

Data Blocks:

Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation

<u>Harald Lang</u>¹, Tobias Mühlbauer², Florian Funke³, Peter Boncz⁴, Thomas Neumann¹, Alfons Kemper¹

> ¹ Technical University of Munich, ² Tableau Software, ³ Snowflake Computing, ⁴ Centrum Wiskunde & Informatica

Data Blocks:

Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation

in-memory OLTP&OLAP database systems

Basic Assumptions

Basic Assumptions

Basic Assumptions

Compression of Cold Data

The HyPer Approach

Data Block Format

• Compressed columnar storage format

• Designed for cold data (mostly read)

• Fast scans and fast point-accesses

• Novel index structure

Compression Schemes

- Lightweight compression only
 - Single value, byte-aligned truncation, ordered dictionary
 - All compressed values remain **byte-addressable**! (1, 2 or 4 byte "codes")
- Efficient predicate evaluation, decompression and point accesses
- Optimal compression chosen based on the actual value distribution
 - Improves compression ratio, amortizes lightweight compression schemes and redundancies caused by blockwise compression

тлп

Intra-Block Indexing

Small Materialized Aggregates (SMAs) similiar to "ZoneMaps"

- Materialization of min/max values of each column
- Used to skip entire blocks during scans

ТШП

Intra-Block Indexing

Novel Positional SMAs (PSMAs)

- Fuzzy index on unordered data
- Used to narrow the scan range within a block
- Improve scan performance

Compressed Data Block

Intra-Block Indexing

Novel Positional SMAs (PSMAs)

- Fuzzy index on unordered data
- Used to **narrow the scan range** within a block
- Improve scan performance

Compressed Data Block

Challenge for JIT-compiling Systems (like HyPer)

- The variety of physical Data Blocks representations either result in
 - multiple code paths \rightarrow exploding compile times

• or in interpretation overhead \rightarrow performance drop at runtime

Vectorization to the Rescue

- Integrate vectorized scan into the tuple-at-a-time JIT query engine
- Specialized scan functions for each compression scheme
- Greatly reduces interpretation overhead
 - Fast compile times (independent of the number of storage layouts)
 - Comparable runtimes (in many cases faster, due to SIMD)

Evaluation Results

TPC-H (SF100)

- Memory footprint: 60% of the original size
- Query performance improvement: 30% (geomean)
- Compilation times reduced by 50%

TPC-C (5 Warehouses)

• Transaction throughput only slightly decreased (1%)

Byte- vs. Bit-Level Storage (BitWeaving/H)

- Faster predicate evaluation: 1.8x
- Much faster access to individual tuples: 3x
- Space/time trade-off

Summary

The Data Block storage format ...

- greatly saves scarce memory resources
- improves performance on a variety of query workloads
- retains high transaction throughput
- integrates well with JIT-compiling query engines

The Data Block storage format ...

- greatly saves scarce memory resources
- improves performance on a variety of query workloads
- retains high transaction throughput
- integrates well with JIT-compiling query engines

For more details, please join the **poster session** at 3:30 – 5:00pm (Grand Ballroom A)

You can see **Data Blocks in action** at the **demo session** on Tuesday or Thursday, 3:30 – 5:00pm (Garden Room): **"High-Performance Geospatial Analytics in HyPerSpace**"

Bonus Slides

Positional SMAs

• Supports predicates of type:

COLUMN op **constant**, where op $\in \{=, <, \le, >\}$ **COLUMN between** *a* and *b*

- Considers only the *most significant non-zero byte*
- Concise: **sizeof(T) x 2K**
- Higher accuracy for small values
- Works best in combination with compression/truncation

SIMD Scan

Initial predicate

Produce a match vector

Reduce a match-vector