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Is CPU Architecture
Relevant for DBMS?

• CPU design focuses on speed — resulting in a 
55%/year improvement since 1987:

“If CPU performance in database code really is 
disappointing, upgrade the database server to the next 
processor generation.”

• With the advent of modern multi-core CPUs, all odds 
are that this trend will continue for the foreseeable 
future.
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Amdahl’s Law

• CPU speed is only one of many aspects of overall 
system performance.

• Amdahl’s law describes the impact of the speedup of a 
single component (e.g., the CPU) of a complex 
system.

• Since the rest of the system remains as is, the 
return to be expected from the speedup is 
diminished.  
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Amdahl’s Law

•                                 : 

Performance of the enhanced component in 
comparison with the replaced, original component.

•                                 :

Fraction of computation time that actually can take 
advantage of the enhanced component.
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Speedupenhanced ! 1

Fractionenhanced ! 1
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Amdahl’s Law
Exec. timenew

= Exec. timeold ×
!
(1− Fractionenhanced) + FractionenhancedSpeedupenhanced

"

• The execution time after the enhancement will be 

1. the time spent using the unenhanced portion of the 
system, plus	 	

2. the time spent using the enhancement.
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Amdahl’s Law

• Example:

Perform a database server upgrade and plug in a new 
CPU that is 10 times faster.  The original system is 
busy with computation 40% of the time, and is waiting 
for memory accesses 60% of the time (this seems 
reasonable in database code, i.e., for a data-intensive 
application).   What is the overall speedup gained?
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CPU Time 

• It is vital to understand which factors contribute to 
the CPU time — the overall time the CPU requires to 
execute a given program:

 CPU time  = Instruction count    × 
      Clock cycle time    × 
      Cycles per Instruction

• Note: 
CPU time is equally dependent on all three factors.
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CPU Time

• Improving the CPU time factors calls for action on 
various levels.

1. Clock cycle time:
Hardware technology 
(faster components & signal transfer)

2. Clocks per instructions (CPI):
Instruction set and execution (parallelism)

3. Instruction count:
Instruction set and compiler technology
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Instruction Set Architectures

• We will now investigate CPU instructions sets to 
understand why they look as they do today.

• The type of interal storage in the CPU is the most 
basic differentiation among instruction set 
architectures:

Where does an instruction find its operands?
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Instruction Set Architectures
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Implementing  C=A+B
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Stack Accumulator Register-
memory

Load-store

Push A
Push B
Add 
Pop  C

Load  A
Add   B
Store C

Load  R1,A
Add   R3,R1,B
Store R3,C

Load  R1,A
Load  R2,B
Add   R3,R1,R2
Store R3,C

Intel 80x86 could be classified as an extended accumulator 
(or special purpose register) architecture. 
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Load-Store Architectures
• Most modern CPU instruction sets follow the load-

store (register-register) architecture:

• Register access is faster than memory access

• Compiled code for general-purpose register 
machines tends to be more efficient.

Consider the compilation of the arithmetic 
expression

12

(A*B) - (B*C) - (A*D)



Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr.  Torsten Grust

Load-Store Architectures
• General-purpose register machines comes with 

further advantages:

- When variables are allocated to registers, memory 
traffic reduces — programs speed up.

- Code density improves — a register can be named 
with fewer bits than a memory location.

- Fixed-length instruction encodings simplify CPU 
internals.

- Instructions take similar numbers of clock cycles to 
execute — simplifies parallelization and scheduling.
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Memory Addressing

• When the CPU accesses memory, two parameters 
determine what object is loaded into the CPU 
registers:

1. Memory address, and

2. Object size (measured in bytes, usually 1,2,4,8).

• Object size is typically encoded in the instruction 
itself (e.g., MIPS load instructions: LB, LH, LW,LD)
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Byte Ordering
• Byte ordering determines the layout of a multi-byte 

object (size ≥ 1) in memory.

Layouts of a 32-bit value 0x12345678 at address 
0x100):
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0x12 0x100
0x34
0x56
0x78 0x103

- Big Endian:
(e.g., Sparc)

- Little Endian:
(e.g., Intel)

0x78 0x100
0x56
0x34
0x12 0x103
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Alignment
• Most CPU architectures require aligned memory 

accesses for all objects of size ≥ 1.   Alignment makes 
memory hardware more simple.

Access to an object of size s at address A is aligned, 
if A mod s = 0.

• A misaligned memory access may

- lead to a CPU exception (e.g., Motorola 68K), or

- lead to two aligned accesses, plus bit shifting (e.g., 
Intel 80x86).
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Addressing Modes

• Instruction sets come with a variety of ways — 
addressing modes — to specify the location of objects 
in memory.

• Addressing modes reflect the different methods of 
how memory is accessed in higher-level programming 
languages, for example via

- array indexing, or		 	 	 	 	 	 	 	 a[i]

- pointer dereferencing.	 	 	 	 	 	 	 *p

17
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Addressing Modes

18

Addressing
Mode

Sample
Instruction

Semantics

Register Add R4,R3 Regs[R4]←
  Regs[R4]+Regs[R3]

Immediate Add R4,#3 Regs[R4]←
  Regs[R4]+3

Displacement Add R4,100(R1) Regs[R4]←
  Regs[R4]
 +Mem[100+Regs[R1]]
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Addressing
Mode

Sample
Instruction

Semantics

Register indirect Add R4,(R1) Regs[R4]←
  Regs[R4]+Mem[Regs[R1]]

Indexed Add R3,(R1+R2) Regs[R3]←
  Regs[R3]
 +Mem[Regs[R1]+Regs[R2]]

Direct
(absolute)

Add R1,(1001) Regs[R1]←
  Regs[R1]+Mem[1001]

Memory indirect Add R1,@(R3) Regs[R1]←
  Regs[R1]
 +Mem[Mem[Regs[R3]]

Addressing Modes
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Addressing
Mode

Sample
Instruction

Semantics

Autoincrement
(postincrement)

Add R1,(R2)+ Regs[R1]←
  Regs[R1]+Mem[Regs[R2]]
Regs[R2]←Regs[R2]+d

Autodecrement
(predecrement)

Add R1,-(R2) Regs[R2]←Regs[R2]-d
Regs[R1]←
 +Regs[R1]+Mem[Regs[R2]]

Scaled Add R1,
  100(R2)[R3]

Regs[R1]←Regs[R1]
 +Mem[100+Regs[R2]+
      Regs[R3]*d] 

Addressing Modes
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Addressing Modes

21

• Addressing modes may significantly reduce instruction 
counts.  Consider:

• Complex addressing modes may increase CPI (clock 
cycles per instruction), though.

LD R1,100(R2)[R3] LW    R4,#8 
MULTU R4,R4,R3
LW    R5,#100
ADD   R4,R4,R5
ADD   R4,R4,R2
LD    R1,(R4)

vs.
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Operations
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Operator type Examples
Arithmetic, logical Integer arithmetic and logical operations: add, 

subtract, multiply, divide, and, or

Data transfer Loads, stores

Control Branch, jump, procedure call/return, traps

System Operating system call, virtual memory mgmt

Floating point FP operations: add, multiply, divide, compare

String String move, compare, search
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Operation Distribution

23

Rank 80x86 Instruction % total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 subtract 5%
8 move register-register 4%
9 call 1%
10 return 1%

Typical operation distribution for SPECint92 programs:
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Branch Instructions

• Branch instructions typically specify the branch 
destination address using PC-relative addressing:

PCnew ← PCcurrent + offset (× instruction-length)

- Branch targets near PCcurrent can be specified using 
few bits (usually ≤ 8 bits).

- PC-relative addressing makes code position 
independent — saves linker effort.
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(Statically) Unknown
Branch Targets

• Jumps to target addresses not known at compile time 
make branch prediction even more challenging.

1. Multi-way branches: case or switch statements

2. Virtual functions or methods (in OOPLs)

3. Higher-order functions, function pointers (e.g., in C)

4. Dynamically loaded shared libraries

25
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Encoding Instructions

• CPU instructions are encoded via a bit pattern that 
specifies

1. operation type, and

2. addressing mode and operand addresses.

• This encoding has a siginificant impact on

- the CPU-internal instruction decoder, and

- the size of compiled programs.

26
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Encoding Instructions
• Variable-length instructions encodings can help to 

reduce code size but are complex to decode.

- Example: Intel 80x86 instructions occupy 1...17 
bytes (e.g., add EAX,1000(EBX) uses 6 bytes).

• Fixed-length instructions allow for less addressing 
modes but are more efficient to decode.

- If addresses (registers) are encoded at fixed bit 
positions, the CPU can decode and access registers 
in parallel.

27
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MIPS Instruction Encoding

28

31 0

110111 base rt offset

6 bits 5 5 16

Encodes the LD instruction (addr. mode: displacement)

LD rt,offset(base)    ; Regs[rt]←
                          Mem[offset+Regs[base]]

Note:  This also implements addressing modes register 
indirect and direct (absolute).
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RISC: Reduced 
Instruction Set Computers

29

• RISC architectures, like MIPS, offer a comparatively 
small number of (primitive) instructions but 
implement these efficiently.

• Typically narrow, fixed-length encoding and 
orthogonal instruction set.

+ Pseudo instructions (expanded on assembly language 
level, uses “reserved” registers).  Consider:

LW R4,0x12345678(R0)
LUI R1,0x1234 
LW  R4,0x5678(R1)

→
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MIPS64

• The MIPS64 64-bit architecture emphasizes

1. a simple load-store instruction set,

2. design for pipeline efficiency (see upcoming 
chapter), including a fixed instruction set encoding,

3. efficiency as a compiler target
(many registers, orthogonal instruction set).

30
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MIPS64
• Registers:

- 32 64-bit general-purpose registers (GPRs): 
R0, ..., R31 (R0 ≡ 0)

- 32 64-bit floating-point registers (FPRs):
F0, ..., F31 (IEEE 754 format)

• Data types (bit width):

- Byte (8), half word (16), word (32), double word (64)

- 64-bit GPRs padded with 0 or sign bit
31
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MIPS64 

• Load-store architecture

• Addressing modes:

- Immediate (16 bits):	 	 	 ADD R4,R4,#<16 bit>	

- Displacement (16 bits):	 	 ADD R4,R4,<16 bit>(R1)

- Register indirect, absolute available via R0

- All memory accesses must be aligned

32
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Operations: Notation

33

t ←n s Transfer n bits from s to t

Regs[R1]n..m
Selection of bits n..m of register R1
(bit 0 is most significant)

Mem[a]
Address a of byte-organized main 
memory array, can transfer any 
number of bytes

xn Value x, replicated n times

x ## y
Concatenate x and y (may appear 
left and right of ←)
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Operations: Notation
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• Example (move byte at address (R8) into lower 32-
bit half of R10 with sign extension):

Regs[R10]32..63 ←32 (Mem[Regs[R8]]0)24 ## Mem[Regs[R8]]
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MIPS64: Load-store instructions
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LD R1,30(R2) Load double word
Regs[R1] ←64 Mem[30+Regs[R2]]

LW R1,1000(R0) Load word
Regs[R1] ←64 (Mem[1000+0]0)32

             ## Mem[1000+0]

LH R1,60(R2) Load half word
Regs[R1] ←64 (Mem[60+Regs[R2]]0)48 
             ## Mem[60+Regs[R2]]

LBU R1,40(R3) Load byte unsigned
Regs[R1] ←64 056 
                   ## Mem[40+Regs[R3]]
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MIPS64: Load-store instructions
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SD R3,500(R4) Store double word
Mem[500+Regs[R4]] ←64 Regs[R3]]

SW R3,500(R4) Store word
Mem[500+Regs[R4]] ←32 Regs[R3]]32..63

SH R3,502(R2) Store half word
Mem[502+Regs[R2]] ←16 Regs[R3]]48..63

SB R2,41(R3) Store byte
Mem[41+Regs[R3]] ←8 Regs[R2]]56..63                    
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MIPS64:  Arithmetic/Logical 
Instructions

37

DADDU R1,R2,R3 Add unsigned
Regs[R1] ← Regs[R2] + Regs[R3] 

DADDIU R1,R2,#3 Add immediate unsigned
Regs[R1] ← Regs[R2] + 3

LUI R1,#42 Load upper immediate
Regs[R1] ← 032 ## 42 ## 016

DSLL R1,R2,#5 Shift left logical
Regs[R1] ← Regs[R2] << 5                    

SLT R1,R2,R3 Set less than
if (Regs[R2] < Regs[R3]) 
  Regs[R1] ← 1 else Regs[R1] ← 0
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MIPS64:  Jump Instructions
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J label Jump
PC36..63 ←28 label 
label ∈ [PC+4-227, PC+4+227)

JAL label Jump and link
Regs[R31] ← PC+4; PC36..63 ←28 label
label ∈ [PC+4-227, PC+4+227)

JALR R2 Jump and link register
Regs[R31] ← PC+4; PC ← Regs[R2]

JR R3 Jump register
PC ← Regs[R3]                    
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MIPS64:  Branch Instructions
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BEQZ R4,label Branch equal zero
if (Regs[R4] == 0) PC46..63 ←18 label 
label ∈ [PC+4-217, PC+4+217)

BNE R3,R4,label Branch not equal
if (Regs[R3] ≠ Regs[R4]) 
  PC46..63 ←18 label
label ∈ [PC+4-217, PC+4+217)

MOVZ R1,R2,R3 Conditional move if zero
if (Regs[R3] == 0) 
  Regs[R1] ← Regs[R2]


