
CPU Architecture
and Instruction Sets

Chapter 1

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Is CPU Architecture
Relevant for DBMS?

• CPU design focuses on speed — resulting in a
55%/year improvement since 1987:

“If CPU performance in database code really is
disappointing, upgrade the database server to the next
processor generation.”

• With the advent of modern multi-core CPUs, all odds
are that this trend will continue for the foreseeable
future.

2

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Amdahl’s Law

• CPU speed is only one of many aspects of overall
system performance.

• Amdahl’s law describes the impact of the speedup of a
single component (e.g., the CPU) of a complex
system.

• Since the rest of the system remains as is, the
return to be expected from the speedup is
diminished.

3

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Amdahl’s Law

• :

Performance of the enhanced component in
comparison with the replaced, original component.

• :

Fraction of computation time that actually can take
advantage of the enhanced component.

4

Speedupenhanced ! 1

Fractionenhanced ! 1

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust 5

Amdahl’s Law
Exec. timenew

= Exec. timeold ×
!
(1− Fractionenhanced) + FractionenhancedSpeedupenhanced

"

• The execution time after the enhancement will be

1. the time spent using the unenhanced portion of the
system, plus	 	

2. the time spent using the enhancement.

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Amdahl’s Law

• Example:

Perform a database server upgrade and plug in a new
CPU that is 10 times faster. The original system is
busy with computation 40% of the time, and is waiting
for memory accesses 60% of the time (this seems
reasonable in database code, i.e., for a data-intensive
application). What is the overall speedup gained?

6

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

CPU Time

• It is vital to understand which factors contribute to
the CPU time — the overall time the CPU requires to
execute a given program:

 CPU time = Instruction count ×
 Clock cycle time ×
 Cycles per Instruction

• Note:
CPU time is equally dependent on all three factors.

7

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

CPU Time

• Improving the CPU time factors calls for action on
various levels.

1. Clock cycle time:
Hardware technology
(faster components & signal transfer)

2. Clocks per instructions (CPI):
Instruction set and execution (parallelism)

3. Instruction count:
Instruction set and compiler technology

8

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Instruction Set Architectures

• We will now investigate CPU instructions sets to
understand why they look as they do today.

• The type of interal storage in the CPU is the most
basic differentiation among instruction set
architectures:

Where does an instruction find its operands?

9

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

Instruction Set Architectures

10

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Implementing C=A+B

11

Stack Accumulator Register-
memory

Load-store

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1,A
Add R3,R1,B
Store R3,C

Load R1,A
Load R2,B
Add R3,R1,R2
Store R3,C

Intel 80x86 could be classified as an extended accumulator
(or special purpose register) architecture.

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Load-Store Architectures
• Most modern CPU instruction sets follow the load-

store (register-register) architecture:

• Register access is faster than memory access

• Compiled code for general-purpose register
machines tends to be more efficient.

Consider the compilation of the arithmetic
expression

12

(A*B) - (B*C) - (A*D)

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Load-Store Architectures
• General-purpose register machines comes with

further advantages:

- When variables are allocated to registers, memory
traffic reduces — programs speed up.

- Code density improves — a register can be named
with fewer bits than a memory location.

- Fixed-length instruction encodings simplify CPU
internals.

- Instructions take similar numbers of clock cycles to
execute — simplifies parallelization and scheduling.

13

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Memory Addressing

• When the CPU accesses memory, two parameters
determine what object is loaded into the CPU
registers:

1. Memory address, and

2. Object size (measured in bytes, usually 1,2,4,8).

• Object size is typically encoded in the instruction
itself (e.g., MIPS load instructions: LB, LH, LW,LD)

14

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Byte Ordering
• Byte ordering determines the layout of a multi-byte

object (size ≥ 1) in memory.

Layouts of a 32-bit value 0x12345678 at address
0x100):

15

0x12 0x100
0x34
0x56
0x78 0x103

- Big Endian:
(e.g., Sparc)

- Little Endian:
(e.g., Intel)

0x78 0x100
0x56
0x34
0x12 0x103

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Alignment
• Most CPU architectures require aligned memory

accesses for all objects of size ≥ 1. Alignment makes
memory hardware more simple.

Access to an object of size s at address A is aligned,
if A mod s = 0.

• A misaligned memory access may

- lead to a CPU exception (e.g., Motorola 68K), or

- lead to two aligned accesses, plus bit shifting (e.g.,
Intel 80x86).

16

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Addressing Modes

• Instruction sets come with a variety of ways —
addressing modes — to specify the location of objects
in memory.

• Addressing modes reflect the different methods of
how memory is accessed in higher-level programming
languages, for example via

- array indexing, or		 	 	 	 	 	 	 	 a[i]

- pointer dereferencing.	 	 	 	 	 	 	 *p

17

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

Addressing Modes

18

Addressing
Mode

Sample
Instruction

Semantics

Register Add R4,R3 Regs[R4]←
 Regs[R4]+Regs[R3]

Immediate Add R4,#3 Regs[R4]←
 Regs[R4]+3

Displacement Add R4,100(R1) Regs[R4]←
 Regs[R4]
 +Mem[100+Regs[R1]]

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture19

Addressing
Mode

Sample
Instruction

Semantics

Register indirect Add R4,(R1) Regs[R4]←
 Regs[R4]+Mem[Regs[R1]]

Indexed Add R3,(R1+R2) Regs[R3]←
 Regs[R3]
 +Mem[Regs[R1]+Regs[R2]]

Direct
(absolute)

Add R1,(1001) Regs[R1]←
 Regs[R1]+Mem[1001]

Memory indirect Add R1,@(R3) Regs[R1]←
 Regs[R1]
 +Mem[Mem[Regs[R3]]

Addressing Modes

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture20

Addressing
Mode

Sample
Instruction

Semantics

Autoincrement
(postincrement)

Add R1,(R2)+ Regs[R1]←
 Regs[R1]+Mem[Regs[R2]]
Regs[R2]←Regs[R2]+d

Autodecrement
(predecrement)

Add R1,-(R2) Regs[R2]←Regs[R2]-d
Regs[R1]←
 +Regs[R1]+Mem[Regs[R2]]

Scaled Add R1,
 100(R2)[R3]

Regs[R1]←Regs[R1]
 +Mem[100+Regs[R2]+
 Regs[R3]*d]

Addressing Modes

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Addressing Modes

21

• Addressing modes may significantly reduce instruction
counts. Consider:

• Complex addressing modes may increase CPI (clock
cycles per instruction), though.

LD R1,100(R2)[R3] LW R4,#8
MULTU R4,R4,R3
LW R5,#100
ADD R4,R4,R5
ADD R4,R4,R2
LD R1,(R4)

vs.

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Operations

22

Operator type Examples
Arithmetic, logical Integer arithmetic and logical operations: add,

subtract, multiply, divide, and, or

Data transfer Loads, stores

Control Branch, jump, procedure call/return, traps

System Operating system call, virtual memory mgmt

Floating point FP operations: add, multiply, divide, compare

String String move, compare, search

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Operation Distribution

23

Rank 80x86 Instruction % total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 subtract 5%
8 move register-register 4%
9 call 1%
10 return 1%

Typical operation distribution for SPECint92 programs:

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Branch Instructions

• Branch instructions typically specify the branch
destination address using PC-relative addressing:

PCnew ← PCcurrent + offset (× instruction-length)

- Branch targets near PCcurrent can be specified using
few bits (usually ≤ 8 bits).

- PC-relative addressing makes code position
independent — saves linker effort.

24

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

(Statically) Unknown
Branch Targets

• Jumps to target addresses not known at compile time
make branch prediction even more challenging.

1. Multi-way branches: case or switch statements

2. Virtual functions or methods (in OOPLs)

3. Higher-order functions, function pointers (e.g., in C)

4. Dynamically loaded shared libraries

25

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Encoding Instructions

• CPU instructions are encoded via a bit pattern that
specifies

1. operation type, and

2. addressing mode and operand addresses.

• This encoding has a siginificant impact on

- the CPU-internal instruction decoder, and

- the size of compiled programs.

26

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Encoding Instructions
• Variable-length instructions encodings can help to

reduce code size but are complex to decode.

- Example: Intel 80x86 instructions occupy 1...17
bytes (e.g., add EAX,1000(EBX) uses 6 bytes).

• Fixed-length instructions allow for less addressing
modes but are more efficient to decode.

- If addresses (registers) are encoded at fixed bit
positions, the CPU can decode and access registers
in parallel.

27

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

MIPS Instruction Encoding

28

31 0

110111 base rt offset

6 bits 5 5 16

Encodes the LD instruction (addr. mode: displacement)

LD rt,offset(base) ; Regs[rt]←
 Mem[offset+Regs[base]]

Note: This also implements addressing modes register
indirect and direct (absolute).

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

RISC: Reduced
Instruction Set Computers

29

• RISC architectures, like MIPS, offer a comparatively
small number of (primitive) instructions but
implement these efficiently.

• Typically narrow, fixed-length encoding and
orthogonal instruction set.

+ Pseudo instructions (expanded on assembly language
level, uses “reserved” registers). Consider:

LW R4,0x12345678(R0)
LUI R1,0x1234
LW R4,0x5678(R1)

→

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

MIPS64

• The MIPS64 64-bit architecture emphasizes

1. a simple load-store instruction set,

2. design for pipeline efficiency (see upcoming
chapter), including a fixed instruction set encoding,

3. efficiency as a compiler target
(many registers, orthogonal instruction set).

30

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

MIPS64
• Registers:

- 32 64-bit general-purpose registers (GPRs):
R0, ..., R31 (R0 ≡ 0)

- 32 64-bit floating-point registers (FPRs):
F0, ..., F31 (IEEE 754 format)

• Data types (bit width):

- Byte (8), half word (16), word (32), double word (64)

- 64-bit GPRs padded with 0 or sign bit
31

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

MIPS64

• Load-store architecture

• Addressing modes:

- Immediate (16 bits):	 	 	 ADD R4,R4,#<16 bit>	

- Displacement (16 bits):	 	 ADD R4,R4,<16 bit>(R1)

- Register indirect, absolute available via R0

- All memory accesses must be aligned

32

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

Operations: Notation

33

t ←n s Transfer n bits from s to t

Regs[R1]n..m
Selection of bits n..m of register R1
(bit 0 is most significant)

Mem[a]
Address a of byte-organized main
memory array, can transfer any
number of bytes

xn Value x, replicated n times

x ## y
Concatenate x and y (may appear
left and right of ←)

Database Systems and Modern CPU Architecture© 2006/07 • Prof. Dr. Torsten Grust

Operations: Notation

34

• Example (move byte at address (R8) into lower 32-
bit half of R10 with sign extension):

Regs[R10]32..63 ←32 (Mem[Regs[R8]]0)24 ## Mem[Regs[R8]]

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

MIPS64: Load-store instructions

35

LD R1,30(R2) Load double word
Regs[R1] ←64 Mem[30+Regs[R2]]

LW R1,1000(R0) Load word
Regs[R1] ←64 (Mem[1000+0]0)32

 ## Mem[1000+0]

LH R1,60(R2) Load half word
Regs[R1] ←64 (Mem[60+Regs[R2]]0)48
 ## Mem[60+Regs[R2]]

LBU R1,40(R3) Load byte unsigned
Regs[R1] ←64 056
 ## Mem[40+Regs[R3]]

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

MIPS64: Load-store instructions

36

SD R3,500(R4) Store double word
Mem[500+Regs[R4]] ←64 Regs[R3]]

SW R3,500(R4) Store word
Mem[500+Regs[R4]] ←32 Regs[R3]]32..63

SH R3,502(R2) Store half word
Mem[502+Regs[R2]] ←16 Regs[R3]]48..63

SB R2,41(R3) Store byte
Mem[41+Regs[R3]] ←8 Regs[R2]]56..63

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

MIPS64: Arithmetic/Logical
Instructions

37

DADDU R1,R2,R3 Add unsigned
Regs[R1] ← Regs[R2] + Regs[R3]

DADDIU R1,R2,#3 Add immediate unsigned
Regs[R1] ← Regs[R2] + 3

LUI R1,#42 Load upper immediate
Regs[R1] ← 032 ## 42 ## 016

DSLL R1,R2,#5 Shift left logical
Regs[R1] ← Regs[R2] << 5

SLT R1,R2,R3 Set less than
if (Regs[R2] < Regs[R3])
 Regs[R1] ← 1 else Regs[R1] ← 0

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

MIPS64: Jump Instructions

38

J label Jump
PC36..63 ←28 label
label ∈ [PC+4-227, PC+4+227)

JAL label Jump and link
Regs[R31] ← PC+4; PC36..63 ←28 label
label ∈ [PC+4-227, PC+4+227)

JALR R2 Jump and link register
Regs[R31] ← PC+4; PC ← Regs[R2]

JR R3 Jump register
PC ← Regs[R3]

© 2006/07 • Prof. Dr. Torsten Grust Database Systems and Modern CPU Architecture

MIPS64: Branch Instructions

39

BEQZ R4,label Branch equal zero
if (Regs[R4] == 0) PC46..63 ←18 label
label ∈ [PC+4-217, PC+4+217)

BNE R3,R4,label Branch not equal
if (Regs[R3] ≠ Regs[R4])
 PC46..63 ←18 label
label ∈ [PC+4-217, PC+4+217)

MOVZ R1,R2,R3 Conditional move if zero
if (Regs[R3] == 0)
 Regs[R1] ← Regs[R2]

