of
optimization steps. The query in Figure 3a, for example, is
�rst parsed and then internally represented as the data�ow
graph in Figure 3b. The data�ow graph is then lowered to
an imperative program (i.e., into LLVM IR, the intermediate
representation of the LLVM optimizing compilation frame-
work [22]). LLVM then lowers the IR program down to exe-
cutable machine code.
Before discussing performance pro�les of the generated

code, let us brie�y inspect the structure of the generated code.

Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = �Chip�
Group By s.id;

...

Filter?A824>500

Scan sales

(a) Example query in SQL (b) Data�ow graph for the query.

1 for each tuple C1 in sales s
2 if C1 has match in 1? .83=B .83 [C1 .83 ]
3 store C1 in hashtable of �B .83

(c) Pseudo-code for the execution of the blue pipeline of Figure 3b.
Figure 3. Example querywith corresponding data�ow graph
and generated code.

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Generated Query Code Dataflow Graph

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Generated Query Code Dataflow Graph

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales
 
   call malloc(...)

   if t.price > 500

      call malloc(...)

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register
for each tuple t in sales
   setTag(Scan)
   call malloc(...)
   unsetTag()
   if t.price > 500
      setTag(Filter)
      call malloc(...)
      unsetTag()

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales
 
   call malloc(...)

   if t.price > 500

      call malloc(...)

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

📸

for each tuple t in sales
 
   call malloc(...)

   if t.price > 500

      call malloc(...)

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register

for each tuple t in sales

   ...

   if t.price > 500
      
      ...

 ...
|

Filter price > 500
|

Scan sales

{for each tuple t in sales s -> Scan sales}

{if t.price > 500 -> Filter}

Scan

Machine Register

malloc(...) Scan

Profiling Sample

Source Line Register Value

malloc(...)

Profiling Sample

Source Line
Scan, Filter

Tagging Dictionary

malloc(...) Filter

Profiling Sample

Source Line Register Value

Filter

Machine Register



Profiling Dataflow Systems on Multiple Abstraction Levels

beischl@in.tum.de 8

Insights with Tailored Profiling



Profiling Dataflow Systems on Multiple Abstraction Levels

beischl@in.tum.de 8

Insights with Tailored Profiling

Profiling Dataflow Systems on Multiple Abstraction Levels EuroSys ’21, April 26–29, 2021, Online, United Kingdom

partitioning and aggregation. Thus, we can map LLVM IR in-
structions through the task level back to the original data�ow
graph operators.

5.5 Precise Timestamps for Pro�ling Samples
Tailored Pro�ling requires pro�ling samples with a reliable
timestamp to report results with a time dimension. Umbra
therefore uses the Linux kernel’s perf API [26] to record
pro�ling samples with PEBS.

However, the samples’ timestamps provided by the Linux
kernel have a bug and therefore do not represent the sam-
pling time point correctly, as we observed. Instead of the ex-
isting timestamp, we use the processor’s Timestamp Counter
(TSC) [17]. The TSC has cycle-grained resolution and is al-
ready collected in PEBS samples of processors since Sky-
lake, though currently dropped by the kernel during sample
formatting. We therefore modi�ed the Linux kernel with a
workaround to include the TSC in the formatted samples
and convert it to =B using a kernel module [38].

6 Evaluation
In this section we evaluate the advantages of Tailored Pro�l-
ing as well as its accuracy and runtime overhead.
Tailored Pro�ling’s major feature is to produce pro�ling

reports at the right abstraction level for the developer, which
is hard to quantify and very subjective. Thus, instead of
success metrics, we show the value of Tailored Pro�ling
with use cases for di�erent users. Afterwards, we evaluate
its accuracy and the induced overhead in Sections 6.2 to 6.3.

Experimental Setup. We used the TPC-H benchmark [49]
with a scale factor of 1 (dataset size 1GB) for the use-cases,
and scale factor 10 (dataset size 10GB) to measure perfor-
mance and accuracy. Umbra and Tailored Pro�ling support
multi-socket and multicore execution. However, we executed
all queries single-threaded with Umbra for experimental clar-
ity, e.g., to avoid locking and other side-e�ects. The use-cases
were conducted on a machine with an Intel Core i7-7700K
running at 4.2 GHz (turbo boost of 4.5 GHz), 32GB DRAM
and Ubuntu 19.10. The performance experiments’ test ma-
chine had an Intel Core i9-9900X with 3.5 GHz (turbo boost
of 4.4 GHz), 64 GB DRAM and Ubuntu 20.04. We used Linux
perf version 5.2 [25] to pro�le with PEBS, disabled sample
throttling and handed the samples to Tailored Pro�ling with
perf script. To pro�le costs and operator activity, we used
the INST_RETIRED.PREC_DIST event and recorded a sample
every 5000 events. For memory access patterns, we used the
MEM_INST_RETIRED.ALL_LOADS event and captured a sam-
ple all 1000 loads.

6.1 Use Cases
We begin the use cases with the domain expert and proceed
with the optimizer developer and the operator developer.

Select l_orderkey,
avg(l_extendedprice)

From lineitem, orders
Where o_orderdate <

�1995-04-01�
and o_orderkey =

l_orderkey
Group By l_orderkey;

�;_>A34A:4~,0E6 (...) (65.1%)

1>_>A3 ...=;_>A3 ... (32.4%)

f>_>A3<01995...0 (0.3%) Tablescan
lineitem (1.6%)

Tablescan
orders (0.6%)

(a) Example query in SQL (b) Query plan with cost pro�le

Figure 9. Tailored Pro�ling can aggregate samples up to
query plan level — a concept database users are familiar
with.

Domain Expert. In the �rst use-case, a user of Umbra in-
vestigates why the query from Figure 9a runs slower than
expected.
At a familiar abstraction level, Tailored Pro�ling enables

the user to view how much compute time each operator
takes, as shown in Figure 9b. Here, they can quickly grasp
the overall execution plan for the query. The report reveals
that 65% of the runtime is spent in the aggregation operator
and 32% in the join operator.

To speed up the query, the user can nowmake an informed
decision on whether to, e.g., introduce index structures to
reduce the cost of the join computation. Alternatively, they
may decide to take computational shortcuts and add a sam-
pling operator to reduce the number of tuples that reach the
aggregation operator.

Note that most database systems have a feature that seem-
ingly o�ers the same view. The EXPLAIN ANALYZE command
counts how many tuples each operator processes and visual-
izes the statistics in an operator tree. However, even though
the tuple count is a decent approximation, our sampling
approach captures the actual time spent in each operator.

OptimizerDeveloper. As a second use-case, we inspect the
work of an expert in Umbra’s optimizer. They investigate the
performance of a query with the two alternative plans, as
shown in Figure 10. Both plans have identical intermediate
result sizes, so with the standard cost function the optimizer
could choose either plan. Choosing the left one (Figure 10a)
seems like a good option as the query plan �rst probes the
smaller hash table (expecting fewer cache-misses) that will
consequently reduce the number of tuples that also probe
the (more expensive) larger hash table. Yet, this results in a
slower runtime than the alternative.

As this is counter-intuitive, the developer wants to identify
the cause and re�ne the cost function. The developer thus
applies Tailored Pro�ling to inspect the operator activity
over time in the probing pipeline (cf. Figure 11). The report
con�rms that the alternative plan is faster. Moreover, starting
at 70ms in the alternative plan, the join on orders becomes
dominant while becoming negligible in the original plan.
After this hint, further investigation reveals that lineitem

Time per operator
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partitioning and aggregation. Thus, we can map LLVM IR in-
structions through the task level back to the original data�ow
graph operators.

5.5 Precise Timestamps for Pro�ling Samples
Tailored Pro�ling requires pro�ling samples with a reliable
timestamp to report results with a time dimension. Umbra
therefore uses the Linux kernel’s perf API [26] to record
pro�ling samples with PEBS.

However, the samples’ timestamps provided by the Linux
kernel have a bug and therefore do not represent the sam-
pling time point correctly, as we observed. Instead of the ex-
isting timestamp, we use the processor’s Timestamp Counter
(TSC) [17]. The TSC has cycle-grained resolution and is al-
ready collected in PEBS samples of processors since Sky-
lake, though currently dropped by the kernel during sample
formatting. We therefore modi�ed the Linux kernel with a
workaround to include the TSC in the formatted samples
and convert it to =B using a kernel module [38].

6 Evaluation
In this section we evaluate the advantages of Tailored Pro�l-
ing as well as its accuracy and runtime overhead.
Tailored Pro�ling’s major feature is to produce pro�ling

reports at the right abstraction level for the developer, which
is hard to quantify and very subjective. Thus, instead of
success metrics, we show the value of Tailored Pro�ling
with use cases for di�erent users. Afterwards, we evaluate
its accuracy and the induced overhead in Sections 6.2 to 6.3.

Experimental Setup. We used the TPC-H benchmark [49]
with a scale factor of 1 (dataset size 1GB) for the use-cases,
and scale factor 10 (dataset size 10GB) to measure perfor-
mance and accuracy. Umbra and Tailored Pro�ling support
multi-socket and multicore execution. However, we executed
all queries single-threaded with Umbra for experimental clar-
ity, e.g., to avoid locking and other side-e�ects. The use-cases
were conducted on a machine with an Intel Core i7-7700K
running at 4.2 GHz (turbo boost of 4.5 GHz), 32GB DRAM
and Ubuntu 19.10. The performance experiments’ test ma-
chine had an Intel Core i9-9900X with 3.5 GHz (turbo boost
of 4.4 GHz), 64 GB DRAM and Ubuntu 20.04. We used Linux
perf version 5.2 [25] to pro�le with PEBS, disabled sample
throttling and handed the samples to Tailored Pro�ling with
perf script. To pro�le costs and operator activity, we used
the INST_RETIRED.PREC_DIST event and recorded a sample
every 5000 events. For memory access patterns, we used the
MEM_INST_RETIRED.ALL_LOADS event and captured a sam-
ple all 1000 loads.

6.1 Use Cases
We begin the use cases with the domain expert and proceed
with the optimizer developer and the operator developer.

Select l_orderkey,
avg(l_extendedprice)

From lineitem, orders
Where o_orderdate <

�1995-04-01�
and o_orderkey =

l_orderkey
Group By l_orderkey;
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(a) Example query in SQL (b) Query plan with cost pro�le

Figure 9. Tailored Pro�ling can aggregate samples up to
query plan level — a concept database users are familiar
with.

Domain Expert. In the �rst use-case, a user of Umbra in-
vestigates why the query from Figure 9a runs slower than
expected.
At a familiar abstraction level, Tailored Pro�ling enables

the user to view how much compute time each operator
takes, as shown in Figure 9b. Here, they can quickly grasp
the overall execution plan for the query. The report reveals
that 65% of the runtime is spent in the aggregation operator
and 32% in the join operator.

To speed up the query, the user can nowmake an informed
decision on whether to, e.g., introduce index structures to
reduce the cost of the join computation. Alternatively, they
may decide to take computational shortcuts and add a sam-
pling operator to reduce the number of tuples that reach the
aggregation operator.

Note that most database systems have a feature that seem-
ingly o�ers the same view. The EXPLAIN ANALYZE command
counts how many tuples each operator processes and visual-
izes the statistics in an operator tree. However, even though
the tuple count is a decent approximation, our sampling
approach captures the actual time spent in each operator.

OptimizerDeveloper. As a second use-case, we inspect the
work of an expert in Umbra’s optimizer. They investigate the
performance of a query with the two alternative plans, as
shown in Figure 10. Both plans have identical intermediate
result sizes, so with the standard cost function the optimizer
could choose either plan. Choosing the left one (Figure 10a)
seems like a good option as the query plan �rst probes the
smaller hash table (expecting fewer cache-misses) that will
consequently reduce the number of tuples that also probe
the (more expensive) larger hash table. Yet, this results in a
slower runtime than the alternative.

As this is counter-intuitive, the developer wants to identify
the cause and re�ne the cost function. The developer thus
applies Tailored Pro�ling to inspect the operator activity
over time in the probing pipeline (cf. Figure 11). The report
con�rms that the alternative plan is faster. Moreover, starting
at 70ms in the alternative plan, the join on orders becomes
dominant while becoming negligible in the original plan.
After this hint, further investigation reveals that lineitem
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partitioning and aggregation. Thus, we can map LLVM IR in-
structions through the task level back to the original data�ow
graph operators.

5.5 Precise Timestamps for Pro�ling Samples
Tailored Pro�ling requires pro�ling samples with a reliable
timestamp to report results with a time dimension. Umbra
therefore uses the Linux kernel’s perf API [26] to record
pro�ling samples with PEBS.

However, the samples’ timestamps provided by the Linux
kernel have a bug and therefore do not represent the sam-
pling time point correctly, as we observed. Instead of the ex-
isting timestamp, we use the processor’s Timestamp Counter
(TSC) [17]. The TSC has cycle-grained resolution and is al-
ready collected in PEBS samples of processors since Sky-
lake, though currently dropped by the kernel during sample
formatting. We therefore modi�ed the Linux kernel with a
workaround to include the TSC in the formatted samples
and convert it to =B using a kernel module [38].

6 Evaluation
In this section we evaluate the advantages of Tailored Pro�l-
ing as well as its accuracy and runtime overhead.
Tailored Pro�ling’s major feature is to produce pro�ling

reports at the right abstraction level for the developer, which
is hard to quantify and very subjective. Thus, instead of
success metrics, we show the value of Tailored Pro�ling
with use cases for di�erent users. Afterwards, we evaluate
its accuracy and the induced overhead in Sections 6.2 to 6.3.

Experimental Setup. We used the TPC-H benchmark [49]
with a scale factor of 1 (dataset size 1GB) for the use-cases,
and scale factor 10 (dataset size 10GB) to measure perfor-
mance and accuracy. Umbra and Tailored Pro�ling support
multi-socket and multicore execution. However, we executed
all queries single-threaded with Umbra for experimental clar-
ity, e.g., to avoid locking and other side-e�ects. The use-cases
were conducted on a machine with an Intel Core i7-7700K
running at 4.2 GHz (turbo boost of 4.5 GHz), 32GB DRAM
and Ubuntu 19.10. The performance experiments’ test ma-
chine had an Intel Core i9-9900X with 3.5 GHz (turbo boost
of 4.4 GHz), 64 GB DRAM and Ubuntu 20.04. We used Linux
perf version 5.2 [25] to pro�le with PEBS, disabled sample
throttling and handed the samples to Tailored Pro�ling with
perf script. To pro�le costs and operator activity, we used
the INST_RETIRED.PREC_DIST event and recorded a sample
every 5000 events. For memory access patterns, we used the
MEM_INST_RETIRED.ALL_LOADS event and captured a sam-
ple all 1000 loads.

6.1 Use Cases
We begin the use cases with the domain expert and proceed
with the optimizer developer and the operator developer.

Select l_orderkey,
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From lineitem, orders
Where o_orderdate <
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(a) Example query in SQL (b) Query plan with cost pro�le

Figure 9. Tailored Pro�ling can aggregate samples up to
query plan level — a concept database users are familiar
with.

Domain Expert. In the �rst use-case, a user of Umbra in-
vestigates why the query from Figure 9a runs slower than
expected.
At a familiar abstraction level, Tailored Pro�ling enables

the user to view how much compute time each operator
takes, as shown in Figure 9b. Here, they can quickly grasp
the overall execution plan for the query. The report reveals
that 65% of the runtime is spent in the aggregation operator
and 32% in the join operator.

To speed up the query, the user can nowmake an informed
decision on whether to, e.g., introduce index structures to
reduce the cost of the join computation. Alternatively, they
may decide to take computational shortcuts and add a sam-
pling operator to reduce the number of tuples that reach the
aggregation operator.

Note that most database systems have a feature that seem-
ingly o�ers the same view. The EXPLAIN ANALYZE command
counts how many tuples each operator processes and visual-
izes the statistics in an operator tree. However, even though
the tuple count is a decent approximation, our sampling
approach captures the actual time spent in each operator.

OptimizerDeveloper. As a second use-case, we inspect the
work of an expert in Umbra’s optimizer. They investigate the
performance of a query with the two alternative plans, as
shown in Figure 10. Both plans have identical intermediate
result sizes, so with the standard cost function the optimizer
could choose either plan. Choosing the left one (Figure 10a)
seems like a good option as the query plan �rst probes the
smaller hash table (expecting fewer cache-misses) that will
consequently reduce the number of tuples that also probe
the (more expensive) larger hash table. Yet, this results in a
slower runtime than the alternative.

As this is counter-intuitive, the developer wants to identify
the cause and re�ne the cost function. The developer thus
applies Tailored Pro�ling to inspect the operator activity
over time in the probing pipeline (cf. Figure 11). The report
con�rms that the alternative plan is faster. Moreover, starting
at 70ms in the alternative plan, the join on orders becomes
dominant while becoming negligible in the original plan.
After this hint, further investigation reveals that lineitem

Time per operator Context-aware profiling over time
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partitioning and aggregation. Thus, we can map LLVM IR in-
structions through the task level back to the original data�ow
graph operators.

5.5 Precise Timestamps for Pro�ling Samples
Tailored Pro�ling requires pro�ling samples with a reliable
timestamp to report results with a time dimension. Umbra
therefore uses the Linux kernel’s perf API [26] to record
pro�ling samples with PEBS.

However, the samples’ timestamps provided by the Linux
kernel have a bug and therefore do not represent the sam-
pling time point correctly, as we observed. Instead of the ex-
isting timestamp, we use the processor’s Timestamp Counter
(TSC) [17]. The TSC has cycle-grained resolution and is al-
ready collected in PEBS samples of processors since Sky-
lake, though currently dropped by the kernel during sample
formatting. We therefore modi�ed the Linux kernel with a
workaround to include the TSC in the formatted samples
and convert it to =B using a kernel module [38].

6 Evaluation
In this section we evaluate the advantages of Tailored Pro�l-
ing as well as its accuracy and runtime overhead.
Tailored Pro�ling’s major feature is to produce pro�ling

reports at the right abstraction level for the developer, which
is hard to quantify and very subjective. Thus, instead of
success metrics, we show the value of Tailored Pro�ling
with use cases for di�erent users. Afterwards, we evaluate
its accuracy and the induced overhead in Sections 6.2 to 6.3.

Experimental Setup. We used the TPC-H benchmark [49]
with a scale factor of 1 (dataset size 1GB) for the use-cases,
and scale factor 10 (dataset size 10GB) to measure perfor-
mance and accuracy. Umbra and Tailored Pro�ling support
multi-socket and multicore execution. However, we executed
all queries single-threaded with Umbra for experimental clar-
ity, e.g., to avoid locking and other side-e�ects. The use-cases
were conducted on a machine with an Intel Core i7-7700K
running at 4.2 GHz (turbo boost of 4.5 GHz), 32GB DRAM
and Ubuntu 19.10. The performance experiments’ test ma-
chine had an Intel Core i9-9900X with 3.5 GHz (turbo boost
of 4.4 GHz), 64 GB DRAM and Ubuntu 20.04. We used Linux
perf version 5.2 [25] to pro�le with PEBS, disabled sample
throttling and handed the samples to Tailored Pro�ling with
perf script. To pro�le costs and operator activity, we used
the INST_RETIRED.PREC_DIST event and recorded a sample
every 5000 events. For memory access patterns, we used the
MEM_INST_RETIRED.ALL_LOADS event and captured a sam-
ple all 1000 loads.

6.1 Use Cases
We begin the use cases with the domain expert and proceed
with the optimizer developer and the operator developer.

Select l_orderkey,
avg(l_extendedprice)

From lineitem, orders
Where o_orderdate <

�1995-04-01�
and o_orderkey =

l_orderkey
Group By l_orderkey;
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(a) Example query in SQL (b) Query plan with cost pro�le

Figure 9. Tailored Pro�ling can aggregate samples up to
query plan level — a concept database users are familiar
with.

Domain Expert. In the �rst use-case, a user of Umbra in-
vestigates why the query from Figure 9a runs slower than
expected.
At a familiar abstraction level, Tailored Pro�ling enables

the user to view how much compute time each operator
takes, as shown in Figure 9b. Here, they can quickly grasp
the overall execution plan for the query. The report reveals
that 65% of the runtime is spent in the aggregation operator
and 32% in the join operator.

To speed up the query, the user can nowmake an informed
decision on whether to, e.g., introduce index structures to
reduce the cost of the join computation. Alternatively, they
may decide to take computational shortcuts and add a sam-
pling operator to reduce the number of tuples that reach the
aggregation operator.

Note that most database systems have a feature that seem-
ingly o�ers the same view. The EXPLAIN ANALYZE command
counts how many tuples each operator processes and visual-
izes the statistics in an operator tree. However, even though
the tuple count is a decent approximation, our sampling
approach captures the actual time spent in each operator.

OptimizerDeveloper. As a second use-case, we inspect the
work of an expert in Umbra’s optimizer. They investigate the
performance of a query with the two alternative plans, as
shown in Figure 10. Both plans have identical intermediate
result sizes, so with the standard cost function the optimizer
could choose either plan. Choosing the left one (Figure 10a)
seems like a good option as the query plan �rst probes the
smaller hash table (expecting fewer cache-misses) that will
consequently reduce the number of tuples that also probe
the (more expensive) larger hash table. Yet, this results in a
slower runtime than the alternative.

As this is counter-intuitive, the developer wants to identify
the cause and re�ne the cost function. The developer thus
applies Tailored Pro�ling to inspect the operator activity
over time in the probing pipeline (cf. Figure 11). The report
con�rms that the alternative plan is faster. Moreover, starting
at 70ms in the alternative plan, the join on orders becomes
dominant while becoming negligible in the original plan.
After this hint, further investigation reveals that lineitem

groupby
join

orders
lineitem

0 100 200

Base
+ 30 MB
+ 60 MB
+ 90 MB

+ 120 MB

Base
+ 10 MB
+ 20 MB
+ 30 MB

Base
+ 30 MB
+ 60 MB
+ 90 MB

Base
+ 200 MB
+ 400 MB
+ 600 MB

Time [ms]

Ad
dr

es
s

Execution Profiling

Result

Machine IR Results

3URਭOLQJ�6DPSOHV

'RPDLQ�([SHUW

CodeGen Dev

2SWLPL]HU�'HY
Connection lost

32%

for tuple t in table T
  if t[1] > 5
     ...

࠭HU\

'DWDਮRZ�*UDSK

,PSHUDWLYH�3URJ�

Machine IR

[���$VVHPEO\

Dataflow System



Profiling Dataflow Systems on Multiple Abstraction Levels

beischl@in.tum.de 10

Impact of Tailored Profiling

‣Preserve connection information to close gap
‣Profiling results on high abstraction levels

‣ Lightweight, high accuracy
‣ Easy to integrate
‣Applicable to many systems

‣ Already supported: profiling code on CPUs (multi-
socket and multicore)

‣ Future work: heterogenous compute resources, 
distributed systems

Where can you apply it?

Profiling Dataflow Systems on Multiple Abstraction Levels EuroSys ’21, April 26–29, 2021, Online, United Kingdom

partitioning and aggregation. Thus, we can map LLVM IR in-
structions through the task level back to the original data�ow
graph operators.

5.5 Precise Timestamps for Pro�ling Samples
Tailored Pro�ling requires pro�ling samples with a reliable
timestamp to report results with a time dimension. Umbra
therefore uses the Linux kernel’s perf API [26] to record
pro�ling samples with PEBS.

However, the samples’ timestamps provided by the Linux
kernel have a bug and therefore do not represent the sam-
pling time point correctly, as we observed. Instead of the ex-
isting timestamp, we use the processor’s Timestamp Counter
(TSC) [17]. The TSC has cycle-grained resolution and is al-
ready collected in PEBS samples of processors since Sky-
lake, though currently dropped by the kernel during sample
formatting. We therefore modi�ed the Linux kernel with a
workaround to include the TSC in the formatted samples
and convert it to =B using a kernel module [38].

6 Evaluation
In this section we evaluate the advantages of Tailored Pro�l-
ing as well as its accuracy and runtime overhead.
Tailored Pro�ling’s major feature is to produce pro�ling

reports at the right abstraction level for the developer, which
is hard to quantify and very subjective. Thus, instead of
success metrics, we show the value of Tailored Pro�ling
with use cases for di�erent users. Afterwards, we evaluate
its accuracy and the induced overhead in Sections 6.2 to 6.3.

Experimental Setup. We used the TPC-H benchmark [49]
with a scale factor of 1 (dataset size 1GB) for the use-cases,
and scale factor 10 (dataset size 10GB) to measure perfor-
mance and accuracy. Umbra and Tailored Pro�ling support
multi-socket and multicore execution. However, we executed
all queries single-threaded with Umbra for experimental clar-
ity, e.g., to avoid locking and other side-e�ects. The use-cases
were conducted on a machine with an Intel Core i7-7700K
running at 4.2 GHz (turbo boost of 4.5 GHz), 32GB DRAM
and Ubuntu 19.10. The performance experiments’ test ma-
chine had an Intel Core i9-9900X with 3.5 GHz (turbo boost
of 4.4 GHz), 64 GB DRAM and Ubuntu 20.04. We used Linux
perf version 5.2 [25] to pro�le with PEBS, disabled sample
throttling and handed the samples to Tailored Pro�ling with
perf script. To pro�le costs and operator activity, we used
the INST_RETIRED.PREC_DIST event and recorded a sample
every 5000 events. For memory access patterns, we used the
MEM_INST_RETIRED.ALL_LOADS event and captured a sam-
ple all 1000 loads.

6.1 Use Cases
We begin the use cases with the domain expert and proceed
with the optimizer developer and the operator developer.
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Domain Expert. In the �rst use-case, a user of Umbra in-
vestigates why the query from Figure 9a runs slower than
expected.
At a familiar abstraction level, Tailored Pro�ling enables

the user to view how much compute time each operator
takes, as shown in Figure 9b. Here, they can quickly grasp
the overall execution plan for the query. The report reveals
that 65% of the runtime is spent in the aggregation operator
and 32% in the join operator.

To speed up the query, the user can nowmake an informed
decision on whether to, e.g., introduce index structures to
reduce the cost of the join computation. Alternatively, they
may decide to take computational shortcuts and add a sam-
pling operator to reduce the number of tuples that reach the
aggregation operator.

Note that most database systems have a feature that seem-
ingly o�ers the same view. The EXPLAIN ANALYZE command
counts how many tuples each operator processes and visual-
izes the statistics in an operator tree. However, even though
the tuple count is a decent approximation, our sampling
approach captures the actual time spent in each operator.

OptimizerDeveloper. As a second use-case, we inspect the
work of an expert in Umbra’s optimizer. They investigate the
performance of a query with the two alternative plans, as
shown in Figure 10. Both plans have identical intermediate
result sizes, so with the standard cost function the optimizer
could choose either plan. Choosing the left one (Figure 10a)
seems like a good option as the query plan �rst probes the
smaller hash table (expecting fewer cache-misses) that will
consequently reduce the number of tuples that also probe
the (more expensive) larger hash table. Yet, this results in a
slower runtime than the alternative.

As this is counter-intuitive, the developer wants to identify
the cause and re�ne the cost function. The developer thus
applies Tailored Pro�ling to inspect the operator activity
over time in the probing pipeline (cf. Figure 11). The report
con�rms that the alternative plan is faster. Moreover, starting
at 70ms in the alternative plan, the join on orders becomes
dominant while becoming negligible in the original plan.
After this hint, further investigation reveals that lineitem
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