
Philipp Fent
Technical University of Munich

fent@in.tum.de

Umbra

● TUM’s first DBMS acquired by Salesforce

● Rewrite from scratch

● Cutting-edge database research

● Disk-based with in-memory performance

Performance

Performance

What makes Umbra fast?

What makes Umbra fast?

● Pipelined execution
○ Keeps values in registers

○ Minimizes materialization

What makes Umbra fast?

● Pipelined execution

● Data-centric code generation
○ Efficient code for complex expressions

%1 = zext i64 %int1; Zero extend to 64 bit
%2 = zext i64 %int2;
%3 = rotr i64 %2, 32; Rotate right
%v = or i64 %1, %3; Combine int1 and int2
%5 = crc32 i64 6763793487589347598, %v; First crc32
%6 = crc32 i64 4593845798347983834, %v; Second crc32
%7 = rotr i64 %6, 32; Shift second part
%8 = xor i64 %5, %7; Combine hash parts
%hash = mul i64 %8, 11400714819323198485; Mix parts

What makes Umbra fast?

● Pipelined execution

● Data-centric code generation

● Fully parallel algorithms
○ Allows scaling

○ Benefits from new hardware

What makes Umbra fast?

● Pipelined execution

● Data-centric code generation

● Fully parallel algorithms

● State-of-the-art query optimizer

What makes Umbra fast?

● Pipelined execution

● Data-centric code generation

● Fully parallel algorithms

● State-of-the-art query optimizer

Research system with all custom advanced parts

We’re commercializing soon!

Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra
○ Example: TPC-H Q17

○ https://umbra-db.com/interface/

https://umbra-db.com/interface/

Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra

● Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping

Query Optimization

● PostgreSQL grammar

● Parsed into relational algebra

● Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping

Rule-based
Canonicalization

Cost-based
Optimization

Expression Simplification

● Fold constants

● Canonicalize expressions

● Execute in evaluation engine

 o_orderdate >= date '1994-01-01'
and o_orderdate < date '1994-01-01' + interval '1' year

 ==

o_orderdate between date '1994-01-01' and date '1994-12-31'

Query Unnesting & Decorrelation

● Unnesting Arbitrary Queries

● Unnesting Arbitrary Queries
○ O(n²)

Query Unnesting

● Unnesting Arbitrary Queries
○ O(n²)

Query Unnesting

● Unnesting Arbitrary Queries
○ O(n²) -> O(n)

○ Huge improvement

Query Unnesting

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

where p_partkey = 42

Predicate Pushdown

● Place predicates at scan

● Propagate & fold constants

Initial Join Tree

● Push joins through aggregates

● Expand transitive join conditions

 c_nationkey = s_nationkey
and s_nationkey = n_nationkey

 ==

 c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and c_nationkey = n_nationkey

Initial Join Tree

● Push joins through aggregates

● Expand transitive join conditions

● Drop unnecessary joins

select sum(o_totalprice)
 from customer, orders
 where c_custkey = o_custkey

 ==

select sum(o_totalprice)
 from orders

Cost-Based Optimization

● Heuristics vs. statistics

Cost-Based Optimization

● Heuristics vs. statistics

● Statistics in Umbra:

○ Samples

○ Distinct counts

○ Numerical statistics (mean, variance) for aggregates

○ Functional dependencies

⇒ Estimate execution cost

Sample Evaluation

● Maintain uniform reservoir sample

● Evaluate scan predicates σ on sample

● Execute in evaluation engine

● Surprisingly accurate
○ 1024 tuples ~ 0.1% error

select count(*)
 from lineitem
 where l_commitdate < l_receiptdate
 and l_shipdate < l_commitdate

Sample Evaluation

Sample Evaluation

Sample Evaluation

● Estimate (correlated) predicates with confidence

● Any combination of predicates

● Tricky when 0 / 1024 tuples qualify

● Can do better for conjunctions

Sample Evaluation

● Calculate matches-bitsets
● Combine them to optimize ordering

○ TPC-H Q12:

 where l_shipmode in ('MAIL', 'SHIP')
 and l_commitdate < l_receiptdate
 and l_shipdate < l_commitdate
 and l_receiptdate between date '1994-01-01'
 and date '1994-12-31'

 0100’0011’1010’0100’1110’1011’1011’1100’1010’1010’1011’0000’1011’0011’1100’0000
& 0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111
& 1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000’1111’0000
& 1010’0110’1110’1110’1000’0011’0111’0101’0110’1111’1001’1101’1110’0011’1000’0001

● Size of sample > table size

● Allows a third round of constant propagation
○ Especially for small fact tables

Early Execution

select r_regionkey
 from region
 where r_name = 'Europe'

 ==

select 3

Join Ordering

● Hash Joins rule
○ Indexes don’t allow bushy plans -> less useful

Join Ordering

● Hash Joins rule
○ Indexes don’t allow bushy plans -> less useful

Join Ordering

● Hash Joins rule
○ Indexes don’t allow bushy plans -> less useful

● Distinct count estimates with Pat Sellinger’s equations

● HyperLogLog intersections

● Mean & stddev approximations for l_quantity < 0.2 * avg(l_quantity)

Early Probing

● Semijoin reduction

● Reuses existing hash tables

● Can use bloom filters if beneficial

Physical Optimization

● Indexes

● Worst-case optimal join

Physical Optimization

● Indexes

● Worst-case optimal join

● Groupjoin

Physical Optimization

● Indexes

● Worst-case optimal join

● Groupjoin

● Range join

● Join micro-optimizations
○ Multiset semantics

○ Allocation sizes

Recap

● Query compilation & optimization
○ Optimizer passes

○ Rule-based canonicalization

○ Cost-based optimization

● Cutting-edge research
○ Join ordering

○ Cardinality estimation

○ Integrated in a running system

1: Unoptimized Plan

2: Expression Simplification

3: Unnesting

4: Predicate Pushdown

5: Initial Join Tree

6: Sideway Information Passing

7: Operator Reordering

8: Early Probing

9: Common Subtree Elimination

10: Physical Operator Mapping

Conclusion

We are commercializing

Reach out:

fent@in.tum.de

TUM Open Source Project

● Low latency analytical queries

● Also works excellent for transactional and graph workloads

mailto:fent@in.tum.de

