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Motivation

// Tuple at a time
for each tuple in R
  if tuple satisfies p
    if join partner found
      … // subsequent operator
    end  
  end
end

Code gen.
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Motivation

// Tuple at a time
for each tuple in R
  if tuple satisfies p
    if join partner found
      … // subsequent operator
    end  
  end
end

Code gen.

Vectorization

// (SIMD) Vector at a time
for each vector in R
  if at least one vector-element satisfies p
    if at least one vector-element 
       has a join partner
      … // code of subsequent operator
    end  
  end
end
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Motivation (cont‘d)

Control-flow graph: SIMD lane utilization:
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Contributions

1) Algorithms for AVX-512 SIMD to „refill“ the gaps.

2) Strategies for integration with compiled query pipelines.
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Algorithms to refill idle SIMD lanes
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Refill Algorithms for idle SIMD Lanes

● Basic building blocks to counter underutilization
– enabled by AVX-512 instruction set
– possible with pre-AVX-512 architectures, but not efficient

● Copy new elements to idle SIMD lanes
– at random positions
– without altering/modifying active lanes.
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Refill from Memory
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Refill from Memory
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Refill from Memory
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Refill from Memory
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Refill Algorithms for idle SIMD Lanes

● Many different flavors, e.g.
– copy from memory to vector registers (as shown)
– copy between vector registers (more involved)

● Implementations details 
– in the paper 
– on GitHub: https://github.com/harald-lang/simd_divergence 
– in today‘s poster session: 3:30 pm – 4 pm
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Strategies for integrating refills
 with compiled query pipelines.
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1st Strategy: Refill from pipeline source
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1st Strategy: Refill from pipeline source

If lane utilization falls below threshold, the 

control flow is returned to the pipeline 

source (e.g., table scan)
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If lane utilization falls below threshold, the 

control flow is returned to the pipeline 
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Refill idle SIMD lanes

→ typically from memory (as shown before)
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1st Strategy: Refill from pipeline source

Active elements remain in vector registers.

If lane utilization falls below threshold, the 

control flow is returned to the pipeline 

source (e.g., table scan)

Refill idle SIMD lanes

→ typically from memory (as shown before)
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1st Strategy: Refill from pipeline source

Active elements remain in vector registers.

If lane utilization falls below threshold, the 

control flow is returned to the pipeline 

source (e.g., table scan)

Refill idle SIMD lanes

→ typically from memory (as shown before)

Lanes must be protected from being modified.
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1st Strategy: Refill from pipeline source

Pipeline stage:

SIMD lanes:

underutilization
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1st Strategy: Refill from pipeline source

Pipeline stage:

SIMD lanes:

Control flow returns 
to table scan



Harald Lang (TUM) 39 

1st Strategy: Refill from pipeline source

Pipeline stage:

SIMD lanes:

Protected lanes
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1st Strategy: Refill from pipeline source

● Lane protection requires just a bit of bookkeeping

● Drawback: Inherently causes underutilization between the source 

and the operator that bailed out.

→ more costly, the longer the pipeline is

● Should only be used „close“ to the pipeline source.

Partial Consume Strategy
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2nd Strategy: Refill from buffer

https://github.com/harald-lang/simd_divergence
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2nd Strategy: Refill from buffer

Operators allocate additional vector 

register(s) which are used as tiny buffers.
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2nd Strategy: Refill from buffer

Operators allocate additional vector 

register(s) which are used as tiny buffers.

Buffers are used to:
● refill empty lanes, if enough elements are available
● buffer active elements before bailing out due to 

underutilization
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2nd Strategy: Refill from buffer

Operators allocate additional vector 

register(s) which are used as tiny buffers.

Buffers are used to:
● refill empty lanes, if enough elements are available
● buffer active elements before bailing out due to 

underutilization

Consume Everything Strategy

All SIMD lanes are empty when the control flow returns
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2nd Strategy: Refill from buffer

Pipeline stage:

SIMD lanes:

read from buffer

write to buffer
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Mixed Strategy

● Both strategies can be applied within the same pipeline 

(Mixed strategy)

– Partial Consume with lane protection should be used in 

operators close to the pipeline source,

– Consume Everything with buffering, otherwise.
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Evaluation – (approx.) point-polygon join

● Polygons: NYC boroughs, 

neighborhoods, census blocks, and 

manhattan (combines census blocks 

and neighborhood polys)
● Points: Random (uniformly distributed 

within the bounding box)
● Hardware: 

– Intel Knights Landing (Phi 7210)
– Intel Skylake-X (i9-7900X) 
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Evaluation – (cont‘d)

Workload: Manhattan polygons, 15 meter precision

System Performance Baseline 
(AVX-512)

Knights Landing
Phi 7210

3559 Mtps

Skylake-X
i9-7900X

910 Mtps
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Evaluation – (cont‘d)

System Performance Baseline 
(AVX-512)

Improvement

Knights Landing
Phi 7210

3559 Mtps + 20 %

Skylake-X
i9-7900X

910 Mtps + 35 %

Workload: Manhattan polygons, 15 meter precision
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Conclusions

● Control flow divergence wastes precious CPU resources

● Refilling empty SIMD lanes is important (and efficient 

since AVX-512)

● Integrates well with compiled query pipelines

use Partial Consume with lane protection in 

the very first operators (close to the pipeline 

source)

and apply Consume Everything with buffering 

otherwise. In particular, when traversing irregular 

pointer based data structures.
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Q & A

Thank You!
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