e

HyPer

Data Blocks:
Hybrid OLTP and OLAP on Compressed Storage
using both Vectorization and Compilation

Harald Lang!, Tobias Mihlbauer?, Florian Funke3,

Peter Boncz?*, Thomas Neumann?, Alfons Kemper?!

1Technical University of Munich, 2 Tableau Software,
3Snowflake Computing, 4 Centrum Wiskunde & Informatica

e

yPer

Data Blocks:
Hybrid OLTP and OLAP on Compressed Storage
using both Vectorization and Compilation

8 Reduce the memory footprint of
-, in-memory OLTP&OLAP database systems

Retain high transaction throughput
-

and high query performance

g TLT

HyPer

Basic Assumptions

Definition:

= infrequently updated

(still in memory)

Large portion of the memory
is used for cold data.

e

HyPer

Basic Assumptions

Mostly point accesses
through index
Some on cold data

e

HyPer

Basic Assumptions

Mostly point accesses
through index
Some on cold data

e

HyPer

Compression of Cold Data

OLAP

Mostly point accesses
through index
Some on cold data

compressed
Data Blocks

Secondary
Storage

e

HyPer

The HyPer Approach

Chunked Relation Cold chunks are

transformed
into compressed

Data Blocks

4
/

e.g., 128K tuples / chunk

e

HyPer

Data Block Format

 Compressed columnar storage format

Designed for cold data (mostly read)

* Fast scans and fast point-accesses

* Novel index structure

g TLT

HyPer

Compression Schemes

e Lightweight compression only

* Single value, byte-aligned truncation, ordered dictionary

* All compressed values remain byte-addressable! (1, 2 or 4 byte “codes”)
* Efficient predicate evaluation, decompression and point accesses
* Optimal compression chosen based on the actual value distribution

* Improves compression ratio, amortizes lightweight compression schemes and

redundancies caused by blockwise compression

truncated (A) keys (B)
dictionary (B) truncated (C)

A B C
AN —
s N —

keys (C) truncated (B)

dictionary (C) single value (A)

e

HyPer

Intra-Block Indexing

Small Materialized Aggregates (SMAs) similiar to ,ZoneMaps*“
* Materialization of min/max values of each column
* Used to skip entire blocks during scans

Compressed Data Block

Q
o
SMA (min/max)

10

e

HyPer

Intra-Block Indexing

Novel Positional SMAs (PSMAs)
Fuzzy index on unordered data

Used to narrow the scan range within a block

Improve scan performance

Q
e
Positional SMA

Compressed Data Block

Range with
Potential
matches

11

e

HyPer

Intra-Block Indexing

Novel Positional SMAs (PSMAs)
Fuzzy index on unordered data

Used to narrow the scan range within a block

Improve scan performance

Q

o

~a

>

e}

N
Positional SMA

Compressed Data Block

—

)

__Y Range with

Potential
matches

12

g TLT

HyPer

Challenge for JIT-compiling Systems (like HyPer)

* The variety of physical Data Blocks representations either result in

* multiple code paths = exploding compile times

£ 10s
E 1s
§' 100ms
O 10ms

1 4 16 64 256 1024 4096

storage layout combinations

e orininterpretation overhead = performance drop at runtime

v A

E 1 A
=

qé ~3X response
o times
o

wn

v

| - ——
>

|

)

=]

o -

compilation interpretation 13

g TLT

HyPer

Vectorization to the Rescue

* Integrate vectorized scan into the tuple-at-a-time JIT query engine

e Specialized scan functions for each compression scheme

e Greatly reduces interpretation overhead
* Fast compile times (independent of the number of storage layouts)
 Comparable runtimes (in many cases faster, due to SIMD)

find & extract push matches

matching tuples

—-
i
1]] o

AN J

~ NV
interpreted compiled

vector-at-a-time tuple-at-a-time

14

e

HyPer

Evaluation Results
TPC-H (SF100)

* Memory footprint: 60% of the original size
 Query performance improvement: 30% (geomean)
* Compilation times reduced by 50%

TPC-C (5 Warehouses)
* Transaction throughput only slightly decreased (1%)

Byte- vs. Bit-Level Storage (BitWeaving/H)
* Faster predicate evaluation: 1.8x
* Much faster access to individual tuples: 3x

e Space/time trade-off

15

7—2 Summary

HyPer

The Data Block storage format ...
e greatly saves scarce memory resources

* improves performance on a variety of query workloads
* retains high transaction throughput

* integrates well with JIT-compiling query engines

16

P Summary TUm

HyPer

The Data Block storage format ...
e greatly saves scarce memory resources

* improves performance on a variety of query workloads
* retains high transaction throughput

* integrates well with JIT-compiling query engines

» For more details, please join the
poster session at 3:30 — 5:00pm (Grand Ballroom A)

You can see Data Blocks in action at the demo session on
Tuesday or Thursday, 3:30 — 5:00pm (Garden Room):
“High-Performance Geospatial Analytics in HyPerSpace”

17

Yy

Bonus Slides

18

e

HyPer

Positional SMAs

Supports predicates of type:

COLUMN op constant, where op € {=, <, £, 2, >}
COLUMN between g and b

* Considers only the most significant non-zero byte
* Concise: sizeof(T) x 2K
* Higher accuracy for small values

* Works best in combination with compression/truncation

e s

yPer

SIMD Scan

Initial predicate

aligned data

unaligned data read offset

lll
predicate
evaluation

I I
I 'y
data 0 HH N
P movemask
remaining data
| "l =154,
- o
° ‘_‘ lookup
0,3,4,6 = add global scan position
- +11 and update match vector
'
0,123,45,6,7 X

1,3,5,7,9/11, 14, 15, 17

write Offsetf match positions

precomputed
positions table

Produce a match vector

Additional predicates

write offset

=» match positions 1, 3, 14,-,--,--,/17, 18, 20, 21, 25, 26, 29, 31

read offset1l

- o + predicate evaluation
0 . N
: movemask

~ _ lookup : * -
0,2,4,5 ~ il =1724

—

u; shuffle match vector
0,1,2,3,45,6,7 =

store

precomputed 17, 20, 25, 26,-,--,-

positions table

Reduce a match-vector
20

