
HyPer

Harald Lang1, Tobias Mühlbauer2, Florian Funke3,

Peter Boncz4, Thomas Neumann1, Alfons Kemper1

Data Blocks:
Hybrid OLTP and OLAP on Compressed Storage
using both Vectorization and Compilation

1 Technical University of Munich, 2 Tableau Software,
3 Snowflake Computing, 4 Centrum Wiskunde & Informatica

HyPer

Reduce the memory footprint of

in-memory OLTP&OLAP database systems

Retain high transaction throughput

and high query performance

Data Blocks:
Hybrid OLTP and OLAP on Compressed Storage
using both Vectorization and Compilation

HyPer

3

Basic Assumptions

Large portion of the memory

is used for cold data.

Definition:

= infrequently updated

 (still in memory)

HyPer

4

Basic Assumptions

Mostly point accesses

through index

Some on cold data

HyPer

5

Basic Assumptions

Mostly point accesses

through index

Some on cold data

HyPer

6

Compression of Cold Data

Mostly point accesses

through index

Some on cold data

compressed

Data Blocks

uncompressed

Secondary

Storage

HyPer

7

The HyPer Approach

Chunked Relation Cold chunks are

transformed

into compressed

Data Blocks

e.g., 128K tuples / chunk

HyPer

• Compressed columnar storage format

• Designed for cold data (mostly read)

• Fast scans and fast point-accesses

• Novel index structure

8

Data Block Format

HyPer

• Lightweight compression only

• Single value, byte-aligned truncation, ordered dictionary

• All compressed values remain byte-addressable! (1, 2 or 4 byte “codes”)

• Efficient predicate evaluation, decompression and point accesses

• Optimal compression chosen based on the actual value distribution

• Improves compression ratio, amortizes lightweight compression schemes and

redundancies caused by blockwise compression

9

Compression Schemes

HyPer

Small Materialized Aggregates (SMAs) similiar to „ZoneMaps“

• Materialization of min/max values of each column

• Used to skip entire blocks during scans

10

Intra-Block Indexing

?

HyPer

Novel Positional SMAs (PSMAs)

• Fuzzy index on unordered data

• Used to narrow the scan range within a block

• Improve scan performance

11

Intra-Block Indexing

HyPer

Novel Positional SMAs (PSMAs)

• Fuzzy index on unordered data

• Used to narrow the scan range within a block

• Improve scan performance

12

Intra-Block Indexing

HyPer

• The variety of physical Data Blocks representations either result in

• multiple code paths  exploding compile times

• or in interpretation overhead  performance drop at runtime

13

Challenge for JIT-compiling Systems (like HyPer)

HyPer

• Integrate vectorized scan into the tuple-at-a-time JIT query engine

• Specialized scan functions for each compression scheme

• Greatly reduces interpretation overhead

• Fast compile times (independent of the number of storage layouts)

• Comparable runtimes (in many cases faster, due to SIMD)

14

Vectorization to the Rescue

HyPer

 TPC-H (SF100)

• Memory footprint: 60% of the original size

• Query performance improvement: 30% (geomean)

• Compilation times reduced by 50%

TPC-C (5 Warehouses)

• Transaction throughput only slightly decreased (1%)

Byte- vs. Bit-Level Storage (BitWeaving/H)

• Faster predicate evaluation: 1.8x

• Much faster access to individual tuples: 3x

• Space/time trade-off

15

Evaluation Results

HyPer

16

Summary

The Data Block storage format …

• greatly saves scarce memory resources

• improves performance on a variety of query workloads

• retains high transaction throughput

• integrates well with JIT-compiling query engines

HyPer

17

For more details, please join the
poster session at 3:30 – 5:00pm (Grand Ballroom A)

You can see Data Blocks in action at the demo session on
Tuesday or Thursday, 3:30 – 5:00pm (Garden Room):

“High-Performance Geospatial Analytics in HyPerSpace”

Summary

The Data Block storage format …

• greatly saves scarce memory resources

• improves performance on a variety of query workloads

• retains high transaction throughput

• integrates well with JIT-compiling query engines

HyPer

18

Bonus Slides

HyPer

• Supports predicates of type:

 COLUMN op constant, where op  {=, <, ≤, ≥, >}

 COLUMN between a and b

• Considers only the most significant non-zero byte

• Concise: sizeof(T) x 2K

• Higher accuracy for small values

• Works best in combination with compression/truncation

19

Positional SMAs

HyPer

20

SIMD Scan

Initial predicate Additional predicates

Produce a match vector Reduce a match-vector

