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ABSTRACT
Main-memory database systems are emerging as the new
backbone of business applications. Besides flat relational
data representations also hierarchical ones are essential for
these modern applications; therefore we devise a new index-
ing and versioning approach for hierarchies that is deeply
integrated into the relational kernel.
We propose the DeltaNI index as a versioned pendant

of the nested intervals (NI) labeling scheme. The index
is space- and time-efficient and yields a gapless, fixed-size
integer NI labeling for each version while also supporting
branching histories. In contrast to a näıve NI labeling, it
facilitates even complex updates of the tree structure. As
many query processing techniques that work on top of the NI
labeling have already been proposed, our index can be used
as a building block for processing various kinds of queries.
We evaluate the performance of the index on large inputs
consisting of millions of nodes and thousands of versions.
Thereby we show that DeltaNI scales well and can deliver
satisfying performance for large business scenarios.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

Keywords
Database indexing; hierarchical data; hierarchy indexing;
multiversion indexing; labeling schemes; nested intervals

1. INTRODUCTION
A lot of business use cases feature hierarchical data; but ef-
ficient support for this kind of data is still missing in most
relational database systems. Especially in Enterprise Re-
source Planning (ERP) applications, various kinds of large
hierarchies exist. For example, companies need to manage
human resource (HR) hierarchies which model the relation-
ship between their employees (cf. Figure 1), enterprise as-
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Figure 1: An HR hierarchy and its NI encoding

set (EA) hierarchies which model all production-relevant as-
sets and their parts (e. g., plants, machines, machine-parts,
tools, equipment), or material hierarchies which model so-
called“bills of materials” (BOM) that constitute a hierarchi-
cal arrangement of components to assemble an end product.
These hierarchies (in particular EA) can become tremen-
dously large: We obtained statistics of a major mechanical
engineering company, which maintains an EA hierarchy of
59 million nodes in its ERP system. BOMs of large prod-
ucts can also consist of millions of nodes (e. g., a Boeing
747-400 consists of six million parts [3]). This data is also
used for reporting purposes that feature complex OLAP-
style queries over various recursive structural properties of
the hierarchies. Querying these properties using the flat re-
lational model (i. e., via recursive SQL) is very inefficient.
For example, finding all descendants of a node requires a re-
peated self-join. Al-Khalifa et al. [1] have shown that such a
join performs very poorly in comparison to structural joins
that use tree-aware indexes. Consequently, such indexes are
necessary to support hierarchical data as efficiently as mod-
ern database systems support relational data.

In order to deliver satisfying performance for complex
queries on large hierarchies—such as the mentioned ERP
use cases—we integrate hierarchy support with special tree-
aware indexes into modern main-memory database systems.
The hierarchies are to be integrated very tightly into the re-
lational model, enabling hierarchies over the tuples of one or
even more relations. For example, an HR hierarchy might
consist of tuples from an employee relation and a district re-
lation. Such a tight integration will allow customers to query
and join relational and hierarchical data in one query, facil-
itating complex reporting queries over structural properties
of the hierarchy and attributes of the tuples over which the
hierarchy is built. For example, in the HR hierarchy from
Figure 1, a query on relational and hierarchical data would
be “sum up the salary of all subordinates of Celia”.

For traceability and confirmability reasons, versioning is
a central part of many ERP applications. Consequently, de-
livering satisfying query performance is even more difficult



since queries should also be able to work on former versions
of the hierarchy. Efficient indexing of versioned data poses
a major challenge, as indexes for non-versioned data are not
directly applicable. Our goal is to develop a versioned, tree-
aware index that can efficiently handle even very large hier-
archies like the aforementioned use cases. Such a hierarchy
is usually versioned on a daily basis for several years, so the
result is a versioned hierarchy with millions of nodes and
thousands of versions. Other applications may need even
finer grained version control resulting in millions of versions.
Labeling schemes are prominent approaches for indexing

hierarchical data that are used by most contributions in the
field of XML query processing. Here, a constant number
of labels is assigned to each node and certain queries can
be answered by only considering the labels. A prominent
labeling scheme is the nested intervals (NI) scheme, in which
each node v is labeled with an interval [lower, upper] that is
a proper subinterval of the interval of the parent node of v.
We propose the DeltaNI index applying the NI scheme

to versioned hierarchies. The index is efficient in space and
time by representing only a base version as a fully materi-
alized NI encoding; other versions are represented by deltas
which transform the interval bounds between different ver-
sions. By grouping the deltas in an exponential fashion,
the index allows executing queries in each version of a his-
tory of n versions while applying at most log n deltas. We
also show how various update operations—even sophisti-
cated ones such as moving or deleting ranges of nodes—can
be reduced to a simple swap operation in the NI encoding.
By proposing an efficient algorithm for swap on our delta
representation, we achieve good update performance. By
materializing additional base versions at carefully chosen
points in the history, we further increase the performance
and reduce the space consumption of the index.

2. HIERARCHIES IN RDBMS
This section discusses important topics for our approach in-
cluding the relational storage of hierarchies, the NI labeling
scheme, the queries and updates to be considered, and pos-
sible application areas for the index.
We define a hierarchy as a forest of rooted, ordered trees.

Applications can also limit a hierarchy to be a tree instead
of a forest (i. e., only one root exists) or may define that the
order among siblings is not important and thus is not made
visible to the user. Each node may carry a fixed number of
attributes while edges may not carry any attributes.
Representation in RDBMSs. As it is our ambition to
speed up queries which work on structural properties of the
hierarchy (since other queries are already supported well by
the relational model) we represent a hierarchy by a relation,
in which each row represents one node storing its attributes,
and an index which encodes the structure of the hierarchy—
the DeltaNI index in our case. Our focus is the index which
is responsible for storing the complete version history of the
hierarchy structure. To provide versioning for the node at-
tributes, well-researched techniques for relational databases
can be used which are out of the scope of our contribution.
NI Encoding. Our index is built upon the NI labeling
scheme (also referred to as interval encoding, NI encoding,
or range-based encoding). Here, each node is represented by
the integer interval [lower, upper]. The encoding can be ob-
tained by a depth-first traversal in which the lower bounds
are assigned in pre-order and the upper bounds are assigned

in post-order from a global counter. The NI encoding of the
hierarchy in the upper part of Figure 1 is shown below it.
One can directly see the important property of the inter-
val encoding: If a node v2 is a descendant of another node
v1, its interval is a proper sub-interval of v1’s interval, i. e.,
n1.lower < n2.lower and n1.upper > n2.upper.
Versioned Hierarchies. A version history V0,V1, . . . ,Vn

of a hierarchy depicts certain states of that hierarchy and
allows queries in each version. Updates are only allowed
in the latest version. Although we assume a linear version
history for brevity, our approach also supports the branching
of version histories. A new branch can be created based on
any existing version and updates can be performed on the
latest version of each branch. We place no restrictions on
when a new version is created. Some applications might
create a new version with each update while others might
create new versions on a regular basis (e. g., daily).
Queries. Our index yields a fully-featured NI encoding
for each version of the hierarchy. Consequently, all queries
such an encoding can answer for a non-versioned hierarchy
can be answered for versioned hierarchies with DeltaNI. For
example, the index can be used as a basis for the staircase
join1 [15], the Stack-Tree join [1], or the TwigStack join2 [5]
in order to answer XPath-style queries. Refer to [7] for an
overview of other prominent queries which can be executed
efficiently on the NI scheme. For this paper, we focus on
providing an efficient NI encoding for each version of the
hierarchy. Aggregate or diff queries that span more than
one version are out of the scope of this paper.

As our contribution is a low-level index, we will not present
the execution of complex queries—this task is accomplished
by a higher-level layer of the database (e. g., the staircase
join). A simple query which can be directly answered by the
index is the calculation of the size of the subtree rooted at a
node v by calculating (v.upper−v.lower−1)/2. For example,
a subtree query in the hierarchy from Figure 1 may be: “How
many employees are (transitively) supervised by Adam?”
Using the interval encoding, the answer is (15−0−1)/2 = 7.
In the versioned case, the query would be extended to work
on a certain version, e. g., “How many employees are super-
vised by Adam in Version 42?”. Although we only present
such simple (yet useful) queries for brevity reasons, keep in
mind that the index can be used by a database system to
answer a wide range of complex queries efficiently.
Updates. Updating a hierarchy consists of adding, re-
moving, or moving nodes in the hierarchy. The following
update operations are to be supported:

• insertBefore(b): Inserts a new node before interval
bound b.

• moveSiblingRangeBefore(v, v′, b): Moves all siblings be-
tween v and v′ (inclusively) and their descendants be-
fore bound b. v must be a left sibling of v′ or v = v′.

• deleteSiblingRange(v, v′): Deletes all siblings between
v and v′ (inclusively) and their descendants. v must
be a left sibling of v′ or v = v′.

The defined set of update operations is very powerful, as it
allows not only single node insertion and deletion—which

1
The staircase join actually works on the pre/post encoding. How-

ever, the NI encoding is similarly expressive, so the staircase join also
works on the NI encoding with only minor changes.
2
Stack-Tree and TwigStag join require an additional level label for

the child axis. This label can also be modeled by our deltas but is
not discussed here for the sake of brevity.



most related work is restricted to—but also subtree deletion
and the moving of nodes, subtrees, and even whole ranges
of siblings. These operations are important in many use
cases: For example, a division in an HR hierarchy receiving
a new head (a comparatively frequent case) can be modeled
by simply moving all nodes in that division below the new
head with a single operation. In EA hierarchies, assets like
equipment or vehicles (which form a subtree, since they con-
sist of various parts) are relocated frequently: Relocations
constituted almost 50% of all updates in some of the EA
hierarchies of ERP customers we inspected.
With insert and delete only, a relocation would result in

one delete and one insert per node in the range to be relo-
cated. This would result in a very high update cost and the
resulting delta would contain many operations also yielding
increased space consumption. Consequently, such a power-
ful set of update operations is indispensable for the wide
applicability of a hierarchy index. Our index supports all
these updates in worst-case logarithmic time.
Application Areas for DeltaNI. The most obvious ap-
plication area for the index is the version control of hierar-
chical data. Another possible use case are transaction-time
temporal hierarchies. The index (as any other version con-
trol approach) can directly be used for this purpose. An
additional lookup data structure (e. g., a search tree) which
maps time intervals to versions has to be maintained, allow-
ing to find the version that corresponds to a timestamp. We
assume general hierarchies that subsume XML, so the index
can also be used for managing versioned XML data.
The NI encoding is by default not dynamic (i. e., not ef-

ficiently updatable), since an update needs to alter O(n)
bounds on average. Contrarily, the DeltaNI index can be
used as an efficiently updatable NI labeling scheme for non-
versioned databases: Gathering all incoming updates in a
single delta is sufficient for making an NI encoding dynamic.
Finally, the deltas in this approach can also be used for log-
ging, as a delta accurately describes a set of changes.

3. INTERVAL DELTAS
In essence, our approach for efficiently storing the version
history of a hierarchy consists of saving one or more base
versions explicitly using the NI encoding and maintaining
all other versions as interval deltas only. This allows for a
space-efficient compression of the version history while still
supporting efficient querying.
We define an interval delta δ : N → N as a bijective func-

tion mapping interval bounds from a source version V to
a target version V ′. When necessary, we explicitly specify
the source and target versions of a delta using the notation
δV 7→V ′ . Given an interval bound b of a node in V , δV 7→V ′(b)
yields the corresponding bound in V ′ and δ−1

V 7→V ′ maps back
from V ′ to V . We denote the interval encoding of the source
version as source space and the one of the target version as
target space. Thus, δ is a function mapping from the source
to the target space.
Obviously, the full interval encoding of the target version

can be obtained by applying δ to all interval bounds of the
source version. However, the delta can also be used to an-
swer queries without computing the target version intervals
completely, as the delta allows transforming only the bounds
which are relevant for a query.
There is one pitfall when using interval deltas to represent

the version history of a hierarchy: Not all nodes may have

existed in the base version V . These nodes do not have any
bounds in the base version, thus computing their bounds in
other versions V ′ using δV 7→V ′ is impossible. In addition,
there might be nodes which were deleted in intermediate
versions. To handle insertions and deletions consistently,
we make the following enhancements, which we call active
region approach: For each version V of the history, the max-
imum bound value in that version, denoted as max(V ), is
stored. By definition, any bound value greater than max(V )
does not exist in version V (i. e., “is inactive”). In addi-
tion, for every base version V , we define |V | as the number
of bounds stored in V also including bounds greater than
max(V ). These enhancements allow us to model bounds
that do not exist in a version. Consider a base version V
and a version V ′ which adds a new node v with bounds
[v.lower, v.upper]. This node insertion is modeled by adding
the two bounds b1 = |V |+ 1 and b2 = |V |+ 2 into the base
version V (which also increments |V | by 2) but without in-
creasing max(V ), because b1 and b2 do not exist in V . To
yield the correct result in V ′, the delta is adjusted corre-
spondingly: δV 7→V ′(b1) = v.lower and δV 7→V ′(b2) = v.upper.
Finally, max(V ′) is incremented by 2 because this version
now contains two more bounds. A node deletion in a ver-
sion V ′ can simply be achieved by moving the bounds of
the node to be deleted past max(V ′) and reducing max(V ′)
accordingly. We denote the interval [0,max(V )] the active

region of version V . The test whether a node v exists in a
version V to which a delta δ exists is performed by check-
ing whether the lower bound of v (and thus also the upper
bound) is active, i. e., δ(v.lower) ≤ max(V ).

Note that each node is uniquely identified by its bounds in
the base version, since these bounds will never be updated.
Thus, they constitute a durable numbering for the nodes in
a versioned hierarchy. Given a bound b in a version V ′, one
can obtain the node to which b belongs by applying reverse
deltas to b, transforming the bound back to the base version
and looking up the corresponding node there.

4. EFFICIENT DELTA REPRESENTATION
To render the interval delta approach feasible, the result-
ing delta representation must be efficient in space and time.
A reasonable space complexity requirement for a delta δ is
O(c) where c is the number of change operations which led
from the source to the target version. In the worst case,
this is also the best possible bound, because each change
must be represented somehow, requiring at least a constant
amount of space per change. A reasonable upper bound
for the time complexity of δ, i. e., the time it takes to com-
pute δ(b) for any interval bound b in the source version, is
O(log c). Any higher non-logarithmic bound would make
the approach infeasible for deltas containing a large amount
of changes. Our approach satisfies both mentioned complex-
ity bounds. Note that the space and time complexities of
our delta representation grow only with respect to the num-
ber of changes between the source and the target version.
Especially, the complexities do not grow with the number of
nodes or edges in the source or target version.

A first näıve delta representation would be to store all
bounds which have changed between V and V ′. However, a
node insertion changes an average of n/2 bounds, yielding
O(c · n) space complexity.

Our technique for delta storage leverages the fact that
each change introduces only a constant number of trans-
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Figure 2: Updating a hierarchy with insertBefore(6) (left), moveSiblingRangeBefore(C,C, 9) (middle), and
deleteSiblingRange(F ,F ) (right). These operations are modeled by swapping R2 with R3 and updating max.

lations of ranges of interval bounds: Let R2 = [a, b] and
R3 = [b+1, c] be two adjacent intervals and let swap(R2,R3)
be a function that swaps all bounds in R2 with the bounds
in R3, that is, all bounds in R2 are incremented (translated)
by the size of R3 and all bounds in R3 are decremented
by the size of R2. We call the intervals R2 and R3 trans-

lation ranges, since they constitute ranges of bounds that
are translated together. Since translation ranges are inter-

vals of interval bounds, the name “bound” is confusing in
this context: All values in a translation range are bounds,
but the translation range has a lower and upper bound itself.
For clarification reasons, we distinguish between bounds and
borders: We call all values represented by a delta bounds. In
contrast, we use lower/upper border when referring to the
least/greatest bound that lies in a translation range.
The key observation is that each update of a tree, as de-

fined in Section 2, can be modeled in the interval bound
space by a swap of two adjacent translation ranges, followed
by an update of the max value in case of insertion or dele-
tion to adjust the size of the active region. Figure 2 depicts
the implementation of the updates by swapping two ranges.
The middle of the figure shows the relocation of the subtree
rooted at node C to the right of node E. The hierarchy be-
fore the update with its NI encoding is shown on top and
the resulting hierarchy below. This relocation is simply ac-
complished by a swap of the range R2 = [3, 6] (all bounds
of the subtree C) and R3 = [7, 9] (all bounds between the
subtree and the target position). The ranges R1 = [0, 3]
and R4 = [10,∞] do not take part in the swap and are not
altered. The swap consists of translating all bounds in the
range R2 by +2 and all bounds in R3 by −4. By storing
only these translations, we achieve O(c) space complexity.
Node insertion and subtree deletion are similar: The left side
of the figure shows the insertion of a new node F as right-
most child of node B. The dashes around F depict that it is
outside of the active region. Again, this insertion is accom-
plished by swapping regions R2 = [6, 9] and R3 = [10, 11]
and incrementing the max value of the resulting version by
+2 because a new node was added to the active region. The
right side of the figure shows how F is deleted by swapping
R2 = [6, 7] and R3 = [8, 11] and reducing max.
Formally, let swap([a, b], [c, d]) be the function that swaps

the interval [a, b] with the interval [c, d] under the precondi-
tions that c = b+1 (the intervals are adjacent and the second
one is behind the first one), a ≤ b ∧ c ≤ d (the intervals are

well-formed, non-empty intervals). Let relocate([x, y], z) be
the function that inserts the non-empty interval [x, y] be-
fore z under the precondition that z 6∈ [x, y]. The function
relocate is implemented through a swap:

relocate([x, y], z) =

{

swap([z,x− 1], [x, y]), if z < x
swap([x, y], [y + 1, z − 1]), otherwise

Using relocate and the active region approach, implementing
all update operations is straightforward:

• insertBefore(b) :
– relocate([max+1,max+2], b)
– max := max+2

• moveSiblingRangeBefore(v, v′, b) :
– relocate([v.lower, v′.upper], b)

• deleteSiblingRange(v, v′) :
– relocate([v.lower, v′.upper], max+1)
– max := max−(v′.upper− v.lower+ 1)

Since all update operations are now reduced to swap, up-
dating a delta solely relies on an efficient implementation of
this function. An efficient approach for implementing swap

for our delta representation will be given in Section 5.2.
We represent version deltas compactly as the ordered set

of all translation ranges that were introduced by updates
that happened between the source and the target version
(which is comparable to the XID-map approach used by
Xyleme [21]). The ranges are represented by storing the
value of their lower borders in the source and the target
space. The value of the translation is computing by sub-
tracting the source from target value. Because the trans-
lation ranges are densely arranged next to each other, it is
sufficient to store only the lower borders of the ranges. The
upper border can be inferred by looking up the lower bor-
der of the successive range and subtracting 1. The highest
range is unbounded, i. e., its upper border is the positive in-
finity. Figure 3 illustrates how our approach represents the
delta resulting from the node insertion depicted on the left
of Figure 2. The vertical bars represent the lower borders of
the translation ranges and the arrows depict to which posi-
tion these borders are translated. An update introduces at
most three new translation ranges: The two ranges R2 and
R3 that are swapped and the range R4 behind them. Since
only the lower borders of translation ranges are stored, the
range R1 before the swapped ones has its upper border ad-
justed implicitly. We use the notation R(s, t) to denote a
translation range which maps from s in the source space to
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t in the target space. Thus, the delta depicted in Figure 3
is {R(0, 0),R(6, 8),R(10, 6),R(12, 12)}.
Using this representation, the delta function δ(b) is imple-

mented as follows: Find the translation range R(s, t) having
the greatest s which is equal to or less than b and compute
δ(b) = b+ t−s. In Figure 3, the bound 7 in the source space
lies in R2 = R(6, 8), so it is translated by +8 − 6 = +2,
resulting in δ(7) = 9. Note that this representation also al-
lows to compute δ−1 similarly by applying the reverse trans-
lation. For example, the bound 6 in the target space lies in
R3 = R(10, 6). Therefore, δ−1(6) = 6− (6− 10) = 10.
The representation shown in Figure 3 is only a concep-

tual model. A suitable data structure must allow the effi-
cient computation of δ, δ−1, and swap. Our implementation
comprises two self-balancing binary search trees represent-
ing source and target space, called source tree and target

tree. The keys in the trees are the lower borders of the
translation ranges, and the payload is a pointer to the cor-
responding node in the other tree. Figure 4 shows the source
and the target tree for the translation ranges from Figure 3.
Using the source/target tree representation, the imple-

mentation of δ(b) is straightforward: A usual search tree
lookup in the source tree is used to find the translation range
with the greatest lower border less or equal to b. By follow-
ing the pointer to the corresponding node in the target tree
and looking up its value there, the translation value is cal-
culated. The implementation of δ−1(b) is equally straight-
forward: Look up b in the target tree instead of the source
tree and apply the negated translation value.
The size of the delta is in O(c) but is also bounded by

the size of the hierarchy: The largest possible delta contains
one translation range for each bound of the hierarchy. Note
that repeated updates of a node or subtree (e. g., moving
a tree around twice) do not create extra translation ranges
but only update existing ones.

5. OBTAINING DELTAS
We have shown an approach for storing version deltas by
representing translation ranges as nodes in two search trees
which are linked with each other. The remaining challenge
is to build this data structure efficiently. There are differ-
ent possible scenarios for building a delta: One is that the
source and the target version are available as usual NI en-
codings and the delta is to be inferred from them. A more
dynamic scenario consists of building the delta incremen-
tally: Whenever an update is performed on the hierarchy,

the resulting swap is performed on the data structure. Han-
dling this scenario efficiently requires specially augmented
search trees.

5.1 Static Scenario
In this scenario we assume that the source and the target
version for which to build a delta are available as NI encod-
ings. This could be the case in applications where a user
fetches a version from the database, edits it with a third-
party program (e. g., a graphical tree editor) and then saves
the result back to the database creating a new version. An-
other use case would be the periodic gathering of snapshots
from the web [21]. The operations performed on the hier-
archy are not known in this scenario, only the resulting NI
encoding is available or is constructed on the fly. A match-
ing of nodes must be available; such a matching is either
implicit if the nodes carry unique identifiers (as in our ex-
ample, and in many other use cases [6]), or a diff algorithm
(e. g., [11]) must be used to match nodes in the two versions.

The algorithm for inferring the delta δ between two given
hierarchy versions V and V ′ is as follows: Initialize t′ with 0
and insert R(0, 0) into δ. Traverse V depth-first in pre/post
order: For each node v, consider its lower bound before visit-
ing its child nodes and its upper bound after visiting its child
nodes. For each considered bound b, find the correspond-
ing bound b′ in V ′ by looking up the node v′ that matches
node v and retrieving its corresponding bound b′. Compute
the translation t by subtracting b′ from b. If t 6= t′, then the
translation value has changed. Consequently, insert a new
translation range R(b, b′) into δ. Set t′ = t and traverse the
next bound until all bounds have been traversed.

Figure 5 shows the result of the algorithm comparing a
source hierarchy (left) with two target hierarchies. The lower
and upper bounds belonging to each node are displayed to its
left and right, respectively. The middle of the figure shows a
target hierarchy where only one update has occurred (node
E was moved) while the right side shows a target with more
updates. The table on the bottom of the figure shows the
bounds which are traversed ([X denotes the lower bound
of node X and X] the upper bound), their values in the
source and target space, and the resulting translations. The
delta is inferred by inserting a range for the first column
and for each other column in which the translation value is
different to the value of the previous column (highlighted
in the figure). Thus, the resulting delta for the target hi-
erarchy in the middle contains the four translation ranges
{R(0, 0),R(4, 6),R(7, 4),R(9, 9)}. The right side of the fig-
ure shows a target hierarchy where more changes were intro-
duced. Consequently, there are also more translation ranges
(six) in the resulting delta.

5.2 Dynamic Scenario
The previous section introduced a scheme which bulk-builds
a delta from two fully-materialized interval encodings. How-
ever, this approach requires that the full interval encoding of
the target version is present, has a time complexity linear in
the size of the hierarchy and cannot handle updates directly.
It would be more appropriate if a version delta could directly
be updated efficiently without having to infer any explicit NI
encodings. As mentioned in Section 3, we model each atomic
update by a swap of two consecutive bound intervals. Thus,
an efficient update mechanism must perform this swap ef-
ficiently. The operation swap(R2 = [a, b],R3 = [c, d]) for a
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Figure 6: Updating a version delta by swapping
translation range R2 with R3

delta δ performs the swap in the target space. The bounds
a, b, c, d are given as target space coordinates. Conceptually,
the operation is implemented as follows:

1. Insert the lower borders of the swapped ranges R2 =
R(δ−1(a), a) and R3 = R(δ−1(c), c), and of the range
behind R3 which is R4 = R(δ−1(d+ 1), d+ 1). If any
of the ranges already exists, do not insert it again.

2. For all translation ranges R(s, t) in δ with t ∈ [a, b],
translate t by the size of [c, d] (i. e., by d− c+ 1). For
all translation ranges R(s, t) with t ∈ [c, d], translate t
backwards by the size of [a, b].

The top of Figure 6 depicts a delta in which the ranges R2 =
[2, 4] and R3 = [5, 14] are to be swapped. The delta already
contains nine translation ranges (A, ..., I). The middle of
the figure shows the result after performing the first step of
the algorithm: C′ = R(5, 2), which is the lower border of
R2, and E′ = R(11, 5), which is the lower border of R3, are
inserted. The lower border H = R(20, 15) of the range R4 is
already included in the delta and is reused. The bottom of
the figure shows the delta after performing the second step
of the algorithm: The target values of ranges that lie in R2

in the target space are translated by +10 and the target
values of those in R3 are translated by -3.
The implementation of swap must adjust the target val-

ues of all borders in R2 (marked orange in the figure) and
R3 (marked green). Since the target values are also keys
in a search tree, the nodes in that tree also have to be re-
arranged to reflect the swap. On average, this results in a
number of adjustments linear to the number n of ranges in
the delta, which has an infeasible runtime if done näıvely.
The swapping of nodes in the search tree by näıve deletion
and reinsertion would even yield O(n log n) time complexity.
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Figure 7: Using the accumulation tree as target tree

To allow efficient updates of an interval delta in O(log n),
the search tree which models the target space has to be aug-
mented to allow adjusting multiple keys at once and swap-
ping ranges of search tree nodes efficiently.
Swapping Node Ranges: Split and Join. The efficient
swapping of nodes can be accomplished by adding the split

and join functionality to the self-balancing search tree: The
split(T , k) function splits the search tree T before a key k, re-
sulting in a tree that holds all keys < k and one that holds
all keys ≥ k. Both resulting trees must be appropriately
balanced. Given two search trees T1 and T2 where all keys
in T2 are greater than all keys in T1, the join(T1,T2) func-
tion concatenates the trees, resulting in a new balanced tree
which contains all their keys. Although both functions are
quite uncommon since they are not needed by usual tree in-
dexes, O(log n) implementations exist for most common self-
balancing search trees. We can swap two ranges of search
tree nodes by splitting the tree at the borders of these ranges
and then joining the resulting trees in a different order. One
can imagine this as simply cutting the tree into smaller trees
representing the different ranges and then gluing them to-
gether in the desired order. Such a swap consists of three
splits and three joins and is therefore in O(log n).
Adjusting Multiple Keys: Accumulation Tree. We
achieve the adjustment of a key range in O(log n) by replac-
ing the ordinary search tree with a slightly adapted imple-
mentation which we call accumulation tree. An accumula-
tion tree is a search tree in which each node only stores a
part of its own key. The real key of a node v is obtained by
adding (accumulating) all values on the path from v to the
root. Since a search tree already traverses this path during
the key lookup, the accumulation of the key of v is cheap.
Figure 7 shows the delta from Figure 4 with an accumu-
lation tree used as target tree. The resulting accumulated
values (which are equal to the values of the original target
tree in Figure 4) are shown in parenthesis below the nodes.
For example, the rightmost node has a value of 12. This
value is obtained by accumulating all values (6,2,4) on the
path from the root.

Although the idea behind the accumulation tree is quite
simple, it yields an important improvement: All keys in a
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subtree rooted at a node v can be translated by simply ad-
justing the value of v, resulting in a time complexity which is
constant instead of linear in the size of the subtree. However,
the tree introduces a small maintenance overhead: When-
ever performing rotations to restore the balance of the tree,
the values of the two rotated nodes and the value of the root
of the“middle”sub-tree below the nodes have to be adjusted.
Otherwise, the rotation would alter the accumulated values.
Figure 8 depicts the rules for updating the values after a left
rotation. For example, the root of the subtree in the mid-
dle has x+ y + z as accumulated value before the rotation.
Afterwards, it still has (y+ x) + (−y) + (z+ y) = x+ y+ z.
Right rotation is similar.
Implementing swap. The first (simple) step of the algo-
rithm consists of adding the borders of the swapped ranges.
The second step of performing the swap from Figure 6 is
depicted in Figure 9. On the top left of the figure, the tar-
get tree without accumulation is shown. The source tree is
omitted, as it is not altered by a swap, except that range
borders are added at appropriate positions. The lower left
part of the figure (Step 1) shows the tree from the top, but
now using accumulations. The dashed lines represent the
positions where the tree is split. Step 2 of the figure shows
the resulting trees after the splits are performed. Note that
the split also rebalances the resulting trees. The next step
(3) is to apply the translations to the two ranges. The accu-
mulation tree allows this operation by simply adjusting the
value in the root. The root of R3 (F) is translated by −3 and
the root of R2 (E) is translated by +10. Finally, the trees
are joined in the order C, F, E, G to yield the resulting tree,
which is shown on the right of the figure. Since the time
complexity of split and join is in O(log n) and the complex-
ity of the translation in the accumulation tree is in O(1), the
resulting time complexity for the swap operation is O(log n).
As any kind of update is reduced to this operation, the index
can execute all proposed updates in logarithmic time.

6. DELTA VERSION HISTORIES
A delta maps interval bounds from a version V to another
version V ′ and vice versa. Now assume a large version his-

tory with n versions V0, . . . ,Vn−1. To be able to answer
queries for an arbitrary version Vi, one or more deltas must
exist which eventually lead from a base version to Vi. We
will now show how to efficiently build, manage, and query
all deltas necessary for a complete history.

Without loss of generality, we will hereinafter assume a
linear version history without any branches and with only
one base version which is the eldest version V0. The version
indexes are sorted by the age of the version, so Vi is the
version right before Vi+1 and right after Vi−1. We define
the size of a delta, written as |δ|, as the number of versions
covered by it. For example, the delta δV20 7→V30

would have
the size 10, because it covers all changes introduced in the
ten versions versions V21, . . . ,V30. If a constant number of
changes per version is assumed, the memory consumption of
the delta is proportional to its size.

6.1 Querying the History
The interval bounds of each node are materialized for the
base version V0. Deltas are used to transform these bounds
into any other version. The bounds in V0 serve as durable
identifiers for all the nodes, since they never change.

Let δ1, . . . , δm be a sequence of deltas where each delta δi
maps from a version to the version of the subsequent delta
δi+1. If the first delta δ1 maps from Vs and the last delta δm
maps to Vt, then we can retrieve the bound bt in Vt for a
bound bs in Vs by applying all deltas in the sequence:

bt = δm(δm−1(. . . δ2(δ1(bs)) . . .))

By applying the inverse deltas in the reverse order, we can
also map back from Vt to Vs. By mapping a bound back
to V0, we can look up the node corresponding to that bound.

Assuming a constant number of changes per version, the
time complexity of such a query is in O(m). So, for fastest
query times, a sequence length of 1 would be best. This,
however, implies that a delta from a base version to each
other version must exist, resembling a star topology. In a
linear version history, a change introduced in a version Vi

will also be stored in the interval deltas for all versions which
are more recent than Vi. When assuming a constant num-
ber of changes per version, maintaining deltas from the base
version to each other version would require O(m2) space in
the worst and best case, because each change is contained
in m/2 deltas on average. This is not feasible for hierar-
chies with millions of versions. Another extreme would be
to store only the deltas from version Vi to Vi+1. Assum-
ing a constant number of changes per version would yield
O(m) space complexity, because each change is only stored
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in the delta of the version in which it was introduced. This
is the strategy with the least space consumption. However,
a query in version Vi would then require i delta applications
since all deltas of versions older than Vi have to be applied
one by one. On average, this yields O(m) query complexity
which is infeasible for large hierarchies, as well.

6.2 Exponential Deltas
We achieve a good space/time trade-off by enforcing an ex-
ponential distribution of the delta sizes. That is, some few
deltas cover huge version ranges while most deltas cover only
a few versions. The large deltas can be used to get “near”
the target version quickly. Then, the small deltas are used
to get exactly to the target version. This approach is com-
parable to the one of skip lists or to the finger tables in the
Chord [30] peer-to-peer protocol.
Our approach uses the number of trailing zeros in the bi-

nary representation of the id of a version to determine the
size of the delta leading to this version. Precisely, given a
version Vi, the size of the delta δ which has Vi as target
version is calculated as |δ| = 2tz(i), where tz(i) is the num-
ber of trailing zeros in the binary representation of i. For
example, version 27 has the binary representation 110112.
Since this binary string has no trailing zeros, this version
will be represented by the delta δV26→V27

, which has a size
of 1. In contrast, version 36 corresponds to the binary string
1001002, which has two trailing zeros. This results in the
delta δV32→V36

of size 22 = 4. Figure 10 depicts the size of
the first ten interval deltas of a version history.
To query a version Vi using this technique, one has to start

at the base version and execute“hops”which become smaller
and smaller. The red arrow in Figure 10 shows how a query
for version 7 is processed. The algorithm for finding the hops
for version Vi simply consists of scanning the bit positions j
of the binary representation of i from most-significant bit to
least-significant bit. Whenever a 1 bit is found at position j,
take one hop. The target version is i with all less significant
bits than j zeroed out. For example, a query in version
i = 19 = 100112 would be processed as follows: The highest
1 bit is j = 4 (j is counted from least- to most-significant
bit, starting with zero for the least significant one), so the
first hop is to version 100002 = 16. The next one is at
j = 1, resulting in the hop to 100102 = 18. The final hop
for the last 1 bit at j = 1 is 100112 which reaches the target
version 19. The resulting deltas to be applied are V0 → V16,
V16 → V18, and V18 → V19.
Since the algorithm takes one hop per 1 bit of the version

id i and version id bit lengths are logarithmic in the number
of versions, the number of deltas to be applied to reach a
version Vi is ⌈log2(i)⌉ in the worst case (when the version
id consists only of 1 bits) and 1 in the best case (when the

version id is a power of 2). When maintaining a version
history of n versions with n being a power of 2, each bit
of a randomly chosen version id i is one or zero with the
same probability, so the algorithm applies log2(n)/2 deltas
on average.

A change introduced in version Vi is contained in the ver-
sion delta for Vi and all version deltas of higher versions Vj

where j is a power of 2. For example, a change introduced
in version 7 is contained in the deltas V6 → V7, V0 → V8,
V0 → V16, V0 → V32, and so on. Obviously, for a version
history of n versions, there are logarithmically many ver-
sions which are a power of 2, so each change is contained
in at most 1 + ⌈log2 n⌉ versions. Since one change needs a
constant amount of space, a version history with n versions
and constant number of changes per version can be stored
using O(n log n) space (O(n) changes in total, each being
stored in O(log n) versions).

As already shown, applying a delta of size s to a sin-
gle bound has a time complexity of O(log s). However, the
computation of the value of a bound b in a version Vx usu-
ally needs to apply more than one delta. In the worst case,
when the binary representation of x has only 1 bits in it,
the algorithm must apply log2 x deltas. The last delta cov-
ers one version and the number of covered versions doubles
with each further delta, so the i-th delta covers 2i versions.
If we assume a constantly bounded number of changes per
version, then the complexity of applying a delta covering n
versions is O(log n). Consequently, the complexity of apply-

ing all required deltas for reaching Vx is O(
∑log2 x

i=0 log 2i) =

O(
∑log2 x

i=0 i) = O((log2 x)(1 + log2 x)/2) = O(log2 x) in the
worst case. In the best case, the version number is a power
of 2 and only one delta has to be applied, yielding O(log x).
Merging Deltas. During the generation of the exponen-
tial deltas, smaller deltas have to be merged to yield larger
ones. For example, the delta V0 → V8 is to be built by first
merging the deltas V0 → V4, V4 → V6, and V6 → V7, which
yields the delta V0 → V7. Now, there are two equally ap-
plicable strategies: One strategy is to apply the incoming
changes for V8 directly to the delta V0 → V7, yielding the
delta V0 → V8 without further merges. Another strategy is
to gather the changes for V8 in a small delta V7 → V8 and
finally merge V0 → V7 with V7 → V8 to yield the final delta
V0 → V8. Regardless of the strategy used, an operation for
merging two deltas is required.

Let, δV →V ′ and δV ′
→V ′′ be two deltas which are connected

via the version V ′, i. e., V ′ is the source of the one and the
target of the respective other delta. We define the operation
merge(δV →V ′ , δV ′

→V ′′) which merges the changes in the two
deltas yielding the delta δV →V ′′ . The resulting delta func-
tion must be the composition δV →V ′ ◦ δV ′

→V ′′ , i. e.:

∀b ∈ N . δV →V ′′(b) = δV ′
→V ′′(δV →V ′(b))

The merge(δ1, δ2) function can be implemented as follows:
Start with an empty delta δ. For each translation range
R(s, t) in δ1, compute t′ = δ2(t) and insert R(s, t′) into
δ. Next, for each translation range R(s, t) in δ2, compute
s′ = δ−1

1 (s). If no translation rule with source value s′ exists
in δ, then add R(s′, t) to δ.

The implementation adjusts all translation ranges in the
two deltas to incorporate the changes of the other delta, as
well. Ranges in the prior delta δ1 need their target values
adjusted by δ2, since the resulting delta maps to the target
space of δ2. The source values of the ranges in δ2 need to
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Figure 11: Merging two deltas.

be adjusted “backwards” by the inverse of δ1, because the
resulting delta maps from the source space of δ1. Since each
range in δ1 and δ2 adds at most one translation range to
the resulting delta, the delta size |δ| is at most |δ1| + |δ2|.
When the ranges of δ2 are processed, they are only added
if no delta with the same source value already exists. Thus,
the resulting delta size may be smaller than |δ1| + |δ2|. A
range is omitted if both versions transform the range. For
example, if δ1 moves a node X and δ2 moves the same node
again, then they will both contain a range starting at the
lower bound of X. The resulting delta will only contain one
rule for this lower bound.
Figure 11 shows an example for a merge. The source ver-

sion V0 is shown on top. In version V1 (left), the subtree B

was moved below F. In V2 (right), node E was moved below
B. The deltas δ1 (V0 → V1) and δ2 (V1 → V2) are displayed
below the respective tree. A merge of these deltas results
in the delta V0 → V2 which is shown on the bottom of the
figure. The letters a to h show which translation ranges in
the resulting delta originate from which ranges in the source
deltas. For example, the leftmost translation rule R(0, 0)
is contained in both deltas as a and e, respectively, and is
merged into one range a/e. Another example is the range
c/f . The first delta has the rule c which is R(8, 2). When
applying δ2(2), the resulting target value is 8 (2 lies in range
f which is translated by +6), so the resulting rule is R(8, 8)
which is c/f . The second delta contains the rule f which is
R(2, 8). The resulting source value for this rule is δ−1

1 (2) = 8
(2 in the target space of δ1 lies in rule c which has a trans-
lation of −6, so the inverse translation is +6). Since R(8, 8)
already exists, no further range is added.
Since each translation range in the deltas has to be pro-

cessed (linear) and for each range, a delta must be computed
(log) and a range must be inserted (log), the resulting time
complexity of the merge operation is O(n log n), where n is
the number of ranges in the merged deltas.

6.3 Optimizations
Query Routing. Merging two deltas takes O(n log n)
time and building a delta of size s requires log s merges,
so building a large delta may take some seconds for large
histories. Consequently, if a large delta for a version Vx is

currently being built and a query is issued in Vx at that time,
then a stall in the query processing is to be anticipated. To
prevent this stall, the query is routed over the partial deltas
as long as the merged delta is not fully built yet. Hence,
all merging can be done in the background and no stall is
to be anticipated for any query, even if the deltas for that
query are not yet fully merged. As a delta is not used be-
fore it is thoroughly merged, multiple merges can even be
executed concurrently by multiple low-priority background
threads without any locking necessary. By using this opti-
mization, the merging process has no influence on the query
performance and queries can be answered efficiently in all
versions, regardless of the time the delta merging takes.
Epochs. Until now, we have only considered a single base
version, yielding O(log2 n) worst-case query complexity and
O(n log n) space consumption for a history with n versions.
From time to time, we can fully materialize the NI encoding
of a version, thus creating a new base version. Subsequent
versions then start a new exponentially distributed delta his-
tory. We refer to a base version with its following delta his-
tory as epoch. With multiple epochs, a query in version V
is executed by first finding the epoch E of V and then start-
ing the hops from the base version of E. If we start a new
epoch regularly after x versions, then we can find the epoch
of a version with id u by simply calculating u/x. Addition-
ally, each epoch only covers a constant number of deltas.
Thus, the asymptotic query complexity becomes O(1) and
the space consumption becomes O(n), assuming that the
hierarchy size and the number of changes per version stay
constantly bounded in all versions.

To achieve a reasonable space/time tradeoff, an epoch
should not be created too often. As a rule of thumb, if
a new delta would be larger than the materialization of a
version, then a new epoch should be created. The figure to
consider for determining the epoch length is change frequency

hierarchy size
:

The more changes are to be anticipated, the quicker the
space consumption of deltas grows. The larger the hierar-
chy, the more memory a new base version consumes.

Again, the query routing optimization can be used: The
materialization is done in the background and deltas are
used for queries as long as the materialization is not finished.
This prevents any possible stalls.

Note that epochs can also be used for efficient vacuuming
of old versions, as an epoch is a self-contained piece of the
version history. Hence, old epochs can easily be archived to
disk or discarded to reduce memory consumption.
Static Deltas. All deltas but the latest one are static.
Therefore, all these deltas do not need a data structure that
supports the swap operation and can instead be represented
by a read-optimized or even a read-only data structure such
as an implicit complete binary tree.

7. EVALUATION
Baseline. To assess the performance of DeltaNI in com-
parison to other sophisticated versioned indexing schemes,
we built a baseline consisting of a state-of-the-art label-
ing scheme backed up by a versioned index. For the la-
beling scheme, we chose the prominent path-based scheme
ORDPATH [23] as it shows very good performance and
low space consumption in comparison to other path-based
schemes [28] and is practically used, for example, in the
XML engine of Microsoft SQL Server. For the version-
ing, we chose the asymptotically optimal multiversion B-
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Figure 12: Time for executing one million queries (a), space consumption (b), and time for executing one
million updates (c).

tree (MVBT) [2]. The combination of ORDPATH and the
MVBT, which we call ORD-MVBT, is comparable to the
data structure used in the MVBT-Twigstack approach of
Woss and Tsotras [33]. By indexing the tuples and their
ORDPATHs with the MVBT, the index is able to efficiently
answer various kinds of queries in all former versions of the
hierarchy and thus yields a promising baseline implementa-
tion to compare DeltaNI against.
Test Setup. The evaluation is based on a dataset de-
rived from an EA hierarchy of a mechanical engineering
company. Our obtained history starts with a snapshot con-
taining 2.9 million nodes with an average depth of around 7
and a maximum depth of 16. The hierarchy is versioned on
a daily basis for 22 years from 1990 to 2012 resulting in 8035
versions. The average number of updates per day is 638 and
hence 5.1 million updates for the whole history. 36% of the
updates are inserts, 35% are removes and 31% are subtree
relocations. The size of the relocated trees is 8 nodes on
average. To measure query performance, we chose the check
whether two nodes lie on an XPath axis (ancestor, follow-
ing, preceding, descendant) as query primitive for the fol-
lowing reasons: 1) The primitive is used for many important
queries such as axis steps. 2) The query suites range-based
(DeltaNI) and path-based (ORD-MVBT) schemes equally
well in contrast to other queries which inherently favor either
range-based (e. g., subtree size) or path-based (e. g., node
level) ones. 3) The query assesses a recursive property of
the hierarchy which is hard to evaluate with recursive SQL.
After each version Vi is built, the query is executed repeat-

edly for randomly chosen versions V0..i to measure the query
performance in relation to the history length. We com-
pare the baseline (ORD-MVBT) to DeltaNI with exponen-
tial hops without epochs (EXP) and with epochs of length
256 (EXP256), 512 (EXP512), and 1024 (EXP1024). We
further measure the performance of the näıve delta group-
ing schemes which are the linear scheme (Linear), i. e., one
delta between each successive version Vi and Vi+1, and the
star scheme (Star), i. e., deltas from the base version V0 to
each other version. Finally, we also measure the näıve ap-
proach of materializing each version thoroughly (Näıve).
All tests were carried out on a HP Z600 Workstation with

a 6-core Intel Xeon X5650 CPU at 2.66 GHz, 12 MB cache,
and 24 GB RAM. The operating system is SuSE Linux En-
terprise Server, kernel version 2.6.32.
Query Performance. Figure 12(a) shows the time in sec-
onds to answer one million queries. The Linear scheme is ob-
viously infeasible, while the other näıve schemes show good
query performance but were aborted at version 88 (Näıve)

and 231 (Star) since the test machine ran out of mem-
ory. Thus, they are infeasible for this hierarchy. The EXP
scheme requires around 6.3 seconds in the final version (re-
sulting in around 160,000 queries per second). The schemes
with epochs are faster: The one with the most epochs—
EXP256—is almost twice as fast as EXP (around 285,000
queries per second). Fewer epochs lead to longer histories
thus decreasing performance. ORD-MVBT requires around
40% more time than EXP and around 150% more time than
EXP256. This is due to the facts that 1) the MVB-tree also
contains dead entries in its nodes while deltas only contain
entries relevant for their version 2) integer comparisons in
the deltas are faster than ORDPATH comparisons 3) B-tree
variants such as the MVBT are optimized for fixed-size keys
and require additional overhead for variable-sized keys such
as ORDPATH. Obviously, specialized indexes like DeltaNI
and ORD-MVBT outperform recursive SQL by orders of
magnitude, as previously shown by Al-Khalifa et al. [1].
Memory Consumption. The memory consumption is
shown in Figure 12(b). EXP uses 2.2 GB for the whole his-
tory. The schemes with Epochs use more memory. EXP256
uses three times as much memory (6.8 GB) due to the large
number of fully-materialized versions, which are visible as
“staircases” in the diagram. Note however that the schemes
with hops grow linearly, while the one without grows log-
linearly: The little step in the line for EXP at version 4096
shows the large delta that is built by this approach. The
larger the power of 2, the larger these steps in the graph of
EXP will become, while the steps in the schemes with epochs
keep their constant size. Using epochs is a clear space/time
tradeoff in this scenario, since the shorter the epochs, the
higher the query performance (cf. Figure 12). For other sce-
narios where the hierarchy size is smaller in comparison to
the number of changes, long epochs can even yield an ad-
vantage in time and space.

ORD-MVBT requires 4.8 GB of memory for the whole
history. The fact that the line already starts at 1.4 GB is
due to ORD-MVBT having no notion of a base version and
thus needing to insert the 2.9 million starting nodes into the
MVBT while DeltaNI can store them in a base version com-
pactly. For a scenario that starts with an empty base ver-
sion, in which the memory consumption of both approaches
starts at zero, the memory consumption of ORD-MVBT is
between the EXP512 and EXP256. Thus, the memory con-
sumption of the two index structures is similar and varies
only slightly for different use cases.
Update Performance. The time needed for one mil-
lion updates is shown in Figure 12(c). The only exponen-



tial scheme displayed is EXP, since all exponential schemes
have similar update behaviour (around 200,000 updates per
second). This is because epochs are only created during
the creation of a new version and thus have no influence
on update performance. DeltaNI outperforms ORD-MVBT
(around 10,000 updates per second) by around a factor of
20 since ORD-MVBT has to handle subtree relocations by
repeated removes and inserts. We also measured the update
performance for a synthetic dataset without relocations (not
in the figure). Here, ORD-MVBT reaches around 35,000 up-
dates which is still almost an order of magnitude less than
DeltaNI, since the swap operation is extremely efficient com-
pared to a MVBT insertion or deletion which has to compare
various ORDPATHs to find the leaf to insert the new entry.
Besides the time consumption of the update operations,

DeltaNI incurs an additional cost when creating a new ver-
sion, which we also measured: The larger the power of 2,
the longer the merging of the resulting delta takes, as more
deltas need to be merged. Full materialization for a new
epoch takes around 5 to 10 seconds. The merging of the
largest delta, which is the delta 4096 for EXP, takes 20 sec-
onds, while most smaller deltas need less than a second (380
microseconds for deltas of size 1). Since there is only one
new version per day, delta building performance is absolutely
sufficient. As the build process can be done in parallel in the
background while the queries are routed via partial deltas
(query routing optimization), a server with multiple cores
could even handle several new versions per second.
In conclusion, DeltaNI shows superior update performance

and an acceptable memory consumption, enabling the stor-
age of a history of decades in main memory. The query
times promise to yield a tremendous speedup compared to
relational approaches. DeltaNI outperforms other contem-
porary approaches such as the ORD-MVBT used in this
benchmark and is especially suited if the workload consists
of more complex updates such as subtree relocations.

8. RELATED WORK
Hierarchy Support in RDBMS. Current systems can
query hierarchical data only via recursive SQL. Many sys-
tems also provide support for XML data which constitutes
a hierarchy representation. While these systems support
columns with XML data, i. e., one XML hierarchy per tu-
ple, we aim for one hierarchy over the tuples of one or more
tables. No RDBMS supports these kinds of hierarchies effi-
ciently, yet. Thus, the functionality we integrate is comple-
mentary to the XML support of recent database systems.
Labeling Schemes. A lot of labeling schemes have been
proposed for XML, which are usually categorized into prefix-
based and range- (or order-) based schemes. Among the
most prominent ones is ORDPATH [23] in the prefix-based
category. In the range-based category, various schemes that
are conceptually equal to the NI encoding, such as pre/post
[14], pre/size/level [4], or order/size [19], are used. This is
only a small selection of schemes; many more exist—each
with its own advantages and drawbacks—but are omitted
here for brevity reasons. Labeling schemes are widely used
for indexing non-versioned hierarchical data and can also be
used as building blocks for indexing versioned hierarchical
data, as shown in this paper.
Versioned Index Structures. Many of the traditional
tree indexes used in relational databases have been aug-

mented to be used for versioned indexing: The fully per-
sistent B+-tree [18], the Time-Split B-tree [20], the BT-tree
[16], and the multiversion B-tree [2] to name a few. Like
labeling schemes, these indexes cannot be directly applied
to versioned hierarchies. Instead, they form building blocks
used by various versioning approaches discussed below.
Hierarchy Version Management. Versioning of XML
data has been a hot topic in the last decade. However, most
of the (especially earlier) contributions in this field are not
concerned with indexing but rather the fast reconstruction of
a version or the difference between versions. Consequently,
the resulting data structures are not useful for efficient query
support. Examples for this are the early contributions of
Chien et al. [10] which focus on version management. They
consequently compare their approach to text-based version
control systems like SCCS and RCS. Rusu et al. [26, 27] pro-
pose and compare different delta storage techniques. Mar-
ian et al. [21] are concerned with version management in an
XML Warehouse in the Xyleme project. Their concepts like
the XID-map and their diff algorithm [11] are important for
our contribution. They also evaluate different delta storage
techniques. Rosado et al. [25] present a version management
technique storing the version history of an XML document in
an XML document, thus allowing queries using usual XML
technology. Buneman et al. [6] propose an archiving tech-
nique for scientific XML data.
Versioned Hierarchy Indexing. Considering more tree-
aware version control of XML data, the more recent contri-
butions of Chien et al. [8, 9] introduce the SPaR versioning
scheme which is basically an adapted NI encoding with gaps.
It relies on “durable” labels, i. e., labels that do not change
even if new nodes are inserted. As noted in many publica-
tions (e. g., [34, 29]), encodings with gaps are problematic,
because frequent insertions at the same positions quickly
fill up the gaps. This makes relabeling necessary again and
thus invalidates the durable labels. The SPaR authors sug-
gest to mitigate this problem by replacing the integer labels
with floats of arbitrary precision. However such techniques
yield labels with a size of O(n) bits (proven in [12]) result-
ing in high memory consumption, costly label comparisons,
and the complication of index structures relying on keys of
a fixed size, such as B-tree variants. Our scheme can effi-
ciently handle any number of insertions or relocations at any
position and yields a gapless fixed-size integer NI encoding
with all its benefits. It also includes durable fixed-size node
identifiers that never need to be relabeled.

Cursory ideas were presented in workshop publications of
Vagena, Tsotras, et al. covering XML versioning with the
PathStack join on an NI encoding in conjunction with a
document map [32] (no branching) and a BT-ElementList
[31] (allows branching). More recently, Woss and Tsotras
[33] carry on with the topic now using the Twigstack join
on an ORDPATH encoding in conjunction with the MVBT
tree. This approach neither allows branching histories (due
to the MVBT) nor subtree relocations (due to ORDPATH).

The concept of versioning is closely related to the con-
cept of transaction time in temporal databases. Therefore,
work from the field of temporal XML can be applied to ver-
sioned hierarchies (and vice versa). Rizzolo et al. [22, 24]
propose a temporal XML index for efficient TXPath query
evaluation. It is based on so-called continuous paths which
are timestamp-augmented label paths. Unfortunately, label
paths are not generally applicable to hierarchies, as these do



not necessarily possess labels. Zhang et al. [35] propose a
labeling scheme for temporal SQL, which, however, relies on
schema information that is not available for hierarchies.
In conclusion, most related work from the XML field is

only partially applicable to versioned hierarchies in general.
Another drawback of almost all aforementioned contribu-
tions is that subtree relocations are not supported. While
such a relocation scenario may not be important for XML, it
is indeed important for other hierarchies (especially for EA
hierarchies). By supporting subtree and even range reloca-
tions efficiently, the DeltaNI index is widely applicable as a
general-purpose hierarchy index.

9. CONCLUSION
In this paper, we proposed a technique for efficiently storing
and indexing versioned hierarchical data. Our index yields
a nested intervals encoding for each version by maintain-
ing exponential deltas leading to each version with a loga-
rithmic number of hops. The deltas represent changes in a
space- and time-efficient manner by storing only the trans-

lation ranges that are introduced by updates. Such updates
are executed on the deltas using a special-purpose accumu-
lation search tree which is able to swap ranges of keys in
logarithmic time. By reducing all update operations to a
swap operation, our index facilitates even complex updates
like subtree or sibling range relocation efficiently. By us-
ing epochs, the index can be tuned further. Our evaluation
shows that the index is able to handle even large use cases
with very long version histories efficiently and outperforms
alternative approaches in a relevant use case. Consequently,
our index is a worthy addition for relational databases that
need to handle dynamic versioned hierarchical data. To
our best knowledge, DeltaNI is currently the only contri-
bution that yields a gapless fixed-size labeling for versioned
trees while still facilitating complex updates. Possible future
work consists of introducing hierarchical data support to re-
lational database systems by using the index in conjunction
with a query engine that can handle hierarchical data and
relational data in one query. We are currently integrating
the approach into the two main-memory database systems
HyPer [17] and SAP HANA [13].
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