
Make the Most out of Your SIMD Investments:
Counter Control Flow Divergence
in Compiled Query Pipelines
Harald Lang, Andreas Kipf, Linnea Passing,

Peter Boncz, Thomas Neumann, Alfons Kemper

DaMoN’18, June 11, 2018, Houston, TX, USA

Harald Lang (TUM) 2

Motivation

Harald Lang (TUM) 3

Motivation

// Tuple at a time
for each tuple in R
 if tuple satisfies p
 if join partner found
 … // subsequent operator
 end
 end
end

Code gen.

Harald Lang (TUM) 4

Motivation

// Tuple at a time
for each tuple in R
 if tuple satisfies p
 if join partner found
 … // subsequent operator
 end
 end
end

Code gen.

Vectorization

// (SIMD) Vector at a time
for each vector in R
 if at least one vector-element satisfies p
 if at least one vector-element
 has a join partner
 … // code of subsequent operator
 end
 end
end

Harald Lang (TUM) 16

Motivation (cont‘d)

Control-flow graph: SIMD lane utilization:

Harald Lang (TUM) 17

Contributions

1) Algorithms for AVX-512 SIMD to „refill“ the gaps.

2) Strategies for integration with compiled query pipelines.

Harald Lang (TUM) 18

Algorithms to refill idle SIMD lanes

Harald Lang (TUM) 19

Refill Algorithms for idle SIMD Lanes

● Basic building blocks to counter underutilization
– enabled by AVX-512 instruction set
– possible with pre-AVX-512 architectures, but not efficient

● Copy new elements to idle SIMD lanes
– at random positions
– without altering/modifying active lanes.

Harald Lang (TUM) 20

Refill from Memory

Harald Lang (TUM) 21

Refill from Memory

Harald Lang (TUM) 22

Refill from Memory

Harald Lang (TUM) 23

Refill from Memory

Harald Lang (TUM) 24

Refill from Memory

Harald Lang (TUM) 25

Refill from Memory

Harald Lang (TUM) 26

Refill from Memory

Harald Lang (TUM) 27

Refill from Memory

Harald Lang (TUM) 28

Refill Algorithms for idle SIMD Lanes

● Many different flavors, e.g.
– copy from memory to vector registers (as shown)
– copy between vector registers (more involved)

● Implementations details
– in the paper
– on GitHub: https://github.com/harald-lang/simd_divergence
– in today‘s poster session: 3:30 pm – 4 pm

Harald Lang (TUM) 29

Strategies for integrating refills
 with compiled query pipelines.

Harald Lang (TUM) 32

1st Strategy: Refill from pipeline source

Harald Lang (TUM) 33

1st Strategy: Refill from pipeline source

If lane utilization falls below threshold, the

control flow is returned to the pipeline

source (e.g., table scan)

Harald Lang (TUM) 34

1st Strategy: Refill from pipeline source

If lane utilization falls below threshold, the

control flow is returned to the pipeline

source (e.g., table scan)

Refill idle SIMD lanes

→ typically from memory (as shown before)

Harald Lang (TUM) 35

1st Strategy: Refill from pipeline source

Active elements remain in vector registers.

If lane utilization falls below threshold, the

control flow is returned to the pipeline

source (e.g., table scan)

Refill idle SIMD lanes

→ typically from memory (as shown before)

Harald Lang (TUM) 36

1st Strategy: Refill from pipeline source

Active elements remain in vector registers.

If lane utilization falls below threshold, the

control flow is returned to the pipeline

source (e.g., table scan)

Refill idle SIMD lanes

→ typically from memory (as shown before)

Lanes must be protected from being modified.

Harald Lang (TUM) 37

1st Strategy: Refill from pipeline source

Pipeline stage:

SIMD lanes:

underutilization

Harald Lang (TUM) 38

1st Strategy: Refill from pipeline source

Pipeline stage:

SIMD lanes:

Control flow returns
to table scan

Harald Lang (TUM) 39

1st Strategy: Refill from pipeline source

Pipeline stage:

SIMD lanes:

Protected lanes

Harald Lang (TUM) 41

1st Strategy: Refill from pipeline source

● Lane protection requires just a bit of bookkeeping

● Drawback: Inherently causes underutilization between the source

and the operator that bailed out.

→ more costly, the longer the pipeline is

● Should only be used „close“ to the pipeline source.

Partial Consume Strategy

Harald Lang (TUM) 42

2nd Strategy: Refill from buffer

https://github.com/harald-lang/simd_divergence

Harald Lang (TUM) 43

2nd Strategy: Refill from buffer

Operators allocate additional vector

register(s) which are used as tiny buffers.

Harald Lang (TUM) 44

2nd Strategy: Refill from buffer

Operators allocate additional vector

register(s) which are used as tiny buffers.

Buffers are used to:
● refill empty lanes, if enough elements are available
● buffer active elements before bailing out due to

underutilization

Harald Lang (TUM) 45

2nd Strategy: Refill from buffer

Operators allocate additional vector

register(s) which are used as tiny buffers.

Buffers are used to:
● refill empty lanes, if enough elements are available
● buffer active elements before bailing out due to

underutilization

Consume Everything Strategy

All SIMD lanes are empty when the control flow returns

Harald Lang (TUM) 46

2nd Strategy: Refill from buffer

Pipeline stage:

SIMD lanes:

read from buffer

write to buffer

Harald Lang (TUM) 47

Mixed Strategy

● Both strategies can be applied within the same pipeline

(Mixed strategy)

– Partial Consume with lane protection should be used in

operators close to the pipeline source,

– Consume Everything with buffering, otherwise.

Harald Lang (TUM) 48

Evaluation – (approx.) point-polygon join

● Polygons: NYC boroughs,

neighborhoods, census blocks, and

manhattan (combines census blocks

and neighborhood polys)
● Points: Random (uniformly distributed

within the bounding box)
● Hardware:

– Intel Knights Landing (Phi 7210)
– Intel Skylake-X (i9-7900X)

Harald Lang (TUM) 49

Evaluation – (cont‘d)

Workload: Manhattan polygons, 15 meter precision

System Performance Baseline
(AVX-512)

Knights Landing
Phi 7210

3559 Mtps

Skylake-X
i9-7900X

910 Mtps

Harald Lang (TUM) 50

Evaluation – (cont‘d)

System Performance Baseline
(AVX-512)

Improvement

Knights Landing
Phi 7210

3559 Mtps + 20 %

Skylake-X
i9-7900X

910 Mtps + 35 %

Workload: Manhattan polygons, 15 meter precision

Harald Lang (TUM) 51

Conclusions

● Control flow divergence wastes precious CPU resources

● Refilling empty SIMD lanes is important (and efficient

since AVX-512)

● Integrates well with compiled query pipelines

use Partial Consume with lane protection in

the very first operators (close to the pipeline

source)

and apply Consume Everything with buffering

otherwise. In particular, when traversing irregular

pointer based data structures.

Harald Lang (TUM) 52

Q & A

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

