
Combining Worst-Case Optimal and Traditional
Binary Join Processing

Michael Freitag
Technische Universität München

freitagm@in.tum.de

Maximilian Bandle
Technische Universität München

bandle@in.tum.de

Tobias Schmidt
Technische Universität München

tobias.schmidt@in.tum.de

Alfons Kemper
Technische Universität München

kemper@in.tum.de

Thomas Neumann
Technische Universität München

neumann@in.tum.de

ABSTRACT
Worst-case optimal join algorithms are attractive from a the-
oretical point of view, as they offer asymptotically better
runtime than binary joins on certain types of queries. In par-
ticular, they avoid enumerating large intermediate results by
processing multiple input relations in a single multi-way join.
However, existing implementations incur a sizable overhead
in practice, primarily since they rely on suitable ordered
index structures on their input. Systems that support worst-
case optimal joins often focus on a specific problem domain,
such as read-only graph analytic queries, where extensive
precomputation allows them to mask these costs.

In this paper, we present a comprehensive implementation
approach for worst-case optimal joins that is practical within
general-purpose relational database management systems sup-
porting both hybrid transactional and analytical workloads.
The key component of our approach is a novel hash-based
worst-case optimal join algorithm that relies only on data
structures that can be built efficiently during query execu-
tion. Furthermore, we implement a hybrid query optimizer
that intelligently and transparently combines both binary
and multi-way joins within the same query plan. We demon-
strate that our approach far outperforms existing systems
when worst-case optimal joins are beneficial while sacrificing
no performance when they are not.

1 INTRODUCTION
The vast majority of traditional relational database manage-
ment systems (RDBMS) relies on binary joins to process
queries that involve more than one relation, since they are
well-studied and straightforward to implement. Owing to
decades of optimization and fine-tuning, they offer great flexi-
bility and excellent performance on a wide range of workloads.
Nevertheless, it is well-known that there are pathological
cases in which any binary join plan exhibits suboptimal per-
formance [10, 17, 28]. The main shortcoming of binary joins
is the generation of intermediate results that can become
much larger than the actual query result [44].

Unfortunately, this situation is generally unavoidable in
complex analytical settings where joins between non-key
attributes are commonplace. For instance, a conceivable query
on the TPCH schema would be to look for parts within
the same order that could have been delivered by the same
supplier. Answering this query involves a self-join of lineitem

and two non-key joins between lineitem and partsupp, all of
which generate large intermediate results [15]. Self-joins that
incur this issue are also prevalent in graph analytic queries
such as searching for triangle patterns within a graph [3]. On
such queries, traditional RDBMS that employ binary join
plans frequently exhibit disastrous performance or even fail
to produce any result at all [2, 3, 46, 52].

Consequently, there has been a long-standing interest in
multi-way joins that avoid enumerating any potentially ex-
ploding intermediate results [10, 17, 28]. Seminal theoreti-
cal advances recently enabled the development of worst-case
optimal multi-way join algorithms which have runtime pro-
portional to tight bounds on the worst-case size of the query
result [9, 43, 44, 52]. As they can guarantee better asymptot-
ic runtime complexity than binary join plans in the presence
of growing intermediate results, they have the potential to
greatly improve the robustness of relational database sys-
tems. However, existing implementations of worst-case op-
timal joins have several shortcomings which have impeded
their adoption within such general-purpose systems so far.

First, they require suitable indexes on all permutations
of attributes that can partake in a join which entails an
enormous storage and maintenance overhead [3]. Second, a
general-purpose RDBMS must support inserts and updates,
whereas worst-case optimal systems like EmptyHeaded or
LevelHeaded rely on specialized read-only indexes that re-
quire expensive precomputation [2, 3]. The LogicBlox system
does support mutable data, but can be orders of magnitude
slower than such read-optimized systems [3, 8]. Finally, multi-
way joins are commonly much slower than binary joins if
there are no growing intermediate results [40]. We thus argue
that an implementation within a general-purpose RDBMS re-
quires (1) an optimizer that only introduces a multi-way join
if there is a tangible benefit in doing so, and (2) performant
indexes structures that can be built efficiently on-the-fly and
do not have to be persisted to disk.

In this paper, we present the first comprehensive approach
for implementing worst-case optimal joins that satisfies these
constraints. The first part of our proposal is a carefully engi-
neered worst-case optimal join algorithm that is hash-based
instead of comparison-based and thus does not require any
precomputed ordered indexes. It relies on a novel hash trie
data structure which organizes tuples in a trie based on
the hash values of their key attributes. Crucially, this data

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

structure can be built efficiently in linear time and offers low-
overhead constant-time lookup operations. As opposed to pre-
vious implementations, our join algorithm thus handles chang-
ing data transparently as any required data structures are
built on-the-fly during query processing. The second part of
our proposal is a heuristic extension to traditional cost-based
query optimizers that intelligently generates hybrid query
plans by utilizing the existing cardinality estimation frame-
work. Finally, we implement our approach within the code-
generating Umbra RDBMS developed by our group. This
system constitutes the evolution of the high-performance in-
memory database HyPer towards an SSD-based system [42].
Like HyPer, Umbra is explicitly designed for hybrid OLTP
and OLAP (HTAP) workloads. Our experiments show that
the proposed approach outperforms binary join plans and
several systems employing worst-case optimal joins by up to
two orders of magnitude on complex analytical workloads
and graph pattern queries, without sacrificing any perfor-
mance on the traditional TPCH and JOB benchmarks where
worst-case optimal joins are rarely beneficial.

The remainder of this paper is organized as follows. In
Section 2 we present some background on worst-case optimal
join algorithms. The hash trie index structure and associated
multi-way join algorithm are described in detail in Section 3,
and the hybrid query optimizer is presented in Section 4.
Section 5 contains the experimental evaluation of our system,
Section 6 gives an overview of related work, and conclusions
are drawn in Section 7.

2 BACKGROUND
In the following section, we provide a brief overview of worst-
case optimal joins and their key differences to traditional
binary join plans. In the remainder of this paper, we consider
natural join queries of the form

& := '1 B · · · B '< , (1)

where the ' 9 are relations with attributes E1, . . . , E=. Note
that any inner join query containing only equality predicates
can be transformed into this form by renaming attributes
suitably. While most queries of this type can be processed
efficiently by traditional binary join plans, query patterns
such as joins on non-key attributes can lead to exploding
intermediate results which pose a significant challenge to
RDBMS which rely purely on binary join plans. Consider,
for example, the query

&Δ := '1 (E1, E2) B '2 (E2, E3) B '3 (E3, E1).

If we set '1 = '2 = '3 and view tuples as edges in a graph,
&Δ will contain all directed cycles of length 3, i.e. triangles
in this graph (cf. Figure 1a). Any binary join plan for this
query will first join two of these relations on a single attribute,
which is equivalent to enumerating all directed paths of length
2 in the corresponding graph. This intermediate result will
generally be much larger than the actual query result, since
a graph with 4 edges contains on the order of $ (42) paths of
length 2 but only $ (41.5) triangles [51]. The resulting large

0 1

2 3

R1(v1, v2) R2(v2, v3)

0 1

2 3

R3(v3, v1)

0 1

2 3

(a) Sample instances of the relations '1, '2, '3. Each relation con-
tains the tuples (0, 1), (1, 2), (1, 3), (2, 0), (2, 3) which are viewed as
edges in a directed graph. The directed triangles in this graph are
(0, 1, 2), (1, 2, 0), (2, 0, 1).

0 1 2

1 2 3 0 3

πv1(R1)

πv2(σv1=k1(R1))

0 1 2

1 2 3 0 3

πv2(R2)

πv3(σv2=k2(R2))

0 1 2 3

2 0 1 1 2

πv1(R3)

πv3(σv1=k1(R3))

(b) The trie structure induced by Algorithm 1 on these instances of
'1, '2, '3. Each recursive step conceptually iterates over the elements
in the intersection between some trie nodes (line 5), and subsequently
moves to the children of these elements (line 6).

Figure 1: Algorithm 1 on the triangle query &Δ.

amount of redundant work will severely impact the overall
query processing performance.

Worst-case optimal join algorithms, on the other hand,
avoid such exploding intermediate results [44]. Continuing
our example, a worst-case optimal join conceptually performs
a recursive backtracking search to find valid assignments of
the join keys E1, E2, and E3 before enumerating any result
tuples. Specifically, we begin by iterating over the distinct
values :1 of E1 that occur in both '1 and '3, i.e. :1 ∈ {0, 1, 2}
in Figure 1a. For a given :1 we then recursively iterate over
the distinct values :2 of E2 that occur in both '2 and the
subset of '1 with E1 = :1, e.g. :2 ∈ {1} for :1 = 0 in Figure 1a.
Finally, we proceed analogously to find valid assignments :3
of E3. Unlike a binary join plan, a worst-case optimal join
avoids redundant intermediate work if a specific join key
value occurs in multiple tuples, since only the distinct join
key values need to be considered. Thus, as discussed in detail
in our experimental evaluation (cf. Section 5), any relational
join query in which a large fraction of tuples have multiple
join partners can potentially benefit from worst-case optimal
joins.

2.1 Worst-Case Optimal Join Algorithms
Formally, this paper builds on the generic worst-case op-
timal join algorithm shown in Algorithm 1 which directly
implements the conceptual backtracking approach motivated
above [44, 45]. It operates on the query hypergraph �& =

(+ , E) of a query &, where the vertex set + contains the
attributes {E1, . . . , E=} of &, and the edge set E = {� 9 | 9 =
1, . . . ,<} contains the attribute sets of the individual rela-
tions ' 9 . In case of our running example &Δ, the query hy-
pergraph is given by + = {E1, E2, E3} and E = {�1, �2, �3} with
�1 = {E1, E2}, �2 = {E2, E3}, �3 = {E1, E3}.

Combining Worst-Case Optimal and Traditional Binary Join Processing

Algorithm 1: Generic Worst-Case Optimal Join
given : A query hypergraph �& = (+ , E) with

attributes + = {E1, . . . , E=} and hyperedges
E = {�1, . . . , �<}.

input : The current attribute index 8 ∈ {1, . . . , = + 1},
and a set of relations R = {'1, . . . , '<}.

1 function enumerate(8, R)
2 if 8 ≤ = then

// Relations participating in the current join
3 R 9>8= ← {' 9 ∈ R | E8 ∈ �' 9

} ;

// Relations unaffected by the current join
4 R>Cℎ4A ← {' 9 ∈ R | E8 ∉ �' 9

} ;

// Key values appearing in all joined relations
5 foreach :8 ∈

⋂
' 9 ∈R 9>8=

cE8 (' 9) do
// Select matching tuples

6 R=4GC ← {fE8=:8 (' 9) | ' 9 ∈ R 9>8=} ;

// Recursively enumerate matching tuples
7 enumerate(8 + 1, R=4GC ∪ R>Cℎ4A) ;
8 else

// Produce result tuples
9 produce(

>
' 9 ∈R=4GC ' 9) ;

Algorithm 1 consists of a recursive function which searches
for valid assignments of a single join key E8 in each recursive
step. The index 8 of the current join key is passed as a
parameter to the algorithm. In later recursive steps (i.e.
8 > 1), the backtracking nature of the algorithm entails that
a specific assignment for the join keys E1, . . . , E8−1 has already
been selected in the previous recursive steps (see above).
The second parameter R consists of < separate sets, one for
each input relation ' 9 , which contains all tuples from ' 9 that
match this specific assignment of join key values. Initially, 8
is set to 1 and R contains the full relations ' 9 .

Within a given recursive step 8, the algorithm first deter-
mines which relations contain the join key E8 and thus have
to be considered when searching for matching assignments
of E8 (line 3). These relations are collected as separate ele-
ments in the set R 9>8=. Next, the algorithm iterates over all
assignments :8 of E8 that appear in every one of these rela-
tions (line 5). In every iteration of this loop, the tuples that
match the current assignment :8 of E8 are selected from the
relations in R 9>8= (line 6) and the algorithm proceeds to the
next recursive step (line 7). In the final recursive step (i.e.
8 = = + 1), the relations in R contain only tuples that match
one specific assignment of the join keys and are thus part of
the query result (line 9).

When taking a closer look at a specific input relation ' 9 ,
we observe that the parameter R of Algorithm 1 contains
only tuples from ' 9 that share a common prefix of join key
values. In case of the input relation '1 of the triangle query,
for example, R will contain the full relation '1 in the first
recursive step, all tuples that match a specific value of E1 in
the second step, and all tuples that match a specific value of

(E1, E2) in the final step. Therefore, Algorithm 1 induces a trie
structure on each input relation, as illustrated in Figure 1b [3].
The levels of this trie correspond to the join keys appearing
in this relation, in the order in which they are processed by
the join algorithm.

The theoretical foundation for the study of worst-case
optimal join algorithms such as Algorithm 1 was laid down
by Atserias, Grohe, and Marx, who derived a non-trivial and
tight bound on the output size of & that depends only on
the size of the input relations ' 9 [9, 44, 45]. Given the query
hypergraph �& of & as defined above, we consider an arbitrary
fractional edge cover x = (G1, . . . , G<) of �& [45], which is
defined by G 9 > 0 for all 9 ∈ {1, . . . ,<} and

∑
E8 ∈� 9

G 9 ≥ 1 for
all E8 ∈ + . Then this bound states that

|& | ≤
<∏
9=1
|' 9 |G 9 , (2)

and the worst-case output size of & can be determined by
minimizing the right-hand size of Inequality 2 [45]. A join
algorithm for computing & is defined to be worst-case opti-
mal if its runtime is proportional to this worst-case output
size [44, 45]. In case of our running example &Δ, the right-
hand side of Inequality 2 is minimal for the fractional edge
cover x = (0.5, 0.5, 0.5) which results in an upper bound of√
|'1 | · |'2 | · |'3 | on the size of &Δ [3, 45].
Central to the analysis of the runtime complexity of worst-

case optimal joins is the query decomposition lemma proved by
Ngo et al. [45] For a given query hypergraph �& and a subset
of join attributes * ⊆ + , we write E* := {� 9 ∈ E | * ∩ � 9 ≠ ∅}
to identify the set of all hyperedges that contain at least one
of the join attributes in * . Then the query decomposition
lemma can be stated as follows.

Lemma 2.1. Consider the query hypergraph �& = (+ , E)
describing the natural join query & = '1 B · · · B '<. Let
*], = + be an arbitrary partition of + with 1 ≤ |* | < |+ |
and ! := B� 9 ∈E* c* (' 9). Then∑

t∈!

©«
∏

� 9 ∈E, ∩E*
|' 9 N t|G 9

∏
� 9 ∈E, \E*

|' 9 |G 9
ª®¬ ≤

∏
� 9 ∈E

|' 9 |G 9 (3)

holds for any fractional edge cover x = (G1, . . . , G<) of �& .

From their constructive proof of this lemma, they derive a
generic worst-case optimal join algorithm that has runtime
in $ (=<∏

� 9 ∈E |' 9 |G 9) for an arbitrary fractional edge cover
x = (G1, . . . , G<) of the query hypergraph [45]. Algorithm 1 as
shown here can be obtained as a special case of this generic
algorithm by setting * = {E8 } in Lemma 2.1. In particular, the
set intersection in Algorithm 1 corresponds to the set !, and
the runtime of the loop over this set intersection corresponds
to the left-hand side of Inequality 3.

2.2 Implementation Challenges
Any implementation of Algorithm 1 has to rely on indexes
that explicitly model the trie structure on the input relations
in order to maintain the runtime complexity guarantees that

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

are required for the algorithm to be worst-case optimal [44,
45]. However, this requirement for index structures poses
a considerable practical challenge. The order in which the
join keys E8 of a query are processed heavily influences the
performance of Algorithm 1 [2]. Depending on the query and
its optimal join key order, indexes are required on different
permutations of attributes from the input relations. The
number of such permutations is usually much too large to
store the corresponding indexes persistently. Therefore, they
have to be built on-the-fly during query processing, precluding
any expensive precomputation of the indexes themselves.
Moreover, a general-purpose RDBMS and in particular an
HTAP database has to support changing data. This makes it
difficult to precompute data structures that could be reused
across indexes. For instance, EmptyHeaded and LevelHeaded
rely heavily on a suitable dense dictionary encoding of the
join attribute values which is hard to maintain in the presence
of changing data [2, 3].

At the same time, the overall runtime of Algorithm 1 is
dominated by the set intersection computation in line 5
which has to be implemented using these trie indexes [3].
While traditional B+-trees or plain sorted lists are compa-
rably cheap to build, they exhibit poor performance on this
computation. The read-optimized data structures employed
by EmptyHeaded and LevelHeaded can perform orders of
magnitude better, but as outlined above are far too expen-
sive to build on-the-fly [3, 8, 13]. For example, we measured
in Section 5 that EmptyHeaded spends up to two orders
of magnitude more time on precomputation than on actual
join processing [3]. In contrast, our hash trie index structure
proposed in Section 3 is much cheaper to build while still
offering competitive join processing performance.

Finally, binary join processing has been studied and op-
timized for decades, leading to excellent performance on a
wide range of queries. Even efficiently implemented worst-case
optimal join algorithms frequently fail to achieve the same per-
formance on queries that do not contain growing joins [2]. For
instance, even when disregarding precomputation cost, the
highly optimized LevelHeaded system is outperformed by Hy-
Per by up to a factor of two on selected TPCH queries [2, 29].
Moreover, we measured that the Umbra RDBMS which em-
ploys binary join plans outperforms a commercial database
system that relies on worst-case optimal joins by up to four
orders of magnitude on the well-known TPCH and JOB
benchmarks (cf. Section 5 and Figure 8) [36, 42]. Therefore,
we propose a hybrid query optimization approach that only
replaces binary joins with growing intermediate results by
worst-case optimal joins, as we expect a tangible benefit in
this case (cf. Section 4).

3 MULTI-WAY HASH TRIE JOINS
In this section, we present our hash-based worst-case optimal
join algorithm. The workhorse of this approach is a novel
hash trie data structure which is carefully designed to fulfill
the requirements identified above.

h2(3) h2(2) h2(0) = h2(3)h2(1)

h1(1) h1(0) h1(2)

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

hash table
on h1(v1)

hash tables
on h2(v2)

materialized tuples
in R1(v1, v2)

Figure 2: Illustration of a hash trie on the relation '1 (E1, E2)
shown in Figure 1. The example contains a collision between
ℎ2 (0) and ℎ2 (3) (marked in red).

3.1 Outline
Conceptually, the trie structure required by Algorithm 1 can
be modeled easily through nested hash tables, where each
level of nesting corresponds to one join key attribute [52].
The path to a nested hash table then determines a unique
prefix of join key values, and the nested hash table itself stores
the distinct values of the corresponding join key attribute
that appear in tuples with this prefix. On the last level, the
hash tables store some sort of tuple identifiers that allow
access to the tuple payload. The set intersections required by
the worst-case optimal join algorithm can then trivially be
computed in linear time, and the tuples matching a specific
join key value can be selected by a single constant-time hash
table lookup.

However, a straightforward implementation of this ap-
proach will suffer from suboptimal performance due to the
substantial overhead incurred by each hash table lookup.
Most importantly, every successful lookup into a hash table
involves at least one key comparison in order to detect and
eliminate hash collisions. This requires that the actual key
values are accessible from the hash table buckets, and con-
sequently, we either have to follow a pointer to the actual
tuple on each hash table lookup, or the key values have to
be stored within the buckets themselves. In either case, the
cache performance of lookup operations will suffer consid-
erably even if the actual key comparison function is cheap.
Variable-length join keys such as strings further exacerbate
this problem [53]. Finally, Algorithm 1 will generally produce
many tentative matches in the upper levels of the tries that
are later rejected because no corresponding matches exist on
the lower levels, each of which still requires at least one key
comparison.

The proposed hash trie data structure is based on the core
insight that this key comparison can be deferred until the
actual result tuples are enumerated by the join algorithm.
Specifically, we modify Algorithm 1 to operate exclusively
on the hash values of join keys, i.e. enumerate all tuples for
which the hash values instead of the actual values of the join
keys match. As a result, the corresponding trie structures will
also be built on the hash values instead of the actual values
of the join keys (cf. Figure 2). Of course, this enumeration
will now include some false positives due to hash collisions,
but we eliminate these false positives by verifying the actual
join condition just before producing a result tuple (line 9 in

Combining Worst-Case Optimal and Traditional Binary Join Processing

Algorithm 2: Hash Trie Join Build Phase
given : A hyperedge � 9 ∈ E and hash functions ℎ8 for

the join attributes E8 ∈ + .
input : The global index 8 ∈ {1, . . . , = + 1} of the

currently processed attribute E8 ∈ � 9 and a
linked list ! of tuples.

1 function build(8, !)
2 if 8 ≤ = then

// Allocate hash table memory
3 " ← allocateHashtable(2 dlog2 (1.25· |! |) e) ;

// Build outer hash table
4 foreach tuple t in ! do
5 pop t from ! ;
6 � ← lookupBucket(", ℎ8 (cE8 (t))) ;
7 push t onto the linked list stored in � ;

// Build nested hash tables
8 8=4GC ← index of the next attribute in � 9 ;
9 foreach populated bucket � in " do

10 !=4GC ← extract linked list stored in � ;
11 "=4GC ← build(8=4GC , !=4GC) ;
12 store "=4GC in � ;

13 return(") ;
14 else

// All attributes in � 9 have been processed
15 return(!) ;

Algorithm 1). The amount of redundant work introduced by
this relaxation will generally be negligible since hash collisions
are extremely rare in any decent hash function like AquaHash
or MurmurHash [7, 50].

These modifications allow for a much more efficient im-
plementation of the nested hash table structure, since no
information about the actual key values is required. Thus,
all hash tables share a uniform compact memory layout, and
both set intersections and lookup operations can be computed
without any type-specific logic by only relying on fast integer
comparisons. Moreover, the modified version of Algorithm 1
does not require any actual key comparisons for tentative
matches that are later rejected.

3.2 Join Algorithm Description
The proposed join processing approach can be split into
clearly separated build and probe phases. In the build phase
the input relations are materialized and the corresponding
hash tries are created. In the subsequent probe phase, the
worst-case optimal hash trie join algorithm utilizes these
index structures to enumerate the join result.

3.2.1 Hash Tries. As outlined above, a hash trie represents
a prefix tree on the hashed join attribute values of a relation,
where the join attributes and their order are determined by
a given query hypergraph. Thus, we assume in the following
that there is a hash function ℎ8 for each join attribute E8

Table 1: The trie iterator interface used in the probe phase
of our hash trie join algorithm (cf. Algorithm 3). An iterator
points to a specific bucket within one of the nodes of a hash
trie, and the interface functions allow navigation within the
trie.

function description

up Move the iterator to the parent bucket of the
current node.

down Move the iterator to the first bucket in the
child node of the current bucket.

next Move the iterator to next occupied bucket
within the current node. Return false if no
further occupied buckets exist.

lookup Move the iterator to the bucket with specified
hash. Return false if no such bucket exists.

hash Return the hash value of the current bucket.
size Return the size of the current node.
tuples Return the current tuple chain (only possible

after calling down on the last trie level).

which maps the values of E8 to some integer domain. A node
within a hash trie consists of a single hash table which maps
these hash values to child pointers. These point to nodes on
the next trie level in case of inner nodes, and to the actual
tuples associated with a full prefix in case of leaf nodes.
Within a leaf node, these tuples are stored in a linked list.
For example, Figure 2 illustrates a possible hash trie on the
relation '1 (E1, E2) shown in Figure 1, containing the tuples
(0, 1), (1, 2), (1, 3), (2, 0), (2, 3). Its root hash table contains the
distinct hash values of E1, i.e. ℎ1 (0), ℎ1 (1), and ℎ1 (2). The
child hash table of the entry for ℎ1 (1), for instance, then
contains the distinct hash values of E2 that occur in tuples
with ℎ1 (E1) = ℎ1 (1), i.e. ℎ2 (2) and ℎ2 (3).

3.2.2 Build Phase. In the build phase, such a hash trie data
structure is built on each input relation ' 9 of the join query
&. For a given relation ' 9 , we first materialize all tuples in
' 9 in a linked list. Subsequently, this linked list is passed
to Algorithm 2 which recursively constructs the hash tables
comprising the hash trie from top to bottom. Its inputs are
the global index 8 of the join attribute on which to build
a hash table, and a linked list ! of tuples. The algorithm
first allocates space for the hash table, where the number
of buckets is chosen as the next power of two larger than
some fixed multiple of the number of tuples in ! (line 3).
Subsequently, the tuples in ! are inserted into the hash table
based on the hash value of the current join attribute E8 . Tuples
that fall into the same bucket are collected in a linked list
stored in that bucket (lines 4–7). Finally, the hash tables on
the next join key attribute are built by calling Algorithm 2
recursively on these linked lists (lines 8–12). In the base case
(line 15), the linked list ! itself is returned unchanged as the
leaf node.

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

Algorithm 3: Hash Trie Join Probe Phase
given : A query hypergraph and hash tries on the

input relations with iterators I = {�1, . . . , �<}.
input : The current attribute index 8 ∈ {1, . . . , = + 1}.

1 function enumerate(8)
2 if 8 ≤ = then

// Select participating iterators
3 I9>8= ← {� 9 ∈ I | E8 ∈ � 9 } ;
4 I>Cℎ4A ← {� 9 ∈ I | E8 ∉ � 9 } ;

// Select smallest hash table
5 �B20= ← argmin� 9 ∈I9>8= size(� 9) ;

// Iterate over hashes in smallest hash table
6 repeat

// Find hash in remaining hash tables
7 foreach � 9 ∈ I9>8= \ {�B20=} do
8 if not lookup(� 9 , hash(�B20=)) then
9 skip current iteration of outer loop ;

// Move to the next trie level
10 foreach � 9 ∈ I9>8= do
11 down(� 9)

// Recursively enumerate matching tuples
12 enumerate(8 + 1);

// Move back to the current trie level
13 foreach � 9 ∈ I9>8= do
14 up(� 9)
15 until not next(�B20=);
16 else

// All iterators now point to tuple chains
17 foreach t ∈>� 9 ∈I9>8= tuples(� 9) do
18 if join condition holds for t then
19 produce(t) ;

3.2.3 Probe Phase. The probe phase is responsible for actu-
ally enumerating the tuples in the join result of a query. As
outlined above, we modify the generic multi-way join algo-
rithm shown in Algorithm 1 to defer key comparisons and
make use of the hash trie data structures created in the build
phase. Our implementation accesses hash tries through itera-
tors. A hash trie iterator points to a specific bucket within
one of the nodes of a hash trie, and thus identifies a unique
prefix stored within this trie. Iterators can be moved through
a set of well-defined interface functions which are shown in
Table 1. These functions allow horizontal navigation within
the buckets of a given node (next, lookup), and vertical nav-
igation between different nodes of the hash trie (up, down).
Crucially, all functions can be implemented with amortized
constant time complexity as they directly map to elementary
operations on the underlying hash tables.

The resulting worst-case optimal hash trie join algorithm
is shown in Algorithm 3. It exclusively interacts with iter-
ators � 9 ∈ I on the hash tries corresponding to the input

relations ' 9 ∈ R. In preparation for our subsequent analysis,
we introduce some additional notation. As outlined above,
an iterator � 9 ∈ I always points to a specific node within a
hash trie. We write � (� 9) to identify the set of hashed join
keys that is represented by this node and its children, and
'(� 9) to identify the multiset of tuples stored in the leaves
of the subtrie rooted in this node. In the following, we will
view � (� 9) as a relation with the same attribute names as
the corresponding '(� 9).

From a high-level point of view Algorithm 3 operates in
exactly the same way as the generic algorithm shown in Algo-
rithm 1, with the key difference that it initially enumerates
all tuples for which the hash values of the join keys match. In
particular, the loop in lines 6–15 iterates over the elements
:8 in the set intersection

⋂
� 9 ∈I9>8= cE8 (� (� 9)), and invoking

down on the participating iterators is equivalent to comput-
ing fE8=:8 (� (� 9)) for � 9 ∈ I9>8= . Any false positives arising due
to hash collisions are filtered by a final check just before pass-
ing the tuples to the output consumer of the multi-way join
operator (line 18).

3.2.4 Complexity Analysis. In the following, we present a
formal investigation of the time and space complexity of the
proposed hash trie join approach, proving in particular that
its runtime is indeed worst-case optimal.

Theorem 3.1. The build phase of the proposed approach
has time and space complexity in

$
©«= ·

∑
� 9 ∈E

|' 9 |
ª®¬ . (4)

Proof. As outlined above, the same operations are per-
formed for each input relation ' 9 during the build phase,
hence we focus on a given ' 9 in the following. The initial
materialization of ' 9 in a linked list clearly requires time and
space proportional to |' 9 |. Moving on to Algorithm 2, we
note that each tuple in the input linked list ! is moved to
exactly one of the linked lists that are processed recursively.
That is, no additional space is required for tuple storage, and
the overall set of tuples that is processed in each recursive
step of Algorithm 2 is some partition of ' 9 . As there are at
most = join attributes in a relation, we obtain a total time
and space complexity of $ (= · |' 9 |) for the build phase of a
single relation ' 9 . �

Before delving into the runtime analysis of Algorithm 3,
it is important to recall that we intend to integrate this al-
gorithm into a general-purpose RDBMS, and thus have to
adhere to the bag semantics imposed by the SQL query lan-
guage. However, both the theoretical groundwork on worst-
case optimal join processing as well as existing implementa-
tions only consider the case of set semantics as they are used
by the Datalog query language, for example [3, 44]. We thus
pursue the following line of reasoning. In the first step, we
formally prove that Algorithm 3 is worst-case optimal un-
der set semantics, where exactly one tuple is associated with

Combining Worst-Case Optimal and Traditional Binary Join Processing

each distinct join key in the input relations ' 9 . Note, how-
ever, that '(� 9) as defined above can still be a multiset even
under set semantics due to the possibility of hash collisions.
Subsequently, we informally motivate how this worst-case
optimality under set semantics translates to bag semantics.

Theorem 3.2. Consider the query hypergraph �& = (+ , E)
describing the natural join query & = '1 B · · · B '<. Let
x = (G1, . . . , G<) be an arbitrary fractional edge cover of �& ,
and let I = {�1, . . . , �<} be iterators pointing to the root nodes
of hash tries on the relations ' 9 . Then the time complexity
of Algorithm 3 is in $ (=<∏

� 9 ∈E |� (� 9) |
G 9) and its space

complexity is in $ (=<).

Proof. We begin by proving the time complexity of Algo-
rithm 3 by induction over its recursive steps 8. Our approach
is based on the assumption that good hash functions are
used, in the sense that collisions occur only very rarely. As
we impose set semantics for the purposes of this proof, we
can formalize this assumption as

|� (� 9) | ∈ Θ(|'(� 9) |) (5)

for any hash trie iterator � 9 . This formalization encompasses
the intuitive formulation that hash collisions occur with a
fixed small probability.

In the base case 8 = = + 1 all hash trie iterators point to
leaf nodes, i.e. by construction |� (� 9) | = 1 for all iterators
� 9 ∈ I. Under Assumption 5, this yields |'(� 9) | ∈ $ (1) and
thus the cross product of the '(� 9) enumerated in lines 17–19
contains $ (1) elements. Actually constructing the candidate
result tuple t and checking the join condition on t can then
easily be done in $ (=<) time which yields an overall runtime
of $ (=<) = $ (=<∏

� 9 ∈E |� (� 9) |
G 9) for the base case.

In the inductive case 1 ≤ 8 ≤ = we will apply Lemma 2.1
to the sets � (� 9). As outlined above, the loop in lines 6–15
iterates over the elements in

! :=
⋂

� 9 ∈I9>8=
cE8 (� (� 9))

=
⋂

� 9 ∈E*
c* (� (� 9))

= B� 9 ∈E* c* (� (� 9)) (6)

for * = {E8 }. By construction this set intersection is com-
puted in time proportional to size(�B20=) (cf. line 5), i.e.
proportional to

|E* | min
� 9 ∈E*

|c* (� (� 9)) | ≤ <

(
min

� 9 ∈E*
|� (� 9) |

)∑
�9 ∈E G 9

= <
∏
� 9 ∈E

(
min

� 9 ∈E*
|� (� 9) |

) G 9

≤ <
∏
� 9 ∈E

|� (� 9) |G 9 (7)

since |� (� 9) | ≥ 1 and G 9 > 0.
If a given iteration of the loop is not skipped in line 8, each

iterator in I9>8= points to the bucket containing a specific hash
value :8 ∈ !. In the following, we will view these hash values

as tuples t with the single attribute E8 . After invoking down
on these iterators in lines 10–11, we have thus restricted the
set of hashed join keys � (� 9) associated with these iterators
to

fE8=:8 (� (� 9)) = � (� 9) N t. (8)

Applying the inductive hypothesis then yields that the
runtime of the recursive call in line 12 is proportional to

=<
∏

� 9 ∈E*
|� (� 9) N t|G 9

∏
� 9 ∈E\E*

|� (� 9) |G 9 . (9)

Let , := + \ * = + \ {E8 }, and note that hyperedges � 9 ∈
E* \ E, contain only the join key E8 . Thus, |� 9 N t| = 1 for
� 9 ∈ E* \ E, . Moreover, one can easily verify that E \ E* =

E, \ E* since there are no empty hyperedges � 9 . Thus, the
runtime of the recursive call shown in (9) is equivalent to

=<
∏

� 9 ∈E, ∩E*
|� (� 9) N t|G 9

∏
� 9 ∈E, \E*

|� (� 9) |G 9 . (10)

Moreover, the loops invoking down and up on the iterators
in lines 10–11 and 13–14 each have runtime in $ (<). In
conjunction with (10), this allows us to state the overall
runtime of the loop in lines 6–15 as proportional to∑

t∈!

©«2< + =<
∏

� 9 ∈E, ∩E*
|� (� 9) N t|G 9

∏
� 9 ∈E, \E*

|� (� 9) |G 9
ª®¬

which is clearly bounded by

3=<
∑
t∈!

©«
∏

� 9 ∈E, ∩E*
|� (� 9) N t|G 9

∏
� 9 ∈E, \E*

|� (� 9) |G 9
ª®¬ . (11)

Hence, the prerequisites for Lemma 2.1 are satisfied by (6)
and (11), and we conclude that the runtime of this loop is
in $ (=<∏

� 9 ∈E |� (� 9) |
G 9). In combination with (7) this yields

the desired time complexity for Algorithm 3.
Finally, we observe that the hash trie iterators and interface

functions required by Algorithm 3 can easily be implemented
using $ (=<) additional space, as each iterator only needs to
store the path to the current bucket. �

Taking into account that |� (� 9) | ≤ |'(� 9) | clearly holds,
Theorem 3.2 yields that the runtime of Algorithm 3 is in-
deed worst-case optimal under set semantics. Concluding our
analysis, we note that under bag semantics, we can view the
algorithm as performing a worst-case optimal join on the
set of join key values, before expanding the bag of tuples
corresponding to the join keys that are part of the join re-
sult. By construction (cf. Algorithm 2), the inner nodes of
a hash trie store only the distinct join attribute hash values
present in the respective input relation, and consequently
only the leaf nodes are affected when multiple tuples can be
associated with a single join key. Such duplicated tuples are
simply stored in the linked list associated with the respective
leaf node and enumerated as part of the cross product be-
tween tuple chains in the base case of Algorithm 3 (line 17).
Crucially, this expansion occurs after Algorithm 3 has deter-
mined that all tuples in this cross product are part of the

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

62 h2(3) h2(2)
hash ptr hash ptr

61 h1(1) h1(0) h1(2)
hash ptr hash ptr hash ptr

8-byte shift 16-byte buckets

ptr v1 v2

2 3
ptr v1 v2

0 1
ptr v1 v2

2 0null null

ptr v1 v2

1 2
ptr v1 v2

1 3

8-byte chain pointer tuple memory

nullnull

62 h2(3)
hash ptr

hash table
on h1(v1)

hash tables
on h2(v2)

materialized tuples
in R1(v1, v2)

Figure 3: Memory layout of the hash trie in Figure 2. The gray boxes correspond to the individual hash tables and materialized
input tuples. No nested hash table is built for the tuple (0, 1) due to singleton pruning.

join result, except of course for potential false positives due
to hash collisions.

3.3 Implementation Details
In the following, we provide implementation details of the
proposed approach, and a detailed account of its integration
into a compiling query execution engine [41].

3.3.1 Hash Trie Implementation. Figure 3 shows the memory
layout of a hash trie as it is implemented within the Umbra
system [42]. We assume that the size of a hash value is 64 bits,
which is sufficient even for very large data sets. As outlined
above, the size of hash tables is restricted to powers of two,
as this allows us to compute the bucket index for a given
hash value using a fast bitwise shift instead of a slow modulo
operation. Specifically, for a hash table size of 2? and a 64-bit
hash value, the bucket index is computed by shifting the hash
value 64 − ? bits to the right. Each hash table contiguously
stores this shift value, i.e. 64 − ?, as a single 8-byte integer
followed by an array of 2? 16-byte buckets.

The first 8 bytes of each bucket contain the full hash value
that is stored in the bucket, which is required as we use linear
probing to resolve collisions within the bucket array. In com-
parison to other collision resolution schemes such as chaining,
linear probing has the advantage that all distinct hash values
are stored separately in the hash table. This allows us to
store the associated child pointer directly within the remain-
ing 8 bytes of a bucket, which would otherwise require at
least one further level of indirection. The upper 16 bits of
child pointers are unused on prevalent 64-bit architectures,
and we encode additional information about the target of the
pointer in these bits (cf. Figure 4). This plays a central role
in the two main optimizations of hash tries, namely singleton
pruning and lazy child expansion.

Singleton pruning is based on the observation that the size
of hash tables tends to decrease drastically in the lower levels
of the trie. In particular, we observed that inner nodes quite
frequently represent a prefix that occurs only in a single tuple.
Such singleton nodes and their descendants form a path
on which each node has exactly one child, and we represent

S E chain length memory address
1 bit 1 bit 14 bit 48 bit

64 bit tagged pointer

Figure 4: Structure of tagged child node pointers. The S bit is
set if the child node is a singleton tuple, and the E bit indicates
whether the child node has already been expanded.

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

h1(1) h1(0) h1(2)

h2(3) h2(2) h2(3)h2(1)

(a) No singleton pruning.

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

h1(1) h1(0) h1(2)

h2(3) h2(2) h2(3)

(b) Singleton pruning.

Figure 5: Illustration of singleton pruning. Any sub-trie that
represents only a single tuple (shown red in (a)) is represented
by a direct pointer to the corresponding tuple (shown red in
(b)).

such paths by a direct pointer to the corresponding singleton
tuple (cf. Figure 5). Single-entry paths that are associated
with multiple tuples are not pruned, as we cannot cheaply
detect this case without actually building the corresponding
hash tables (e.g. ℎ(3) in Figure 5). The upper bit of a child
pointer is used to distinguish between regular child pointers
and singleton child pointers (cf. Figure 4). We do not apply
singleton pruning to the root node, as this simplifies our code
and we expect the root node to contain more than one tuple
anyway.

Lazy child expansion exploits that Algorithm 3 computes
the intersection of multiple hash tables before actually ac-
cessing any children thereof. Depending on the selectivity
of this intersection operation, many inner nodes of the hash
trie are never accessed. In order to avoid the overhead of
unnecessarily creating nodes, we lazily expand child nodes
when they are accessed for the first time. During the build

Combining Worst-Case Optimal and Traditional Binary Join Processing

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

h1(1) h1(0) h1(2)

(a) Initial state.

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

h1(1) h1(0) h1(2)

h2(3) h2(2)

(b) After lookup of ℎ1 (1).

Figure 6: Illustration of lazy child expansion. Initially, only
the root hash table is built (a), and nested hash tables are
built lazily when required (b).

phase, only the root node is eagerly created by Algorithm 2,
as it is usually accessed at least once by the join algorithm.
Any recursive calls to Algorithm 2 are then deferred to the
probe phase, until the corresponding child node is actually
accessed. When a node is first created, all tuples that fall
into a given hash bucket are collected in a linked list (cf. Al-
gorithm 2), and a pointer to the head of this list is stored in
the corresponding child pointer (cf. Figure 6). The second
bit of the child pointer is then used to indicate whether the
corresponding child node has already been expanded (cf. Fig-
ure 4). Upon the first access to this bucket, the tuple chain is
scanned and the respective child node is built by executing
the respective deferred recursive call of Algorithm 2.

The number of tuples in the chain needs to be known
to choose a correct size for this child hash table. In order
to avoid having to scan the tuple chain twice, we use the
remaining 14 unused bits of the child pointer to track the
length of the tuple chain while building the parent hash table
(cf. Figure 4). Of course, we can only store chain lengths up
to a certain limit this way. Specifically, the child pointer can
be used to store chain lengths up to 214 − 2 = 16 382, and the
value 214 − 1 is used as a sentinel to indicate that an overflow
occurred. In the latter case, we resort to scanning the tuple
chain twice in order to determine its length. Fortunately,
most hash tables in the lower levels of a hash trie are small,
so such long chains are only encountered very rarely.

For this reason we simply expand a child node in the first
thread that accesses it. This thread atomically replaces the
child pointer with a sentinel value that cannot occur during
regular operation (263 − 1). Before following a child pointer,
threads first check for this sentinel value and spin until the
value becomes valid. We could also allow multiple threads
to collaboratively expand child nodes, but our experiments
show that the simple approach implemented in our system
works fine in the vast majority of cases. We thus leave the
exploration of alternative approaches to future work.

Our implementation of hash tries makes heavy use of
pointer tagging which calls for a brief discussion of the porta-
bility of our approach. Most importantly, we note that we
can maintain the overall asymptotic complexity guarantees of
the data structure even without pointer tagging. We merely
use it to optimize for cache performance by reducing the size
of the hash buckets. If the upper 16 bits of pointers are not

available to encode additional information, we can simply
store this information in an additional data field within the
hash buckets.

3.3.2 Build Phase. As outlined in Section 3.2.2 the incoming
tuples within a given input pipeline are conceptually placed in
a linked list as part of the build phase. In our implementation,
we materialize these incoming tuples contiguously in an in-
memory buffer. They are stored using a fixed-length memory
layout that is determined during query compilation time, in
order to facilitate subsequent random tuple accesses. In case
of variable-length data, this is achieved by materializing a
fixed-length metadata entry containing a pointer to the actual
variable-length data [42]. In addition to the actual tuple data,
we reserve an additional 8 bytes of memory per tuple which
is used later to store the tuple chain pointer required by the
linked lists (cf. Figure 3). Note that we do not materialize
the hash values of the join key attributes at this point, but
generate functions to compute these hash values from the
materialized tuple data on-demand. This reduces the storage
overhead per tuple as the hash values are stored as part of
the hash trie anyway.

As part of the materialization step, the tuples are parti-
tioned based on the hash values of the first join key attribute.
This ensures that tuples with similar join key hash values re-
side in physically close memory locations which is critical to
achieve acceptable cache performance during the remainder
of the build and probe phases. For this purpose, we adapt
the two-pass radix partitioning scheme proposed by Balkesen
et al. to the morsel-driven parallelization scheme employed
by Umbra [12, 35, 59].

After the incoming tuples have been materialized and par-
titioned, we create the root node of the corresponding hash
trie. In contrast to the lazily expanded nested hash tables,
these root hash tables can routinely become quite large, de-
pending on the number of distinct join attribute values in the
corresponding input pipelines. For this reason we fully paral-
lelize their creation within the morsel-driven parallelization
framework provided by Umbra [35, 42]. Concurrent insertions
into the same bucket are synchronized with lock-free atomic
operations.

An artifact of the self-join patterns frequently found in
graph analytic workloads is that multiple input pipelines to a
worst-case optimal join may produce exactly the same hash
tries. This is evident, for example, in Figure 1b where two
of the three tries on the participating relations are identical.
We detect this during code generation and only build the
corresponding data structures once.

3.3.3 Probe Phase. After the build phase, the initial hash
trie structure for each input pipeline is available, and the
join result can be computed by Algorithm 3. Within the
Umbra RDBMS, the hash trie data structure and trie it-
erators are implemented in plain C++, while the code that
implements the build and probe phases of a multi-way join
for a specific query is generated by the query compiler. At
query compilation time, the query hypergraph and, in par-
ticular, the number and order of join attributes is statically

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

known. This allows us to fully unroll the recursion in Algo-
rithm 3 within the generated code, resulting in a series of
tightly nested loops that enumerate the tuples in the join
result. This code is fully parallelized by splitting the outer-
most loop, i.e. the first set intersection, into morsels that
can be processed independently by worker threads within the
work-stealing framework provided by Umbra [35].

3.4 Further Considerations
An attractive way to reduce the amount of work required in
the build phase is to exploit existing index structures. As the
proposed join algorithm is hash-based, it is unfortunately not
possible to reuse traditional comparison-based indexes like
B+-trees for this purpose. However, with minor extensions
to allow for insertions, the proposed hash trie data structure
could also be used as a secondary index structure. Then, the
build phase can be skipped for input pipelines that scan a
suitably indexed relation.

Even more aggressive optimizations are possible if the
data is known to be static. In this case, it is actually de-
sirable to perform as much precomputation as possible in
order to minimize the time required to answer a query. While
this obviates the need for data structures that can be built
efficiently on-the-fly, a hash-based approach retains the ad-
vantage that complex attribute types can be handled much
more efficiently than in a comparison-based approach.

4 OPTIMIZING HYBRID QUERY PLANS
As discussed in Section 2, even an efficiently implemented
worst-case optimal join can be much slower than a binary join
plan if there are no growing binary joins that can be avoided
by the worst-case optimal join [2]. Therefore, we argue that a
general-purpose system cannot simply replace all binary join
plans by worst-case optimal joins and consequently, its query
optimizer must be able to generate hybrid plans containing
both types of joins.

The main objective of our optimization approach is to
avoid binary joins that perform exceptionally poorly due to
exploding intermediate results. We thus propose a heuristic
approach that refines an optimized binary join plan by re-
placing cascades of potentially growing joins with worst-case
optimal joins. Although the hybrid plans generated by this
approach are not necessarily globally optimal, they never-
theless avoid growing intermediate results and thus improve
over the original binary plans. We identify such growing joins
based on the same cardinality estimates that are used during
regular join order optimization. As query optimizers depend
heavily on accurate cardinality estimates, state-of-the-art sys-
tems have been subject to decades of fine-tuning to produce
reasonable estimates on a wide variety of queries. Thus, al-
though it is well-known that errors in these estimates are
fundamentally unavoidable [22], we expect our approach to
work well on a similarly wide range of queries.

The pseudocode of our approach is shown in Algorithm 4.
We perform a recursive post-order traversal of the optimized
join tree, and decide for each binary join whether to replace

Algorithm 4: Refining binary join trees
input : An optimized operator tree)

output : A semantically equivalent operator tree) ′

which may employ multi-way joins
1 function refineSubtree())
2 if) ≠); B)A then
3 return) ;

4) ′
;
← refineSubtree();) ;

5) ′A ← refineSubtree()A) ;

// Detect growing joins and multi-way join inputs
6 if |) | > max(|) ′

;
|, |) ′A |) ∨) ′; ≠); ∨) ′A ≠)A then

7 return collapseMultiwayJoin() ′
;

B) ′A) ;

8 return) ′
;

B) ′A ;

R1 R2 R3 R4

10

20

2015

20

5 10

(a) Binary join plan

R1 R2

R3 R4

10

20

2015

5
10

(b) Hybrid join plan

Figure 7: Illustration of the proposed join tree refinement
algorithm. A growing binary join and all its ancestors (shown
in red in (a)) are collapsed into a single multi-way join (shown
in (b)).

it by a multi-way join. A binary join is replaced either if it
is classified as a growing join, i.e. its output cardinality is
greater than the maximum of its input cardinalities, or if one
of its inputs has already been replaced by a multi-way join
(line 6). In both cases, a single multi-way join is built from
the inputs and the current join condition (cf. Figure 7). We
choose to eagerly collapse the ancestors of a growing binary
join into a single multi-way join, as the output of a growing
join will necessarily contain duplicate key values which would
cause redundant work when processed by a regular binary
join. Note that the formulation in Algorithm 4 is slightly
simplified, as our actual implementation contains additional
checks to ensure that only inner joins with equality predicates
are transformed into a multi-way join, as this is not possible
for other join types in the general case. Furthermore, we do
not create multi-way join nodes with only two inputs as they
offer no benefit over regular binary joins.

Like many commercial and research RDMBS, Umbra em-
ploys a dynamic programming approach for cost-based join
order optimization, and we could also attempt to integrate
hybrid query plans into the search space of this optimizer.
However, this attempts to holistically improve the quality of
all query plans, whereas we only want to avoid binary joins
that suffer from exploding intermediate results. Furthermore,

Combining Worst-Case Optimal and Traditional Binary Join Processing

recent work within a specialized graph system has shown
that accurate cost estimates for such plans require detailed
cardinality information that cannot be computed cheaply
within a general-purpose RDBMS like Umbra [40].

As the final step of our optimization process, the join
attribute order of each multi-way join introduced by Algo-
rithm 4 is optimized in isolation. For this purpose, we adopt
the cost-based optimization strategy that was developed for
the worst-case optimal Tributary Join algorithm [13]. We
selected this particular optimization strategy over other al-
ternatives [2, 3, 8, 40], as its cost estimates rely only on
cardinality information that is already maintained within
Umbra, and the generated attribute orders exhibited good
performance in our preliminary experiments. We emphasize
that the multi-way join optimization strategy is entirely inde-
pendent of both the actual join implementation presented in
the previous section and the join tree refinement algorithm
presented in this section. Therefore, other multi-way join op-
timization approaches such as generalized hypertree decom-
positions could easily be integrated into our system [3, 16].

5 EXPERIMENTS
In the following, we present a thorough evaluation of the
implementation of the proposed hybrid optimization and
hash trie join approach within the Umbra RDBMS [42]. We
will subsequently refer to the corresponding system configu-
ration as UmbraOHT. For comparison purposes, we also run
experiments in which all binary joins are eagerly replaced
by worst-case optimal joins, and refer to the corresponding
system configuration as UmbraEAG.

5.1 Setup
We compare our implementation to the unmodified version
of Umbra and to the well-known column-store MonetDB
(v11.33.11) both of which exclusively rely on binary join
plans [21, 42]. Furthermore, we run comparative experiments
with a commercial database system (DBMS X) and the
EmptyHeaded system, both of which implement worst-case
optimal joins based on ordered index structures [1, 3]. We
additionally intended to compare against LevelHeaded, an
adaptation of EmptyHeaded for general-purpose queries, but
were unable to obtain a copy of its source code which is not
publicly available [2]. Finally, we implemented the Leapfrog
Triejoin algorithm within Umbra (UmbraLFT), based on
dense sorted arrays that are built during query processing
using the native parallel sort operator of Umbra [52, 54].
Our preliminary experiments showed that using sorted arrays
within the UmbraLFT system is consistently faster than using
the B+-tree indexes available within Umbra as the former
incur substantially less overhead.

For our experiments, we select the join order benchmark
(JOB) which is based on the well-known IMDB data set [36],
and the TPCH benchmark at scale factor 30. Furthermore,
we run a set of graph-pattern queries on selected network
datasets from the Stanford Large Network Dataset Collection
which have been used extensively in previous work [38, 46].

Table 2: Key statistics of the graph datasets used in our ex-
periments.

dataset nodes directed edges undirected edges

Wiki 7.1 K 103.7 K 100.8 K
Epinions 75.9 K 508.8 K 405.7 K
Slashdot 82.2 K 948.5 K 582.5 K

Google+ 0.1 M 13.7 M 12.2 M
Orkut 3.1 M 117.2 M 117.2 M
Twitter 41.7 M 1 468.4 M 1 202.5 M

For a comprehensive evaluation of our approach, we include
both comparably small and extremely large data sets. In
particular, we choose the Wikipedia vote network [37], as
well as the Epinions and Slashdot social networks [39, 49],
all of which we classify as small data sets. Finally, we select
the much larger Google+ and Orkut user networks [11, 56],
as well as the Twitter follower network which is one of the
largest publicly available network data sets [34].

All graph data sets are in the form of edge relations in
which each tuple represents a directed edge between two nodes
identified by unsigned 64-bit integers. Like previous work on
the subject [3, 6, 20, 40, 46], we focus on undirected clique
queries on these graphs as they are a common subpattern
in graph workloads [46]. In order to allow for undirected
queries, the edges are preprocessed such that the source node
identifier is less than or equal to the target node identifier.
We then run queries that count the number of directed 3, 4,
and 5-cliques in these preprocessed graphs, which is equal to
the number of undirected cliques in the original graphs [51].
The queries used in our experiments are available online [15].

All experiments are run on a server system with 28 CPU
cores (56 hyperthreads) on two Intel Xeon E5-2680 v4 pro-
cessors and 256 GiB of main memory. Each measurement is
repeated three times and we report the results of the best
repetition. Our runtime measurements reflect the end-to-end
query evaluation time including any time required for query
optimization or compilation, and a timeout of one hour is
imposed on each individual experiment repetition.

5.2 End-To-End Benchmarks
We first present end-to-end benchmarks which demonstrate
the effectiveness of the hash trie join implementation.

5.2.1 Traditional OLAP Workloads. In our first experiment,
we expand upon the preliminary results that were briefly dis-
cussed in Section 2. In particular, we demonstrate that a
hybrid query optimization strategy is critical to achieve ac-
ceptable performance on relational workloads such as TPCH
and JOB. For this purpose, we run the TPCH and JOB bench-
marks on the unmodified version of Umbra as a baseline, and
compare the end-to-end query execution times to DBMS X,
MonetDB, and to the UmbraEAG and UmbraOHT systems.
EmptyHeaded is excluded in this experiment as it does not
support the complex analytical queries in these benchmarks.

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

DBM
S

X

M
onet

DB

Umbra
EAG

Umbra
O

HT

105

104

103

102

101

1

0.1

re
la

ti
v
e

sl
o
w

d
o
w

n
(l

o
g

sc
a
le

)

TPCH (SF 30)

DBM
S

X

M
onet

DB

Umbra
EAG

Umbra
O

HT

fa
st

e
r
−→

←
−

sl
o
w

e
r

JOB

Figure 8: Relative slowdown of the different systems in com-
parison to binary join plans within Umbra on TPCH and JOB.
The boxplots show the 5th, 25th, 50th, 75th, and 95th per-
centiles.

Here, the unmodified version of Umbra that relies purely
on binary join plans outperforms all other systems except for
the UmbraOHT system which employs our novel hybrid opti-
mization strategy. The relative slowdown of these systems in
comparison to Umbra is shown in Figure 8. The worst-case
optimal join plans of DBMS X exhibit the lowest perfor-
mance by far, with a median slowdown of 57.4× on TPCH
and 134.0× on JOB. MonetDB performs much better than
DBMS X on these benchmarks, but is still outperformed by
Umbra with a median slowdown of 3.7× on TPCH and JOB,
which are measurements consistent with previous work [42].
Our implementation of multi-way joins within Umbra fur-
ther improves over both DBMS X and MonetDB even when
eagerly replacing all binary joins with multi-way joins in the
UmbraEAG configuration. However, it still incurs a median
slowdown of 1.1× on TPCH and 2.3× on JOB in comparison
to Umbra. These results constitute the key observation in
this benchmark, as they demonstrate that our implementa-
tion of worst-case optimal joins is highly competitive even in
comparison to mature and optimized systems such as Mon-
etDB. However, they also show that even such a competitive
implementation falls short of binary join plans if the latter do
not incur any redundant work. Similar results have been ob-
tained in previous work on the LevelHeaded system [2]. The
UmbraOHT system which employs our novel hybrid query
optimizer closes this gap in performance and incurs no slow-
down over the unmodified version of Umbra on the TPCH
and JOB benchmarks. In fact, our optimizer correctly deter-
mines that a worst-case optimal join plan is never beneficial
on these queries as there always exists a binary join plan
without growing joins (cf. Section 5.3.2).

5.2.2 Relational Workloads with Growing Joins. This situa-
tion changes when growing joins are unavoidable, e.g. when
looking for parts within the same order that are available
in the same container from the same supplier on TPCH (cf.
Section 1). Our hybrid query optimizer correctly identifies
the growing non-key joins in this query, and generates a plan
containing both binary and multi-way joins. As a result, the

ti
m

eo
ut

[1
0
4 ,

10
3)

[1
0
3 ,

10
2)

[1
0
2 ,

10
)

[1
0,

2)

[2
, 1
.1
)

[1
.1
, 0
.9
)

[0
.9
, 0

)

Umbra

DBMS X

MonetDB

UmbraEAG

UmbraOHT

1 0 0 0 0 0 31 0

8 3 16 5 0 0 0 0

8 1 3 10 8 2 0 0

1 0 0 7 18 6 0 0

0 0 0 0 0 1 25 5

Figure 9: Histogram of the relative slowdown of the differ-
ent systems in comparison to binary join plans within Umbra
when running the JOB queries without filter predicates.

UmbraOHT system exhibits the best overall performance, im-
proving over Umbra by a factor of 1.9× and over UmbraEAG

by a factor of 4.2×. In comparison to MonetDB and DBMS
X, the speedup of UmbraOHT increases even further to 7.6×
and 350.0×, respectively.

We broaden this experiment by additionally running the
JOB queries without any filter predicates on the base tables.
Similar to the previous query on TPCH, they contain a mix
of non-growing and growing joins and are thus challenging
to optimize. Query 29 is excluded in this experiment as it
contains an extremely large number of joins which causes the
query result to explode beyond the size that even a worst-
case optimal join plan can realistically enumerate. We again
measure the relative performance of the competitor systems
in comparison to the unmodified version of Umbra.

Figure 9 shows the distribution of this relative performance
for each system. Most importantly, we observe that although
the benchmark now contains growing joins, neither DBMS X
nor the UmbraEAG system are able to match the performance
of the unmodified version of Umbra, by a similar margin as
in the previous experiment. This indicates that pure worst-
case optimal join plans are still not feasible on queries which
contain a mix of growing and non-growing joins, where the
non-growing joins could be processed much more efficiently
by binary joins. The relative performance of MonetDB deteri-
orates sharply in comparison to the regular JOB benchmark,
as it materializes all intermediate results which become much
larger in the presence of growing joins and might even have
to be spilled to disk. In contrast, the UmbraOHT system with
our hybrid query optimizer matches or improves over the
performance of Umbra, by identifying five queries on which a
hybrid query plan containing worst-case optimal joins is su-
perior to a traditional binary join plan. Moreover, the hybrid
query plans employed by the UmbraOHT system do not incur
any timeouts on this benchmark, unlike any other system
that we investigate.

5.2.3 Graph Pattern Queries. Finally, we evaluate our hash
trie join implementation on the graph pattern queries and
data sets introduced above. On such queries, worst-case opti-
mal join plans typically exhibit asymptotically better runtime
complexity than binary join plans, and previous research
has shown that large improvements in query processing time

Combining Worst-Case Optimal and Traditional Binary Join Processing

Table 3: Absolute runtime in seconds of the graph pattern
queries on the small network data sets.

Wiki Epinions Slashdot

3-clique EH-Probe 0.28 0.30 0.29
EmptyHeaded 0.43 0.79 1.07
DBMS X 0.28 0.52 1.37
MonetDB 0.37 0.96 0.97
Umbra 0.03 0.06 0.08
UmbraLFT 0.36 0.53 0.49
UmbraOHT 0.04 0.07 0.07

4-clique EH-Probe 0.40 0.55 0.47
EmptyHeaded 0.55 1.04 1.24
DBMS X 1.66 6.53 13.95
MonetDB 8.16 16.58 10.63
Umbra 1.61 12.04 7.91
UmbraLFT 3.82 7.02 4.09
UmbraOHT 0.10 0.23 0.18

5-clique EH-Probe 0.97 3.19 1.57
EmptyHeaded 1.12 3.69 2.35
DBMS X 8.98 85.21 80.93
MonetDB 368.34 1 392.41 timeout
Umbra 45.06 570.92 166.30
UmbraLFT 21.47 57.13 37.48
UmbraOHT 0.42 1.43 0.90

are possible [3, 46]. However, systems that are optimized for
such read-only workloads require expensive precomputation
of index structures in order to achieve high performance [3].
Our experiments show that the hash trie join implementation
within Umbra achieves competitive end-to-end performance
on such workloads, even though it computes all required data
structures on-the-fly during query processing.

We first run the 3 and 4-clique queries on the small Wiki,
Epinions, and Slashdot graph data sets. The absolute end-to-
end query execution times of the different systems are shown
in Table 3. Note that our measurements for EmptyHeaded in-
clude the time required for its precomputation step, without
any disk IO that is done as part of this step. For reference,
we also provide measurements for EmptyHeaded that exclude
this precomputation step (EH-Probe). First of all, we observe
that the hash trie join implementation within the UmbraOHT

system consistently exhibits the best runtime across all data
sets and queries, outperforming the remaining systems by
up to two orders of magnitude. In general, the performance
advantage of worst-case optimal join plans rapidly increases
as the complexity of the graph pattern queries grows. This
is to be expected, as more complex pattern queries result
in more intermediate results that can explode when using a
binary join plan. Interestingly, the unmodified version of Um-
bra matches the performance of our hash trie join implemen-
tation on the 3-clique query, and all other systems perform
considerably worse. In case of EmptyHeaded, this is evidence
of both a large optimization and compilation overhead that

Table 4: Absolute runtime in seconds of the 3-clique query on
the large network data sets.

Google+ Orkut Twitter

EH-Probe 0.64 2.78 150.16
EmptyHeaded 18.67 309.14 timeout
DBMS X 59.77 311.44 timeout
Umbra 28.53 55.49 timeout
UmbraLFT 14.55 30.61 1 175.97
UmbraOHT 7.70 15.25 579.07

we observed to be essentially static on this benchmark, and
its expensive precomputation step. The multi-way join imple-
mentations of DBMS X and UmbraLFT rely on ordered data
structures which are less efficient than our optimized hash
trie data structure, a finding that is also evident on the more
complex graph pattern queries. Finally, we emphasize that
the UmbraOHT system outperforms the highly optimized
EmptyHeaded system even on the complex 4- and 5-clique
queries where the static overhead incurred by EmptyHeaded
does not affect its runtime as significantly.

Finally, we run the 3-clique query on the much larger
Google+, Orkut, and Twitter graph data sets (cf. Table 4).
We do not run the more complex graph pattern queries on
these data sets as their result size on large data sets quickly
increases beyond the size that can be reasonably enumerated
by any system. We also exclude MonetDB in this experiment,
as it cannot compute the query result within the one hour
time frame allocated for each experiment repetition. Once
again, the UmbraOHT system consistently outperforms its
competitors by a large margin. The performance of Empty-
Headed degrades in comparison to the benchmarks on the
small data sets, as its precomputation step becomes exces-
sively expensive on these larger data sets.

5.3 Detailed Evaluation
The remainder of our experiments provide a detailed evalua-
tion of the applicability of worst-case optimal joins to rela-
tional workloads, and of the proposed optimization strategy.

5.3.1 Applicability of Worst-Case Optimal Joins. We expand
on the end-to-end benchmarks presented above, and study
the applicability of worst-case optimal joins within a general-
purpose RDBMS in detail. Traditional relational workloads
such as TPCH or JOB do not produce any growing inter-
mediate results and thus there is no benefit in introducing
a worst-case optimal join. In fact, as demonstrated above,
worst-case optimal joins incur a substantial overhead on such
workloads, primarily since they have to materialize all their
inputs in suitable index structures. However, as exemplified
by the experiments in Section 5.2.2, growing intermediate
results can arise, for example, due to unconstrained joins
between foreign keys.

In order to study such workloads under controlled con-
ditions, we generate an additional synthetic benchmark. In

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

1

107

1

(107 + r) / 2

(107 - r) / 2

107

...

...

...

...

... ...

...

R S T
10

7 d
is

ti
nc

t i
nt

eg
er

s

r
di

st
in

ct
 in

te
ge

rs

(107 - r) / 2(107 - r) / 2

(107 + r) / 2 (107 + r) / 2

Figure 10: Illustration of the synthetically generated rela-
tions ', (, and) . The tuples in each relation are duplicated
3 ∈ {1, . . . , 10} times, leading to the natural join ' B (B)

containing A33 tuples.

0.0 0.2 0.4 0.6 0.8 1.0

duplicates d per input tuple (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

ru
n
ti

m
e

in
s

(l
o
g

sc
a
le

)

0.1

1

10
r = 104 r = 105

1 5 10

0.1

1

10
r = 106

1 5 10

r = 107

Umbra UmbraEAG UmbraOHT

Figure 11: Absolute query runtime on the synthetic query
' B (B) as the number of distinct values A and duplicated
tuples 3 in the query result is varied.

particular, we choose two parameters A ∈ {104, 105, 106, 107}
and 3 ∈ {1, . . . , 10}, and generate randomly shuffled relations
', (, and) as follows. ' simply contains the distinct inte-
gers 1, . . . , 107, while (and) contain the distinct integers
1, . . . , (107 + A)/2 and (107 − A)/2, . . . , 107 respectively (cf. Fig-
ure 10). Each distinct integer in ', (, and) is duplicated
3 times. Thus the result of the natural join ' B (B) con-
tains exactly A distinct integers, each of which is duplicated
33 times for a total of A33 tuples. While any binary join plan
for this query will contain growing intermediate results for
3 > 1, they do not grow beyond the size of the query result
if the join (B) is performed first. This differs from graph
pattern queries, where usually any binary join plan produces
an intermediate result that is larger than the query result.

Figure 11 shows the absolute runtime of the query ' B

(B) for different configurations of the Umbra system. As
expected, we observe that as the number of duplicates in
the join result is increased, the runtime of binary join plans
increases much more rapidly in comparison to worst-case
optimal joins. As outlined above, each distinct value in the
join result is duplicated 33 times. In a binary join plan,
enumerating each one of these duplicates requires at least two

Table 5: Breakdown of the decisions made by the hybrid
query optimizer on each benchmark. The table shows the total
number of joins, as well as the number of introduced multi-
way joins categorized into true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN).

Benchmark Joins TP TN FP FN

TPCH 59 0 59 0 0
JOB 864 0 859 0 5

JOB (no filters) 234 19 140 0 75
Graph 48 48 0 0 0
Synthetic 80 52 8 18 2

Total 1 285 119 1 066 18 82

hash table lookups. In contrast, a hash trie join determines
once that the distinct value is part of the join result after
which all duplicates thereof can be enumerated without any
additional hash table operations.

However, we also observe that the superior scaling behavior
of worst-case optimal joins does not necessarily translate to
an actual runtime advantage. If there are few distinct values
A or duplicates 3 in the query result, binary join plans still
exhibit reasonable performance and commonly outperform
worst-case optimal joins. In these cases, the additional time
required by a hash trie join for materializing all input relations
in hash tries exceeds the time saved by its more efficient
join evaluation. Consequently, the break-even point at which
worst-case optimal joins begin to outperform binary join
plans moves towards a smaller number of duplicates 3 as the
number of distinct values A in the query result is increased.
That is, worst-case optimal joins offer the greatest benefit on
join queries where most tuples from the base relations have
a large number of join partners.

Finally, we note that the hybrid query optimizer employed
by UmbraOHT accurately detects this break-even point for
A > 104, resulting in good performance across the full range of
possible query behavior. While the optimizer does switch to
worst-case optimal joins too early for A = 104, we determined
that this is caused by erroneous cardinality estimates. This
is a common failure mode in relational databases which
unfortunately cannot be avoided in the general case [22, 36].
Crucially, however, the optimizer always correctly detects
the case 3 = 1 which corresponds to a traditional relational
workload without growing intermediate results.

5.3.2 Optimizer Evaluation. In order to gain more detailed
insights into the behavior of our hybrid query optimizer, we
additionally analyze every decision made by the optimizer on
the benchmarks presented in this paper so far. Specifically,
we collect both the estimated and true input and output
cardinalities of all join operators inspected by Algorithm 4.
For a given join, we subsequently check if the optimizer
decided to introduce a multi-way join or not, and whether
this decision matches the correct decision given the true input
and output cardinalities. This allows us to categorize these

Combining Worst-Case Optimal and Traditional Binary Join Processing

decisions into true and false positives, respectively negatives,
where the correct introduction of a multi-way join is counted
as a true positive.

An overview of the results is shown in Table 5. As discussed
previously, growing joins are exceptionally rare in traditional
relational workloads like TPCH and JOB. Out of a total of
923 joins, the optimizer incurs only 5 false negatives where a
growing join is incorrectly classified as non-growing. These
errors occur on two JOB queries (8c and 16b) where the initial
binary join ordering produces a suboptimal plan containing
mildly growing joins due to incorrect cardinality estimates.
We determined that the optimal plan for these queries would
not contain any growing joins. Beyond that, our results show
that the proposed hybrid query optimizer is insensitive to the
cardinality estimation errors that routinely occur in relational
workloads [22, 36]. This is to be expected, as the optimizer
relies only on the relative difference between the cardinality
estimates of the input and output of join operators, and not
their absolute values.

On the modified JOB queries, the optimizer correctly iden-
tifies the severely growing joins, while also incurring a compa-
rably large number of false negatives. They occur primarily
on weakly growing joins, where minor errors in the absolute
cardinality estimates can already affect the decision made by
the hybrid optimizer. However, we measured that these false
negatives affect the absolute query runtime only on 3 of the
32 queries, on which we only miss a potential further speedup
of up to 1.6×. Nevertheless, the corresponding hybrid query
plans still outperform query plans that contain only binary
joins (cf. Figure 9). The join attributes in this benchmark
are frequently primary keys, which generally causes Umbra
to estimate lower cardinalities. A major advantage of this
behavior is that it makes false positives, i.e. the incorrect
introduction of multi-way joins, unlikely and in fact no false
positives occur on these queries. This is critical to ensure
that we do not compromise the performance of Umbra on
traditional relational queries.

The graph pattern queries contain only very rapidly grow-
ing joins, all of which are correctly identified by the hybrid
optimizer. As discussed above, the behavior of joins in the
synthetic benchmark varies. However, as none of the join at-
tributes are marked as primary key columns the system is
much less hesitant to estimate high output cardinalities for
joins. This is evident in Figure 11 for A = 104 and results
in some false positives which in comparison to the optimal
plan increase the absolute query runtime by up to 3.7× for
3 = 2. However, it is important to note that these false pos-
itives affect only joins on non-key columns where 3 > 1. In
summary, our results show that the proposed hybrid query
optimizer achieves high accuracy even under difficult circum-
stances and across a wide range of different queries.

5.4 Microbenchmarks
We conclude our experiments by providing an in-depth evalua-
tion of key aspects of our implementation. These microbench-
marks are conducted using the simple 3-clique graph pattern

103 104 105 106 107 108 109

number of edges (log scale)

100

101

102

103

104

105

106

ru
n
ti

m
e

in
m

s
(l

o
g

sc
a
le

)

EH-Probe

DBMS X

Umbra

UmbraLFT

UmbraOHT

Figure 12: Absolute runtime of the 3-clique query on increas-
ingly larger random subsets of the Twitter data set.

query as this query has been used extensively to evaluate the
performance of other systems in related work [2, 46].

5.4.1 Scaling Behavior. First, we investigate the scaling be-
havior of the different systems as the data set size grows. For
this purpose, we run the 3-clique query on increasingly larger
randomly chosen subsets of the Twitter data and record the
end-to-end query execution time, the results of which are
shown in Figure 12. We exclude precomputation time for
EmptyHeaded in this benchmark in order to better highlight
the scaling behavior of its join implementation.

We can make several key observations on these results.
First, we note that the binary join plans of the unmodified
version of Umbra actually exhibit the best overall perfor-
mance up to a data set size of roughly 106, which is explained
by the fact that the smaller random subgraphs are highly
disconnected with only few 2-paths and 3-cliques. Therefore,
a binary join plan will not have to enumerate large interme-
diate results, and at the same time forgoes the overhead of
building the trie data structures required by the UmbraLFT

and UmbraOHT systems. Similar to the experiments on syn-
thetic data presented in Section 5.3.1, the hybrid optimizer
incurs some false positives in these cases due to incorrect
cardinality estimates. That is, it incorrectly introduces a
worst-case optimal join although there is no runtime benefit
in doing so. Analogous to the end-to-end benchmark results
present above, we observe a large static overhead on these
small data sets for the EmptyHeaded system.

On the larger subgraphs with more than 106 edges, the
performance of Umbra quickly degrades until query execu-
tion times out on graphs with more than 108 edges. Surpris-
ingly, the runtimes of DBMS X exhibit virtually the same
asymptotic behavior which could indicate that the system
incorrectly uses a binary join plan in this benchmark. In con-
trast, our hybrid optimizer selects a worst-case optimal join
plan for the UmbraLFT and UmbraOHT systems resulting
in greatly improved runtime, and the UmbraOHT system
consistently outperforms the comparison-based UmbraLFT

system. In fact, the hash trie join implementation in the
UmbraOHT configuration actually even matches or outper-
forms EmptyHeaded on all subgraph queries and only falls

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

Table 6: Ablation tests using the 3-clique query on random
subsets of the Twitter data. Runtime is shown in seconds, and
memory consumption is shown in GiB.

edges metric baseline -LE -SP -RP

5 M runtime 0.17 1.24× 2.33× 2.25×
memory 0.35 1.08× 1.79× 1.79×

50 M runtime 2.52 1.21× 1.49× 1.32×
memory 3.69 1.05× 1.29× 1.29×

500 M runtime 126.96 1.01× 1.04× 1.18×
memory 35.48 1.02× 1.05× 1.05×

1 202 M runtime 579.07 1.00× 1.03× 1.24×
memory 84.03 1.01× 1.02× 1.02×

short on the full Twitter data set, although we do not mea-
sure the precomputation time required by EmptyHeaded in
this experiment. EmptyHeaded heavily relies on aggressive
set layout optimizations in its precomputed index structures
which enable it to employ an optimized set intersection algo-
rithm [3]. These optimizations are dependent on a suitable
dense numbering of the nodes within the graph data which is
present in the full Twitter data, but not in any random sub-
graphs thereof. In contrast, the performance of the proposed
hash trie approach is entirely independent of such data set
specifics, making it much more versatile in practice.

5.4.2 Ablation Tests. Next, we study which impact the main
optimizations introduced in Section 3 have on the perfor-
mance of the hash trie join algorithm. We thus disable these
optimizations one-by-one within the UmbraOHT system, and
record the runtime and memory consumption of the 3-clique
query on selected random subgraphs of the Twitter data.
Specifically, Table 6 shows the performance with all optimiza-
tions enabled (baseline), and with successively disabled lazy
child expansion (-LE), singleton pruning (-SP), and radix
partitioning of the input (-RP).

Overall, the experiment shows that these optimizations
have a positive impact on both runtime and memory con-
sumption in all cases, and disabling all optimizations increases
runtime by up to a factor of 2.25× and memory consumption
by up to a factor of 1.79×. Lazy child expansion and single-
ton pruning are generally more useful on the smaller random
subgraphs. As mentioned above, this is to be expected since
these graphs are sparse and highly disconnected, leading to
many nodes that never have to be expanded or that have
only a single outgoing edge. In contrast, radix partitioning
has a positive impact on runtime regardless of the size of the
data set. It is arguably the most important optimization of
our approach, as it eliminates any runtime fluctuations due
to the specific order in which data is stored in the base tables.
In combination, the proposed optimizations thus enable the
hash trie join algorithm to perform well on a wide variety of
data sets with diverse sizes and characteristics.

Table 7: Comparison of the absolute runtime in seconds of
the 3-clique query on the Orkut data when using string keys
instead of integer keys.

integer string slowdown

DBMS X 311.44 726.80 2.33×
UmbraLFT 30.61 58.53 1.91×
UmbraOHT 15.25 17.29 1.13×

Table 8: Comparison of the build and probe times in seconds
required for the 3-clique query on the Orkut data set.

1 thread 56 threads
build probe build probe

EmptyHeaded 471.42 75.85 306.36 2.78
UmbraLFT 207.87 729.31 8.91 21.70
UmbraOHT 20.84 435.21 1.01 14.23

5.4.3 Non-Integer Key Attributes. Previous work has shown
that non-integer key attributes are ubiquitous in real-world
data sets [53]. As outlined in Section 3, the proposed hash trie
join approach is for the most part not comparison-based, and
therefore the actual key data types used in a multi-way join
do not significantly affect the query runtime. We demonstrate
this by changing the data type of the edge relation attributes
from 64-bit integers to variable-length strings representing
the same integers, and subsequently run the 3-clique query
on this modified graph data set. We choose the Orkut data
set for the remaining experiments to avoid timeouts due to
excessively long runtimes in our competitors. EmptyHeaded
does not support strings as join key attributes and is thus
excluded from this experiment.

Table 7 shows the query execution time of DBMS X,
UmbraLFT and UmbraOHT when using 64-bit integers or
strings as the join key attributes. Unsurprisingly, the com-
parison-based approaches incur a large performance hit of
2.33× in case of DBMS X, and 1.91× in case of UmbraLFT

when computing the 3-clique query on string attributes, as
string comparisons are much more expensive than integer
comparisons. In contrast, the performance of the UmbraOHT

system is hardly affected and decreases only by a factor of
1.13×. A small performance penalty is unavoidable even in
case of the UmbraOHT system, as we still have to compute
hash values of string attributes and check the actual join
condition before producing a result tuple (cf. Section 3).

5.4.4 Build and Probe Times. Finally, we investigate the
tradeoff that the different systems make between the effort
spent on building the required index structures and the time
required for query execution. For this purpose, we separately
record the build and probe times for the 3-clique query on
the Orkut data set. As EmptyHeaded does not support fully
multi-threaded precomputation of its index structures, we
additionally run this experiment single-threaded. DBMS X

Combining Worst-Case Optimal and Traditional Binary Join Processing

does not provide any means to separately record build and
probe times and is thus excluded from this experiment.

As shown in Table 8, EmptyHeaded spends far more time
on precomputation than on query execution even in the single-
threaded case, by a factor of roughly 6×. EmptyHeaded builds
a common dense dictionary encoding of all join attribute
values during precomputation. This operation is hard to
parallelize efficiently and EmptyHeaded does not provide an
optimized multi-threaded implementation. Therefore, this
factor increases to 110× in the multi-threaded case. While
this expensive precomputation results in greatly improved
query execution time, the combined runtime falls short of that
required by the hash trie join approach of the UmbraOHT

system. In the proposed hash trie join approach, we trade a
much lower build time for a somewhat increased probe time.
Crucially, however, this enables us to avoid any precompu-
tation of persistent index structures while still offering com-
petitive performance. This is not possible with an ordered
trie join approach, as both the build and probe times of the
UmbraLFT system are greatly increased in comparison to
the UmbraOHT system.

6 RELATED WORK
As outlined in Section 1, it is well-known that binary joins
exhibit suboptimal performance in some cases, and especially
in the presence of growing intermediate results [10, 17, 28, 58].
Hash Teams and Eddies were early approaches that addressed
some of these shortcomings by simultaneously processing
multiple input relations in a single multi-way join [10, 17,
28]. However, these approaches do not specifically focus on
avoiding growing intermediate results as Hash Teams are
primarily concerned with avoiding redundant partitioning
steps in cascades of partitioned hash joins [17, 28], and Eddies
allow different operator orderings to be applied to different
subsets of the base relations [10]. They still rely on binary
joins internally and hence are not worst-case optimal in the
general case.

Ngo et al. were among the first to propose a worst-case
optimal join algorithm [43–45], which provides the founda-
tion of most subsequent worst-case optimal join algorithms,
including our proposed hash trie join algorithm (cf. Sec-
tion 3). On this basis, theoretical work has since contin-
ued in a variety of directions, such as operators beyond
joins [3, 23, 24, 27, 30, 55], stronger optimality guaran-
tees [5, 31, 32, 43], and incremental maintenance of the re-
quired data structures [25, 26], Implementations of worst-case
optimal join algorithms have been proposed and investigated
in a variety of settings. Veldhuizen proposed the well-known
Leapfrog Triejoin algorithm that is used in the LogicBlox
system and can be implemented on top of existing ordered
indexes or plain sorted data [13, 52, 54]. Variants of such join
algorithms have been adopted in distributed query process-
ing [4, 6, 13, 33] graph processing [3, 6, 20, 40, 57, 60], and
general-purpose query processing [2, 8].

However, such comparison-based implementations incur a
number of problems, as outlined in more detail in Sections 1

and 2. Using persistent precomputed index structures is only
feasible if the maximum number of indexes in bounded such
as in specialized graph processing or RDF engines [3, 20,
40], whereas a general-purpose RDBMS cannot guarantee
any such bounds. A more feasible approach is to sort the
input data on-the-fly during query processing. This has been
shown to work well in distributed query processing where
communication costs far outweigh the computation costs [13],
but can severely impact the performance of a single-node
system. The proposed approach could also be applied to this
domain, e.g. by integrating it into the approach proposed
by Chu et al. [13] Here, data is sent to worker nodes in a
single communication round, after which the entire query
result can be computed by running the original query locally
on the data sent to each node. The latter step could be
performed by the proposed hybrid join processing technique,
allowing different query plans to be chosen on the worker
nodes depending on the local data characteristics.

Veldhuizen already suggested representing the required trie
index structures through nested hash tables [52]. However,
as this paper demonstrates a careful implementation of this
idea is required to achieve acceptable performance, and we
are not aware of any previous work addressing this practical
challenge. Fekete et al. propose an alternative, radix-based
algorithm that achieves the same goal, but do not evaluate
an actual implementation of their approach [14].

The hash trie data structure itself is structurally similar
to hash array mapped tries [47] and the data structure used
in extendible hashing schemes [18]. However, while these
approaches allow for optimized point lookups of individual
keys, our hash trie data structure supports optimized range-
lookups of key prefixes as they are required by a hash-based
multi-way join algorithm. Prefix hash trees within peer-to-
peer networks address a similar requirement, albeit with
different optimization goals such as resilience [48].

A key contribution of this paper is a comprehensive im-
plementation of our approach within the general-purpose
Umbra RDBMS [42]. The LevelHeaded system is an evolu-
tion of the graph processing engine EmptyHeaded towards
such a general-purpose system, but like EmptyHeaded it re-
quires expensive precomputation of persistent index struc-
tures and only allows for static data [2, 3]. The most ma-
ture system that implements worst-case optimal joins is the
commercial LogicBlox system which allows for fully dynamic
data through incremental maintenance of the required index
structures [8, 25]. However, previous work has shown that it
exhibits poor performance on standard OLAP workloads [2].

Similar to our approach, LogicBlox is reported to also em-
ploy a hybrid optimization strategy [2], but no information
is available on the details of this strategy. Approaches that
holistically optimize hybrid join plans have been proposed
for graph processing [40, 60], but as outlined in Section 4
these approaches generally rely on statistics that are pro-
hibitively expensive to compute or maintain in a general-
purpose RDBMS. An algorithm that is similar to our join
tree refinement approach has been proposed for introducing
multi-way joins using generalized hash teams into binary

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann

join plans [17, 19, 28]. However, this approach greedily trans-
forms as many binary joins as possible into a multi-way join
which results in suboptimal performance according to our
experiments.

7 CONCLUSIONS
In this paper, we presented a comprehensive approach that
allows the seminal work on worst-case optimal join processing
to be integrated seamlessly into general-purpose relational
database management systems. We demonstrated the feasi-
bility of this approach by implementing and evaluating it
within the state-of-the-art Umbra system. Our implementa-
tion offers greatly improved runtime on complex analytical
and graph pattern queries, where worst-case optimal joins
have an asymptotic runtime advantage over binary joins. At
the same time, it loses no performance on traditional OLAP
workloads where worst-case optimal joins are rarely benefi-
cial. We achieve this through a novel hybrid query optimizer
that intelligently combines both binary and worst-case op-
timal joins within a single query plan, and through a novel
hash-based multi-way join algorithm that does not require
any expensive precomputation. Our contributions thereby al-
low mature relation database management systems to benefit
from recent insights into worst-case optimal join algorithms,
exploiting the best of both worlds.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement number
725286).

REFERENCES
[1] Christopher Aberger. [n.d.]. EmptyHeaded GitHub repository.

https://github.com/HazyResearch/EmptyHeaded.
[2] Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and

Christopher Ré. 2018. LevelHeaded: A Unified Engine for Busi-
ness Intelligence and Linear Algebra Querying. In ICDE. IEEE
Computer Society, 449–460.

[3] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli,
Kunle Olukotun, and Christopher Ré. 2017. EmptyHeaded: A
Relational Engine for Graph Processing. ACM Trans. Database
Syst. 42, 4 (2017), 20:1–20:44.

[4] Foto N. Afrati and Jeffrey D. Ullman. 2011. Optimizing Multiway
Joins in a Map-Reduce Environment. IEEE Trans. Knowl. Data
Eng. 23, 9 (2011), 1282–1298.

[5] Kaleb Alway, Eric Blais, and Semih Salihoglu. 2019. Box Covers
and Domain Orderings for Beyond Worst-Case Join Processing.
CoRR abs/1909.12102 (2019).

[6] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas
Joglekar. 2018. Distributed Evaluation of Subgraph Queries Using
Worst-case Optimal and Low-Memory Dataflows. PVLDB 11, 6
(2018), 691–704.

[7] Austin Appleby. [n.d.]. Murmurhash GitHub repository. https:
//github.com/aappleby/smhasher.

[8] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld,
Dan Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey
Washburn. 2015. Design and Implementation of the LogicBlox
System. In SIGMOD Conference. ACM, 1371–1382.

[9] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size
Bounds and Query Plans for Relational Joins. SIAM J. Comput.
42, 4 (2013), 1737–1767.

[10] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continu-
ously Adaptive Query Processing. In SIGMOD Conference. ACM,
261–272.

[11] Lars Backstrom, Daniel P. Huttenlocher, Jon M. Kleinberg, and
Xiangyang Lan. 2006. Group formation in large social networks:
membership, growth, and evolution. In KDD. ACM, 44–54.

[12] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer
Özsu. 2013. Main-memory hash joins on multi-core CPUs: Tuning
to the underlying hardware. In ICDE. IEEE Computer Society,
362–373.

[13] Shumo Chu, Magdalena Balazinska, and Dan Suciu. 2015. From
Theory to Practice: Efficient Join Query Evaluation in a Parallel
Database System. In SIGMOD Conference. ACM, 63–78.

[14] Alan Fekete, Brody Franks, Herbert Jordan, and Bernhard Scholz.
2019. Worst-Case Optimal Radix Triejoin. CoRR abs/1912.12747
(2019).

[15] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kem-
per, and Thomas Neumann. 2020. Queries used in the experimen-
tal evaluation. https://github.com/freitmi/queries-vldb2020.

[16] Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and
Francesco Scarcello. 2005. Hypertree Decompositions: Structure,
Algorithms, and Applications. In WG (Lecture Notes in Computer
Science), Vol. 3787. Springer, 1–15.

[17] Goetz Graefe, Ross Bunker, and Shaun Cooper. 1998. Hash Joins
and Hash Teams in Microsoft SQL Server. In VLDB. Morgan
Kaufmann, 86–97.

[18] Sven Helmer, Robin Aly, Thomas Neumann, and Guido Moerkotte.
2007. Indexing Set-Valued Attributes with a Multi-level Ex-
tendible Hashing Scheme. In DEXA (Lecture Notes in Computer
Science), Vol. 4653. Springer, 98–108.

[19] Michael Henderson and Ramon Lawrence. 2013. Are Multi-way
Joins Actually Useful?. In ICEIS (1). SciTePress, 13–22.

[20] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto.
2019. A Worst-Case Optimal Join Algorithm for SPARQL. In
ISWC (1) (Lecture Notes in Computer Science), Vol. 11778.
Springer, 258–275.

[21] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjo-
erd Mullender, and Martin L. Kersten. 2012. MonetDB: Two
Decades of Research in Column-oriented Database Architectures.
IEEE Data Eng. Bull. 35, 1 (2012), 40–45.

[22] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the
Propagation of Errors in the Size of Join Results. In SIGMOD
Conference. ACM Press, 268–277.

[23] Manas Joglekar, Rohan Puttagunta, and Christopher Ré. 2015.
Aggregations over Generalized Hypertree Decompositions. CoRR
abs/1508.07532 (2015).

[24] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré. 2016.
AJAR: Aggregations and Joins over Annotated Relations. In
PODS. ACM, 91–106.

[25] Oren Kalinsky, Yoav Etsion, and Benny Kimelfeld. 2017. Flexible
Caching in Trie Joins. In EDBT. OpenProceedings.org, 282–293.

[26] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and
Haozhe Zhang. 2019. Counting Triangles under Updates in Worst-
Case Optimal Time. In ICDT (LIPIcs), Vol. 127. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 4:1–4:18.

[27] Ahmet Kara and Dan Olteanu. 2018. Covers of Query Results.
In ICDT (LIPIcs), Vol. 98. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 16:1–16:22.

[28] Alfons Kemper, Donald Kossmann, and Christian Wiesner. 1999.
Generalised Hash Teams for Join and Group-by. In VLDB. Morgan
Kaufmann, 30–41.

[29] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual
memory snapshots. In ICDE. 195–206. https://doi.org/10.1109/
ICDE.2011.5767867

[30] Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley,
Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian
Schleich. 2019. On Functional Aggregate Queries with Additive
Inequalities. In PODS. ACM, 414–431.

[31] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri
Rudra. 2016. Joins via Geometric Resolutions: Worst Case and
Beyond. ACM Trans. Database Syst. 41, 4 (2016), 22:1–22:45.

[32] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016.
FAQ: Questions Asked Frequently. In PODS. ACM, 13–28.

[33] Paraschos Koutris, Paul Beame, and Dan Suciu. 2016. Worst-
Case Optimal Algorithms for Parallel Query Processing. In ICDT
(LIPIcs), Vol. 48. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 8:1–8:18.

[34] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon.
2010. What is Twitter, a social network or a news media?. In
WWW. ACM, 591–600.

https://github.com/HazyResearch/EmptyHeaded
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/freitmi/queries-vldb2020
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867

Combining Worst-Case Optimal and Traditional Binary Join Processing

[35] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neu-
mann. 2014. Morsel-driven parallelism: A NUMA-aware query
evaluation framework for the many-core age. In SIGMOD Con-
ference. ACM, 743–754.

[36] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2015. How Good Are
Query Optimizers, Really? PVLDB 9, 3 (2015), 204–215.

[37] Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg.
2010. Signed networks in social media. In CHI. ACM, 1361–1370.

[38] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.stanford.edu/
data.

[39] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W.
Mahoney. 2009. Community Structure in Large Networks: Natural
Cluster Sizes and the Absence of Large Well-Defined Clusters.
Internet Mathematics 6, 1 (2009), 29–123.

[40] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph
Queries by Combining Binary and Worst-Case Optimal Joins.
PVLDB 12, 11 (2019), 1692–1704.

[41] Thomas Neumann. 2011. Efficiently Compiling Efficient Query
Plans for Modern Hardware. PVLDB 4, 9 (2011), 539–550.

[42] Thomas Neumann and Michael Freitag. 2020. Umbra: A Disk-
Based System with In-Memory Performance. In CIDR.

[43] Hung Q. Ngo, Dung T. Nguyen, Christopher Ré, and Atri Rudra.
2014. Beyond worst-case analysis for joins with minesweeper. In
PODS. ACM, 234–245.

[44] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018.
Worst-case Optimal Join Algorithms. J. ACM 65, 3 (2018),
16:1–16:40.

[45] Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes
back: new developments in the theory of join algorithms. SIGMOD
Record 42, 4 (2013), 5–16.

[46] Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kol-
lias, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2015. Join
Processing for Graph Patterns: An Old Dog with New Tricks. In
GRADES@SIGMOD/PODS. ACM, 2:1–2:8.

[47] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. 2011.
Lock-Free Resizeable Concurrent Tries. In LCPC (Lecture Notes
in Computer Science), Vol. 7146. Springer, 156–170.

[48] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein,
and Scott Shenker. 2004. Brief announcement: Prefix hash tree.

In PODC. ACM, 368.
[49] Matthew Richardson, Rakesh Agrawal, and Pedro M. Domingos.

2003. Trust Management for the Semantic Web. In International
Semantic Web Conference (Lecture Notes in Computer Science),
Vol. 2870. Springer, 351–368.

[50] J. Andrew Rogers. [n.d.]. AquaHash GitHub repository. https:
//github.com/jandrewrogers/AquaHash.

[51] Thomas Schank and Dorothea Wagner. 2005. Finding, Count-
ing and Listing All Triangles in Large Graphs, an Experimental
Study. In WEA (Lecture Notes in Computer Science), Vol. 3503.
Springer, 606–609.

[52] Todd L. Veldhuizen. 2014. Leapfrog Triejoin: A Simple, Worst-
Case Optimal Join Algorithm. In ICDT. 96–106.

[53] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons
Kemper, Viktor Leis, Tobias Mühlbauer, Thomas Neumann, and
Manuel Then. 2018. Get Real: How Benchmarks Fail to Represent
the Real World. In DBTest@SIGMOD. ACM, 1:1–1:6.

[54] Haicheng Wu, Daniel Zinn, Molham Aref, and Sudhakar Yala-
manchili. 2014. Multipredicate Join Algorithms for Accelerating
Relational Graph Processing on GPUs. In ADMS@VLDB. 1–12.

[55] Konstantinos Xirogiannopoulos and Amol Deshpande. 2019.
Memory-Efficient Group-by Aggregates over Multi-Way Joins.
CoRR abs/1906.05745 (2019).

[56] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating
Network Communities Based on Ground-Truth. In ICDM. IEEE
Computer Society, 745–754.

[57] Wangda Zhang, Reynold Cheng, and Ben Kao. 2014. Evaluating
multi-way joins over discounted hitting time. In ICDE. IEEE
Computer Society, 724–735.

[58] Xiaofei Zhang, Lei Chen, and Min Wang. 2012. Efficient Multi-way
Theta-Join Processing Using MapReduce. PVLDB 5, 11 (2012),
1184–1195.

[59] Zuyu Zhang, Harshad Deshmukh, and Jignesh M. Patel. 2019.
Data Partitioning for In-Memory Systems: Myths, Challenges,
and Opportunities. In CIDR.

[60] Guanghui Zhu, Xiaoqi Wu, Liangliang Yin, Haogang Wang, Rong
Gu, Chunfeng Yuan, and Yihua Huang. 2019. HyMJ: A Hybrid
Structure-Aware Approach to Distributed Multi-way Join Query.
In ICDE. IEEE, 1726–1729.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://github.com/jandrewrogers/AquaHash
https://github.com/jandrewrogers/AquaHash

	Abstract
	1 Introduction
	2 Background
	2.1 Worst-Case Optimal Join Algorithms
	2.2 Implementation Challenges

	3 Multi-Way Hash Trie Joins
	3.1 Outline
	3.2 Join Algorithm Description
	3.3 Implementation Details
	3.4 Further Considerations

	4 Optimizing Hybrid Query Plans
	5 Experiments
	5.1 Setup
	5.2 End-To-End Benchmarks
	5.3 Detailed Evaluation
	5.4 Microbenchmarks

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

